

TEST REPORT

APPLICANT	: Anker Innovations Limited
PRODUCT NAME	: Nebula Capsule II
MODEL NAME	: D2421
BRAND NAME	: Nebula
FCC ID	: 2AOKB-D2421
STANDARD(S)	: FCC 47CFR 2.1093
RECEIPT DATE	: 2018-12-06
TEST DATE	: 2019-03-18
ISSUE DATE	: 2019-03-20

Liang Yumei

Edited by:

Approved by:

Liang Yumei (Rapporteur)

Peng Huarui (Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525

E-mail: service@morlab.cn Http://www.morlab.cn

DIRECTORY

1	SAR RESULTS SUMMARY4		
2	TE	ECHNICAL INFORMATION	5
	2.1	Applicant and Manufacturer Information	5
	2.2	EQUIPMENT UNDER TEST (EUT) DESCRIPTION	5
	2.3	Environment of Test Site	6
3	IN	ITRODUCTION	7
	3.1	INTRODUCTION	7
	3.2	SAR DEFINITION	7
4	R	F EXPOSURE LIMITS	8
	4.1	UNCONTROLLED ENVIRONMENT	8
	4.2	CONTROLLED ENVIRONMENT	8
	4.3	RF Exposure Limits	8
	4.4	APPLIED REFERENCE DOCUMENTS	
5	S	AR MEASUREMENT SYSTEM	
	5.1	E-Field Probe	
	5.2	Рналтом	15
	5.3	Device Holder	
	5.4	TEST EQUIPMENT LIST	16
6	ті	ISSUE SIMULATING LIQUIDS	
7	S	AR SYSTEM VERIFICATION	
8	E	UT TESTING POSITION	
	8.1	SAR EVALUATIONS NEAR THE MOUTH/JAW REGIONS OF THE SAM PHANTOM	
	8.2	BODY WORN ACCESSORY CONFIGURATIONS	
9	М	EASUREMENT PROCEDURES	
	9.1	Power Reference Measurement	23
	9.2	AREA SCAN PROCEDURES	
	9.3	ZOOM SCAN PROCEDURES	25
	9.4	SAR AVERAGED METHODS	25
10)	CONDUCTED RF OUTPUT POWER	

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

11 8	SAR TEST RESULTS SUMMARY	
11.1	STANDALONE BODY SAR	29
11.2	STAND-ALONE SAR TEST EXCLUSION	
11.3	SAR SIMULTANEOUS TRANSMISSION ANALYSIS	
11.4	Measurement Uncertainty	
UNCEF	RTAINTY EVALUATION FOR HANDSET SAR TEST	
11.5	Measurement Conclusion	
Anne	x A General Information	
Annex	x B Test Setup Photos	

Annex C Plots of System Performance Check

Annex D Plots of Maximum SAR Test Results

Annex E SATIMO Calibration Certificate

Change History		
Version	Date	Reason for changed
1.0	2019-03-20	Original

1 SAR Results Summary

The maximum results of Specific Absorption Rate (SAR) found during test as bellows:

Frequency Band		Highest SAR Summary Body (Separation 0mm)	
2.4GHz WLAN		0.044	
WLAN	5GHz WLAN	0.088	

Max Scaled SAR1g(W/Kg)	ody: 0.088W/kg	Limit(W/kg):1.6W/kg
------------------------	----------------	---------------------

Note:

1. This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

2 Technical Information

Note: Provide by applicant.

2.1 Applicant and Manufacturer Information

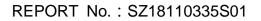
Applicant:	Anker Innovations Limited	
Applicant Address	Room 1318-19,Hollywood Plaza,610 Nathan Road, Mongkok,	
Applicant Address:	Kowloon, Hong Kong	
Manufacturer:	Anker Innovations Limited	
Manufacturer Address:	Room 1318-19,Hollywood Plaza,610 Nathan Road, Mongkok,	
	Kowloon, Hong Kong	

