TEST REPORT

FCC ID: 2AOKB-D0421 Product: Nebula Gamepad Model No.: D0421 Additional Model No.: M2, C02 Trade Mark: NEBULA Report No.: TCT190307E002 Issued Date: Mar. 29, 2019

Anker Innovations Limited Room 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, Hong Kong

Issued for:

Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755-27673339

Issued By:

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1. Test Certification	
2. Test Result Summary	4
3. EUT Description	5
4. General Information	
4.1. Test environment and mode	
4.2. Description of Support Units	6
5. Facilities and Accreditations	
5.1. Facilities	
5.2. Location	
5.3. Measurement Uncertainty	<u>(()</u>
6. Test Results and Measurement Data	
6.1. Antenna requirement	
6.2. Conducted Emission	9
6.3. Conducted Output Power	
6.4. Emission Bandwidth	
6.5. Power Spectral Density	
6.6. Test Specification	
6.7. Conducted Band Edge and Spurious Emis	
6.8. Radiated Spurious Emission Measurement	t25
Appendix A: Photographs of Test Setup	
Appendix B: Photographs of EUT	

CT通测检测 Test Certification

1.

Product:	Nebula Gamepad	
Model No.:	D0421	
Additional Model No.:	M2, C02	C
Trade Mark:	NEBULA	
Applicant:	Anker Innovations Limited	
Address:	Room 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, Hong Kong	Ś
Manufacturer:	Anker Innovations Limited	
Address:	Room 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, Hong Kong	
Date of Test:	Mar. 08, 2019 – Mar. 28, 2019	
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 KDB 558074 D01 15.247 Meas Guidance v05r01	Ś

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By: Mar. 28, 2019 Date: Jerry Xie **Reviewed By:** Mar. 29, 2019 Date: Beryl Zhao msn Approved By: Date: Mar. 29, 2019 Tomsin Page 3 of 43

2. Test Result Summary

	CFR 47 Section	Re Re	sult
Antenna requirement	§15.203/§15.247 ((c) PA	SS 🛇
AC Power Line Conducted Emission	§15.207	PA	SS
Conducted Peak Output Power	§15.247 (b)(3) §2.1046	PA	SS
6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PA	SS
Power Spectral Density	§15.247 (e)	PA	SS
Band Edge	1§5.247(d) §2.1051, §2.1057	7 PA	SS
Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PA PA	SS
2. Fail: Test item does not meet the	e requirement.		
 Fail: Test item does not meet the N/A: Test case does not apply to The test result judgment is decided 	the test object.		
3. N/A: Test case does not apply to	the test object.		
3. N/A: Test case does not apply to	the test object.		
3. N/A: Test case does not apply to	the test object. ed by the limit of test standard.		
3. N/A: Test case does not apply to	the test object. ed by the limit of test standard.		

3. EUT Description

Product:	Nebula Gamepad
Model No.:	D0421
Additional Model No.:	M2, C02
Trade Mark:	NEBULA
Hardware Version:	V1.0
Software Version:	V1.0
BT Version:	V4.0
Operation Frequency:	2402MHz~2480MHz
Channel Separation:	2MHz
Number of Channel:	40
Modulation Technology:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi
Power Supply:	Rechargeable Li-ion battery DC 3.7V
Remark:	All models above are identical in interior structure, electrical circuits and components, and just Logo and Button colors are different for the marketing requirement.

Operation Frequency each of channel

Operatio	n Frequenc	y each o					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
<u> </u>	(,	<u></u>	(<u> </u>	(<u> </u>	(.ć
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark: Channel 0, 19 & 39 have been tested.							
ļ		ļ					KO I

Page 5 of 43

4. General Information

4.1. Test environment and mode

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	56 % RH	
Atmospheric Pressure:	1010 mbar	S
Test Mode:		

Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) with Fully-charged battery.

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.		FCC ID	Trade Name
, 0	/		N.		