2.2 Equipment Under Test (EUT) Description

EUT Type:	Nebula Capsule II	
Hardware Version:	A277	
Software Version:	V0.0.06	
	WLAN 2.4GHz: 2412 MHz~2462 MHz	
Operation Frequency	WLAN 5.2GHz: 5180 MHz~5240 MHz	
Operation Frequency:	WLAN 5.8GHz: 5745 MHz~5825 MHz	
	Bluetooth: 2402 MHz ~2480 MHz	
	802.11 b: DSSS	
Modulation toobhology	802.11 a/g/n/ac: OFDM	
Modulation technology:	BR+EDR: GFSK, π /4-DQPSK, 8-DPSK	
	BLE: GFSK	
Antenna Type:	FPC Antenna	
	2.4G:2.84dBi;	
Antenna Gain:	5G:3.04dBi;	
	BT 1:2.84dBi	
	BT 2:1.38dBi	

Note:

This test report is updated from original report SZ18110110S01 (Model: D2241, FCC ID: 2AOKB-D2241). And this report recorded the results of module (DM8060) for WIFI2.4G function. According to the certificate holder, they declared that the model D2421 contains two main modules, module (DM8060) and module (T835). One of the module (DM8060) used in model D2421 is the same module used in model D2241 (FCC ID: 2AOKB-D2241).


2.3 Environment of Test Site

Temperature:	18°C ~25 °C
Humidity:	35%~75% RH
Atmospheric Pressure:	1010 mbar

Normal Temperature (NT):	20 25 ° C
Relative Humidity:	30 75 %
Air Pressure:	980 1020 hPa
Tost froquency:	WLAN 2.4GHz;
Test frequency:	WLAN 5GHz;
Operation mode: Call established	
Barrah	WLAN 2.4GHz Maximum output power
Power Level:	WLAN 5GHz Maximum output power

3 Introduction

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

Http://www.morlab.cn

E-mail: service@morlab.cn

4 **RF Exposure Limits**

4.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

4.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

4.3 **RF Exposure Limits**

HUMAN EXPOSURE LIMITS		
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED EN√IRONMENT <i>Occupational</i> (W/kg) or (mW/g)
SPATIAL PEAK SAR Brain	1.6	8.0
SPATIAL AVERAGE SAR Whole Body	0.08	0.4
SPATIAL PEAK SAR Hands, Feet, Ankles, Wrists	4.0	20

SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

Note:

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

4.4 Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title
1	47 CFR§2.1093	Radio Frequency Radiation Exposure Evaluation: Portable Devices
2	KDB 447498 D01v06	General RF Exposure Guidance
3	KDB 865664 D01v01r04	SAR Measurement 100 MHz to 6 GHz

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

5 SAR Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

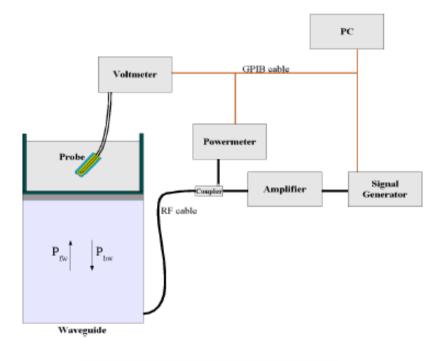
The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

5.1 E-Field Probe

For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with following specifications is used


- Dynamic range: 0.01-100 W/kg
- Tip Diameter : 6.5 mm
- Distance between probe tip and sensor center: 2.5mm
- Distance between sensor center and the inner phantom surface: 4 mm

(repeatability better than +/- 1mm)

- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.25 dB
- Calibration range: 835 to 2500MHz for head & body simulating liquid.

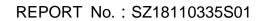
Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annexe technique using reference guide at the five frequencies.

$$SAR = \frac{4\left(P_{fw} - P_{bw}\right)}{ab\delta}\cos^2\left(\pi\frac{y}{a}\right)e^{-(2z/\delta)}$$

Where :

- Pfw = Forward Power
- Pbw = Backward Power



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525

Http://www.morlab.cn

a and b = Waveguide dimensions

ı = Skin depth

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO

After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

CF(N)=SAR(N)/Vlin(N) (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

 $Vlin(N)=V(N)^{(1+V(N)/DCP(N))}$ (N=1,2,3)

where DCP is the diode compression point in mV.

Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an with CALISAR, Antenna proprietary calibration system.

Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulating head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

 $\mathbf{SAR} = \mathbf{C}\left(\frac{\mathbf{\delta T}}{\mathbf{\delta t}}\right)$

C = heat capacity of tissue (brain or muscle),

 δt = exposure time (30 seconds),

 δT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

Where:

$$SAR = \frac{\sigma |E|^2}{\rho}$$

 σ = simulated tissue conductivity,

Tel: 86-755-36698555 Fax: 86-755-36698525

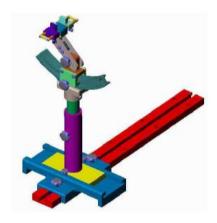
Http://www.morlab.cn

E-mail: service@morlab.cn

 ρ = Tissue density (1.25 g/cm³ for brain tissue)

 ρ = Tissue density (1.25 g/cm³ for brain tissue)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



5.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

5.3 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

	Device holder	
System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

5.4 Test Equipment List

Manufacture		To ma (Mandal	O seist Niemak an	Calibration		
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SATIMO	2450MHz System Validation Kit	D2450V2	30/13 DIP2G450-263	2018.05.10	2019.05.09	
SATIMO	5000-6000MHz System Validation Kit	D5GHz	41/12 WGA21	2018.05.10	2019.05.09	
SATIMO	Dosimetric E-Field Probe	N/A	37/08 EP80	2018.05.10	2019.05.09	
SATIMO	Dosimetric E-Field Probe	N/A	37/13 EPG193	2018.05.10	2019.05.09	
Keithley	Voltmeter	2000	1000572	2018.05.10	2019.05.09	
SATIMO	SAM Twin Phantom 2	N/A	SN_36_08_SAM62	NCR	NCR	
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR	
R&S	Network Emulator	CMW500	124534	2018.04.17	2019.04.16	
Agilent	Network Emulator	8960	10752	2018.04.17	2019.04.16	
Agilent	Network Analyzer	E5071B	MY42404762	2018.04.17	2019.04.16	
Agilent	Dielectric Probe Kit	85033E	N/A	2018.04.17	2019.04.16	
mini-circuits	Amplifier	ZHL-42W+	608501717	NCR	NCR	
Agilent	Signal Generator	N5182B	MY53050509	2018.04.17	2019.04.16	
Agilent	Power Meter	E4416A	MY45102093	2018.04.17	2019.04.16	
Agilent	Power Senor	N8482A	MY41090849	2018.04.17	2019.04.16	
R&S	Power Meter	NRVD	101066	2018.04.17	2019.04.16	
Anritsu	Power Sensor	MA2411B	N/A	2018.04.17	2019.04.16	
Giga-tronics	Directional coupler	N/A	1829112	NA	NA	
MCL	Attenuation1	6dBm	351-218-010	NA	NA	
N/A	Tissue Simulating Liquids	Body	800-2600 MHz	Withi	n 24H	
THERMOME TER	Thermo meter	Mode-01	N/A	2018.04.25	2019.04.24	

Http://www.morlab.cn

E-mail: service@morlab.cn

Tissue Simulating Liquids 6

For the measurement of the field distribution inside the phantom, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1, for body SAR testing, the liquid height from the center of the flat phantom to liquid top surface is larger than 15 cm, which is shown in Fig. 6.2.

Fig 6.1 Photo of Liquid Height for Head SAR

Fig 6.2 Photo of Liquid Height for Body SAR

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)
				Head			•	
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	0	45.1	1.96	39.0
				Body				
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7
2600	68.1	0	0	0.1	0	31.8	2.16	52.5

The following table gives the recipes for tissue simulating liquids

Simulating Liquid for 5GHz, Manufactured bv SPEAG

Ingredients	(% by weight)					
Water	64~78%					
Mineral oil	11~18%					
Emulsifiers	9~15%					
Additives and Salt	2~3%					

Recipes for Tissue Simulating Liquid

Tel: 86-755-36698555

Http://www.morlab.cn

E-mail: service@morlab.cn

The dielectric parameters of liquids were verified prior to the SAR evaluation using a Speag Dielectric Probe Kit and an Agilent Network Analyzer.

The following table shows the measuring results for simulating liquid.

Frequency (MHz)	Real part of the complex relative	Conductivity, σ (S/m)
	permittivity, ε'r	
30	55.0	0.75
150	52.3	0.76
300	45.3	0.87
450	43.5	0.87
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800	40.0	1.40
1900	40.0	1.40
1950	40.0	1.40
2000	40.0	1.40
2100	39.8	1.49
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40
4000	37.4	3.43
5000	36.2	4.45
5200	36.0	4.65
5400	35.8	4.86
5600	35.5	5.06
5800	35.4	5.27
6000	35.1	5.48

The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer.