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 6 of 43

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

- FCC Registration No.: 645098
 - Shenzhen Tongce Testing Lab

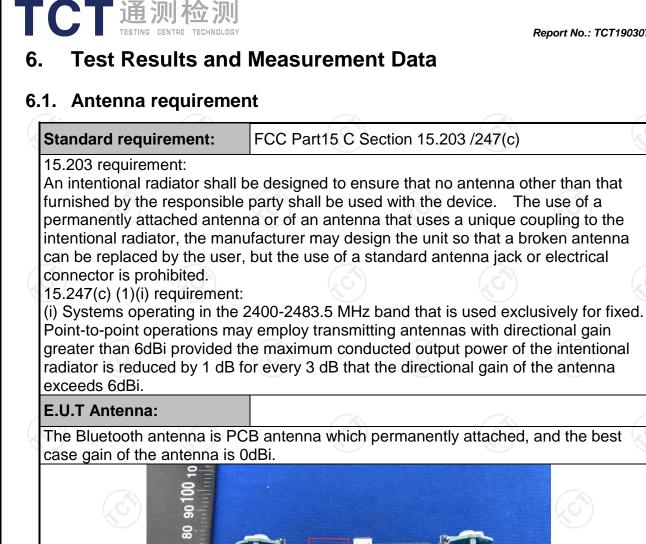
The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

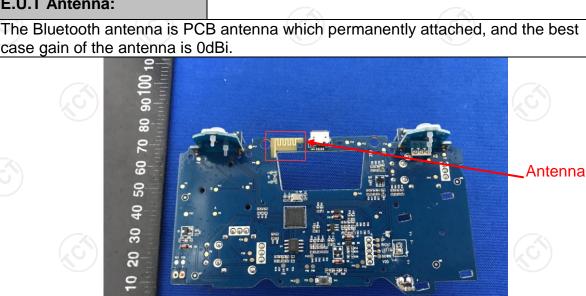
• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab


Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China


TEL: +86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Item	MU
Conducted Emission	±2.56dB
RF power, conducted	±0.12dB
Spurious emissions, conducted	±0.11dB
All emissions, radiated(<1G)	±3.92dB
All emissions, radiated(>1G)	±4.28dB
Temperature	±0.1°C
Humidity	±1.0%
	Conducted Emission RF power, conducted Spurious emissions, conducted All emissions, radiated(<1G)

0 30 30 10100 90 80 70 90 50 40 30 50 10 05 05 04

Report No.: TCT190307E002

Page 8 of 43

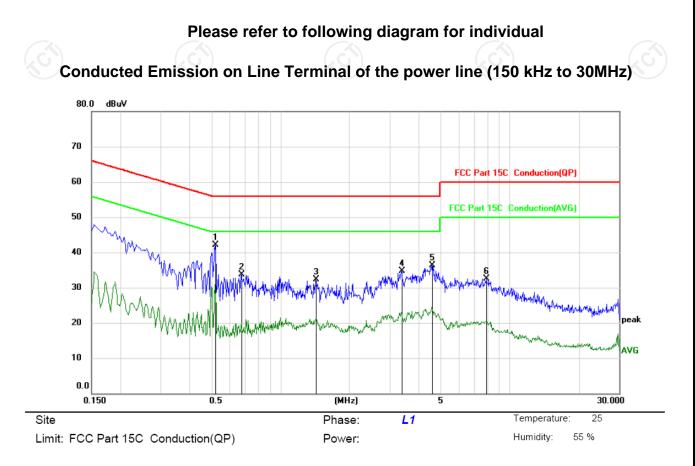
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.2. Conducted Emission

6.2.1. Test Specification

			6				
Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
	Frequency range	Limit (c	dBuV)				
	(MHz)	Quasi-peak	Average				
Limits:	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	Refere	nce Plane					
Test Setup:	E.U.T Adap Test table/Insulation pla Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	ne	ter — AC power				
Test Mode:	Charging + Transmitting Mode						
Test Procedure:	 The E.U.T is connelimpedance stabilizing provides a 500hm/s measuring equipme The peripheral device power through a Licoupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10: 2013 	ation network 50uH coupling im nt. ces are also conne ISN that provides with 50ohm term diagram of the line are checke nce. In order to fir e positions of equi s must be chang	(L.I.S.N.). This pedance for the a 50ohm/50uh ination. (Please test setup and d for maximum ind the maximum ipment and all o ed according to				
Test Result:	PASS						