Frequency (MHz)	Tissue Type	Liquid Temp. (℃)	Conductivity (σ)	Conductivity Target (σ)	Delta (σ) (%)	Limit (%)	Date
2450	MSL	22.2	1.965	1.95	0.77	±5	2019.03.18
5200	MSL	22.8	5.543	5.30	4.58	±5	2019.03.18
5800	MSL	22.8	5.943	6.00	-0.95	±5	2019.03.18

The following table shows the measuring results for simulating liquid.

Frequency (MHz)	Tissue Type	Liquid Temp. (℃)	Permittivity (ε _r)	Permittivity Target (ε _r)	Delta (ε _r) (%)	Limit (%)	Date
2450	MSL	22.2	52.874	52.70	0.33	±5	2019.03.18
5200	MSL	22.8	48.993	49.00	-0.01	±5	2019.03.18
5800	MSL	22.8	48.093	48.20	-0.22	±5	2019.03.18

7 SAR System Verification

> Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

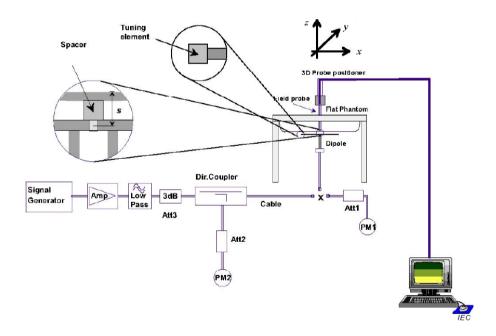


Fig.8.1 Photo of Dipole setup

> System Verification Results

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2450	MSL	100	30/13 DIP2G450-263	37/08 EP80	5.08	50.93	50.83	-0.20
5200	MSL	100	SN 41/12 WGA21-5200	37/13 EPG193	16.29	163.36	162.85	-0.31
5800	MSL	100	SN 41/12 WGA21-5800	37/13 EPG193	17.69	177.10	176.85	-0.14

<10g SAR>

<1q SAR>

Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	Measured 10g SAR (W/kg)	Targeted 10g SAR (W/kg)	Normalized 10g SAR (W/kg)	Deviation (%)
2450	MSL	100	30/13 DIP2G450-263	37/08 EP80	2.38	23.26	23.78	2.24
5200	MSL	100	SN 41/12 WGA21-5200	37/13 EPG193	5.63	57.09	56.32	-1.35
5800	MSL	100	SN 41/12 WGA21-5800	37/13 EPG193	5.97	59.95	59.73	-0.37

Note: System checks the specific test data please see Annex C

8 EUT Testing Position

This EUT was tested in ten different positions. They are right cheek/right tilted/left cheek/left tilted for head, Front/Back/Right Side/Top Side/Bottom Side of the EUT with phantom 10 mm gap, as illustrated below, please refer to Appendix B for the test setup photos.

8.1 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR locations identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

8.2 Body Worn Accessory Configurations

- > To position the device parallel to the phantom surface with either keypad up or down.
- > To adjust the device parallel to the flat phantom.
- To adjust the distance between the device surface and the flat phantom to 10 mm or holster surface and the flat phantom to 0 mm.

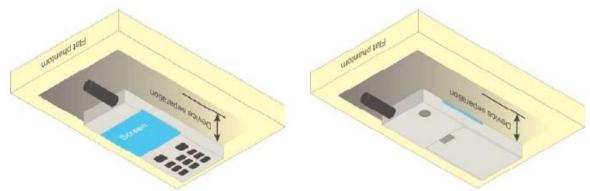


Fig.9.5 Illustration for Body Worn Position

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

9 Measurement Procedures

The measurement procedures are as bellows:

<Conducted power measurement>

- For WWAN power measurement, use base station simulator to configure EUT WWAN transition in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- Read the WWAN RF power level from the base station simulator.
- For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band.
- Connect EUT RF port through RF cable to the power meter or spectrum analyzer, and measure WLAN/BT output power.

<Conducted power measurement>

- Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- Place the EUT in positions as Appendix B demonstrates.
- > Measure SAR results for the highest power channel on each testing position.
- Find out the largest SAR result on these testing positions of each band.
- Measure SAR results for other channels in worst SAR testing position if the Reported SAR or highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Area scan
- Zoom scan

9.1 **Power Reference Measurement**

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.2 Area Scan Procedures

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

9.3 Zoom Scan Procedures

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10 g cube 21,5mm.The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 5x5x7 (8mmx8mmx5mm)providing a volume of 32mm in the X & Y axis, and 30mm in the Z axis.

9.4 SAR Averaged Methods

In SATIMO, the interpolation and extrapolation are both based on the modified Quadratic Sheppard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1g and 10g cubes, the extrapolation distance should not be larger than 5 mm.

10 Conducted RF Output Power

<WLAN 2.4GHz>

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
	802.11b	CH 1	2412	13.32	14.00	
	1Mbps	CH 6	2437	13.40	14.00	100.00
2.4GHz	nvibps	CH 11	2462	13.62	14.00	
WLAN	902 11a	CH 1	2412	12.54	13.00	
	802.11g 6Mbps	CH 6	2437	12.60	13.00	100.00
	olviops	CH 11	2462	12.88	13.00	
	802.11n-H T20 MCS0	CH 1	2412	12.20	13.00	
		CH 6	2437	12.30	13.00	100.00
		CH 11	2462	12.37	13.00	

<WLAN 5GHz>

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
	802.11a	CH 36	5180	11.69	12.50	
	6Mbps	CH 40	5200	11.95	12.50	97.21
	olvibps	CH 48	5240	12.02	12.50	
	902 11° UT2	CH 36	5180	11.82	12.50	
	802.11n-HT2 0 MCS0	CH 40	5200	12.08	12.50	97.03
5.2GHz	0 101030	CH 48	5240	12.15	12.50	
WLAN	802.11n-HT4	CH 38	5190	11.95	12.50	97.05
	0 MCS0	CH 46	5230	11.89	12.50	97.05
	802.11ac-VH	CH 36	5180	11.92	12.50	
	T20 MCS0	CH 40	5200	12.08	12.50	93.62
	12010030	CH 48	5240	12.16	12.50	
	802.11ac-VH	CH 38	5190	11.96	12.00	02.07
	T40 MCS0	CH 46	5230	11.85	12.00	93.97
	802.11ac-VH T80 MCS0	CH 42	5210	11.53	12.00	88.22

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
	802.11a	CH 149	5745	12.83	13.50	
	MCS0	CH 157	5785	12.95	13.50	97.21
	WICS0	CH 165	5825	13.49	14.00	
	802.11n-HT2	CH 149	5745	12.45	13.00	
	0 MCS0	CH 157	5785	12.66	13.00	97.03
5.8GHz	0 10030	CH 165	5825	13.18	13.50	
WLAN	802.11n-HT4	CH 151	5755	12.58	13.00	97.05
	0 MCS0	CH 159	5795	12.90	13.50	97.05
	900 11 a a \/L	CH 149	5745	12.48	13.00	
	802.11ac-VH T20 MCS0	CH 157	5785	12.78	13.00	93.82
	120 10030	CH 165	5825	13.14	13.50	
	802.11ac-VH	CH 151	5755	12.50	13.00	02.07
	T40 MCS0	CH 159	5795	12.80	13.00	93.97
	802.11ac-VH T80 MCS0	CH 155	5775	12.11	13.00	88.22

<Bluetooth 1>

Mode	Channel	Frequency	Peak power (dBm)					
	Channel	(MHz)	1Mbps	2Mbps	3Mbps			
0	CH 00	2402	6.43	7.65	6.41			
BR / EDR	CH 39	2441	6.35	7.36	6.29			
	CH 78	2480	5.75	7.02	5.75			
	Tune-up Limit		6.50	8.00	7.00			

Mode	Channel	Frequency	Peak power (dBm)
Mode	Channel	(MHz)	GFSK
	CH 00	2402	6.26
LE	CH 19	2440	6.98
	CH 39	2480	6.55
Tune-up Limit			7.00