6.2.2. Test Instruments


	Conducted Emission Shielding Room Test Site (843)								
Equipment Manufacturer Model Serial Number Calibr									
	Test Receiver	R&S	ESPI	101402	Jul. 17, 2019				
	LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 20, 2019				
	Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 16, 2019				
	EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 10 of 43

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.2.3. Test data

No. N	۷k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	k	0.5190	31.87	10.22	42.09	56.00	-13.91	peak	
2		0.6765	23.47	10.23	33.70	56.00	-22.30	peak	
3		1.4325	21.94	10.40	32.34	56.00	-23.66	peak	
4		3.3720	24.15	10.47	34.62	56.00	-21.38	peak	
5		4.5780	25.91	10.48	36.39	56.00	-19.61	peak	
6		7.8945	22.06	10.52	32.58	60.00	-27.42	peak	

Note:

Freq. = Emission frequency in MHz

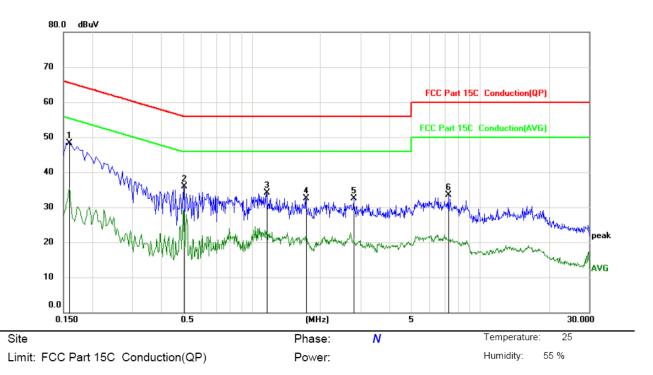
Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)


Q.P. =Quasi-Peak AVG =average

Any value more than 10dB below limit have not been specifically reported.

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 11 of 43

Report No.: TCT190307E002

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1590	37.99	10.22	48.21	65.52	-17.31	peak	
2	0.5055	25.77	10.22	35.99	56.00	-20.01	peak	
3	1.1625	23.74	10.37	34.11	56.00	-21.89	peak	
4	1.7340	22.04	10.43	32.47	56.00	-23.53	peak	
5	2.7960	21.96	10.46	32.42	56.00	-23.58	peak	
6	7.2735	22.90	10.51	33.41	60.00	-26.59	peak	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ - Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average Any value more than 10dB below limit have not been specifically reported.