<Bluetooth 2>

Mode	Channel	Frequency	Peak power (dBm)				
Mode	Channel	(MHz)	1Mbps	2Mbps	3Mbps		
CH 00		2402	1.76	-0.17	-0.20		
BR / EDR	CH 39	2441	3.65	2.83	2.80		
	CH 78	2480	5.06	4.39	4.37		
	Tune-up Limit		5.50	5.00	5.00		

Note:

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

11 SAR Test Results Summary

11.1 Standalone Body SAR

> WLAN Body SAR

Plot No.	Band/Mode	Test Position	Ch.	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN2.4GHz/802.11b	Section	11	13.62	14.00	1.091	100	1.000	0.020	0.022
1#	WLAN2.4GHz/802.11b	Тор	11	13.62	14.00	1.091	100	1.000	0.040	0.044
	WLAN5GHz 802.11ac-VHT20	Section	48	12.16	12.50	1.081	93.62	1.068	0.027	0.031
2#	WLAN5GHz/802.11ac-VHT20	Тор	48	12.16	12.50	1.081	93.62	1.068	0.036	0.042
	WLAN5GHz 802.11ac-VHT20	Section	165	13.49	14.00	1.125	97.21	1.029	0.065	0.075
3#	WLAN5GHz/802.11ac-VHT20	Тор	165	13.49	14.00	1.125	97.21	1.029	0.076	0.088

Note:

- Body SAR testing was performed at 0mm separation, and this distance is determined by the handset manufacturer that there will be body-worn accessories that users may acquire at the time of equipment certification, to enable users to purchase aftermarket body-worn accessories with the required minimum separation.
- Per KDB 648474 D04v01r03, when the *Reported* SAR for a body accessory measured without a headset connected to the handset is ≤ 1.2 W/kg, SAR testing with a headset connected to the handset is not required.
- 3. Per KDB 447498 D01v06, for each exposure position, if the highest output channel Reported SAR ≤0.8W/kg, other channels SAR testing is not necessary.

Http://www.morlab.cn

11.2 Stand-alone SAR test Exclusion

<Bluetooth Estimated SAR>

1. Per KDB 447498 D01v06, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)] · [$\sqrt{f}(GHz)$] ≤ 3.0 for1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Max. Max. Test exclusion Frequency tune-up Channel Power distance Result thresholds Band (GHz) Power (mW) for 1-g SAR (mm)(dBm) Bluetooth 1 CH 39 2.402 8.00 6.31 5.00 1.96 3.0 Bluetooth 2 CH 78 2.480 5.50 5.55 5.00 1.11 3.0

- 2. The max. tune-up power was provided by manufacturer, base on the result of note 1, RF exposure evaluation is not required.
- 3. The output power of all data rate were pre-scan, just the worst case of all mode were shown in report.
- 4. When the minimum *test separation distance* is < 5 mm, a distance of 5 mm according is applied to determine SAR test exclusion.
- 5. When the standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f}(GHz)/x$] W/kg for test separation distances \leq 50 mm, where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine <Bluetooth Body SAR>

Band	Channel	Frequency (GHz)	Max. tune-up Power (dBm)	Max. Power (mW)	Test distance (mm)	Test threshold
Bluetooth 1	CH 39	2.402	8.00	6.31	5.00	0.261
Bluetooth 2	CH 78	2.480	5.50	5.55	5.00	0.149

Fax: 86-755-36698525

Tel: 86-755-36698555

11.3 SAR Simultaneous Transmission Analysis

Simultaneous Evaluation:

No.	Simultaneous transmission Condition	Body
1	WLAN + Bluetooth 2	Yes

Note:

- 1. The maximum SAR summation is calculated based on the same configuration and test position.
- 2. When 1-g SAR scalar summation < 1.6 W/kg, the Simultaneous SAR is not required.

	2.4GHz WLAN	5GHz WLAN	Bluetooth 2	2.4GHz WLAN	5GHz WLAN
Exposure Position	1g SAR (W/kg)	1g SAR (W/kg)	Estimated 1g SAR (W/kg)	+ Bluetooth 2 Summed 1g SAR (W/kg)	+ Bluetooth 2 Summed 1g SAR (W/kg
Section	0.022	0.075	0.149	0.097	0.224
Тор	0.044	0.088	0.149	0.132	0.237

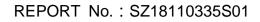
11.4 Measurement Uncertainty

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A Type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in below Table.

Uncertainty Distributions	ty Distributions Normal		Triangular	U-Shape
Multi-plying Factor	1/k(b)	1/√3	1/√6	1/√2


Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The SATIMO uncertainty Budget is shown in the following tables.

Uncertainty Evaluation For Handset SAR Test

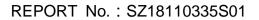
а	b	С	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	j
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	Vi
Measurement System									
Probe calibration	E.2.1	5.83	N	1	1	1	5.83	5.83	8
Axial Isotropy	E.2.2	3.5	R	$\sqrt{3}$	1	1	2.02	2.02	8
Hemispherical Isotropy	E.2.2	5.9	R	$\sqrt{3}$	1	1	3.41	3.41	8
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8
Linearity	E.2.4	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	8
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8
Modulation Response	E.2.4	4.1	R	$\sqrt{3}$	1	1	2.4	2.4	8
Readout Electronics	E.2.6	0.5	N	1	1	1	0.5	0.5	8
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	3.0	3.0	8
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8
Probe positioner Mechanical	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Probe positioning with	E.6.3	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	8
Test sample Related									
Test sample positioning	E.4.2.1	2.6	Ν	1	1	1	2.6	2.6	N-1
Device Holder Uncertainty	E.4.1.1	3.0	Ν	1	1	1	3.0	3.0	N-1
Output power Power drift - SAR drift measurement	6.6.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	8
Phantom and Tissue Parame	eters								
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	4.0	R	$\sqrt{3}$	1	1	2.31	2.31	8
Liquid conductivity - deviation from target value	E.3.2	2.0	R	$\sqrt{3}$	0.6 4	0.43	1.69	1.13	8
Liquid conductivity -	E.3.3	2.5	N	1	0.6	0.43	3.20	2.15	М

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

measurement uncertainty					4				
Liquid permittivity - deviation	E.3.2	2.5	R	$\sqrt{3}$	0.6	0.49	1.28	1.04	8
from target value	E.3.2	2.5	Γ	<i>N</i> 3	0.0	0.49	1.20	1.04	~
Liquid permittivity -	Faa	.3.3 5.0	N	1	0.6	0.49	6.00	4.00	М
measurement uncertainty	E.3.3			1	0.0		6.00	4.90	IVI
Liquid conductivity	E.3.4		R	$\sqrt{3}$	0.7	0.41			8
-temperature uncertainty	E.3.4		IX .	ν <i>3</i>	8	0.41			~
Liquid permittivity	E.3.4		R	$\sqrt{3}$	0.2	0.26			8
-temperature uncertainty	E.3.4		r	$\sqrt{3}$	3	0.26			~
Combined Standard			RSS				11.55	12.07	
Uncertainty			R00				11.55	12.07	
Expanded Uncertainty			K=2				±23.20	±24.17	
(95% Confidence interval)			r\=2				±23.20	±24.17	

Uncertainty For System Performance Check

а	b	С	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/ e	k		
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+- %)	Vi		
Measurement System											
Probe calibration	E.2.1	4.76	Ν	1	1	1	4.76	4.76	8		
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	1	1	1.44	1.41	8		
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	1	1	2.31	2.32	8		
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8		
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	8		
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8		
Readout Electronics	E.2.6	0.02	Ν	1	1	1	0.02	0.02	8		
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8		
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	8		
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8		
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	8		


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	8	
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	8	
Dipole										
Dipole axis to liquid Distance	8,E.4. 2	1.00	Ν	$\sqrt{3}$	1	1	0.58	0.58	8	
Input power and SAR drift measurement	8,6.6.2	4.04	R	$\sqrt{3}$	1	1	2.33	2.33	8	
Phantom and Tissue Parameters										
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	8	
Liquid conductivity - deviation from target value	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.13	8	
Liquid conductivity - measurement uncertainty	E.3.3	5.00	Ν	$\sqrt{3}$	0.64	0.43	1.85	1.24	М	
Liquid permittivity - deviation from target value	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.04	8	
Liquid permittivity - measurement uncertainty	E.3.3	10.0 0	Ν	$\sqrt{3}$	0.6	0.49	3.46	2.83	М	
Combined Standard Uncertainty			RSS				8.83	8.37		
Expanded Uncertainty (95% Confidence interval)			K=2				17.66	16.7 3		

11.5 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the CE, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested. Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