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 12 of 43

6.3. Conducted Output Power

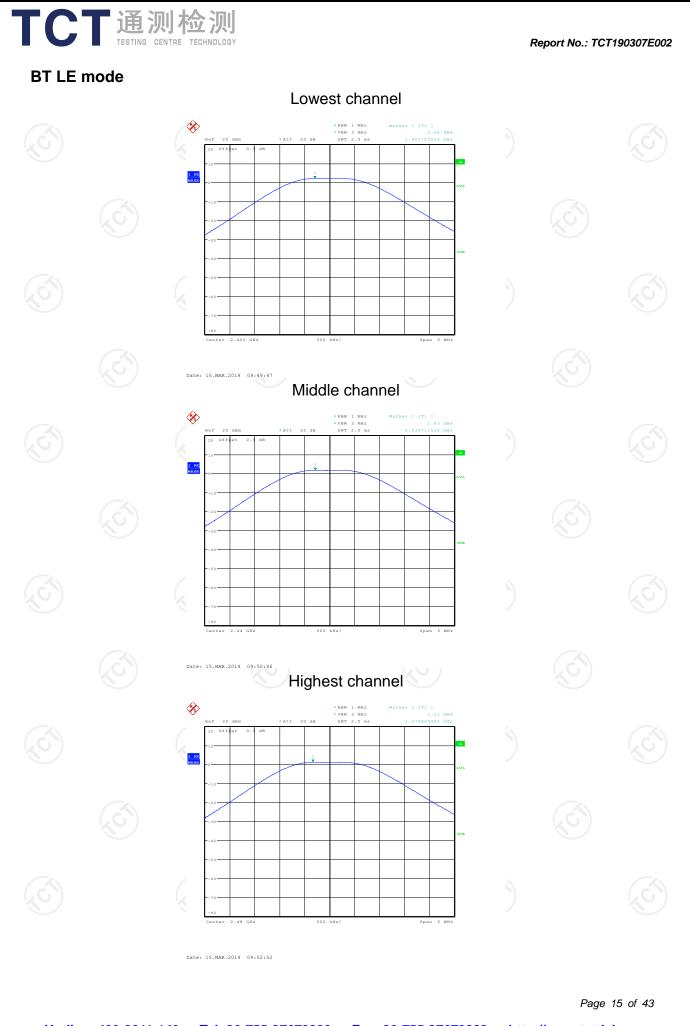
6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074
Limit:	30dBm
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 15.247 Meas Guidance v05r01. Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 x RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	тст	RFC-01	N/A	Sep. 20, 2019

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


6.3.3. Test Data

TCT通测检测 TESTING CENTRE TECHNOLOGY

BT LE mode			
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result
Lowest	2.06	30.00	PASS
Middle	1.63	30.00	PASS
Highest	1.11	30.00	PASS

Test plots as follows:

C	ots as follow	ws:						
							0000	14 of 42
Hotlin	e: 400-6611	-140 Tel: 8	86-755-27673	3339 Fax:	86-755-2767	<mark>73332 http</mark>	Page ://www.tct-la	14 of 43 ab.com

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

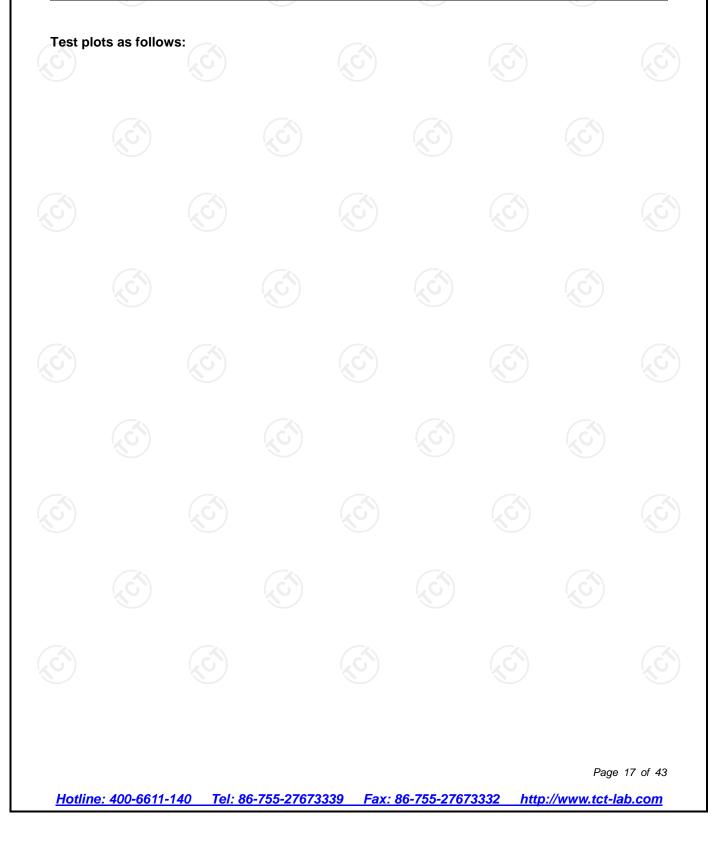
6.4. Emission Bandwidth

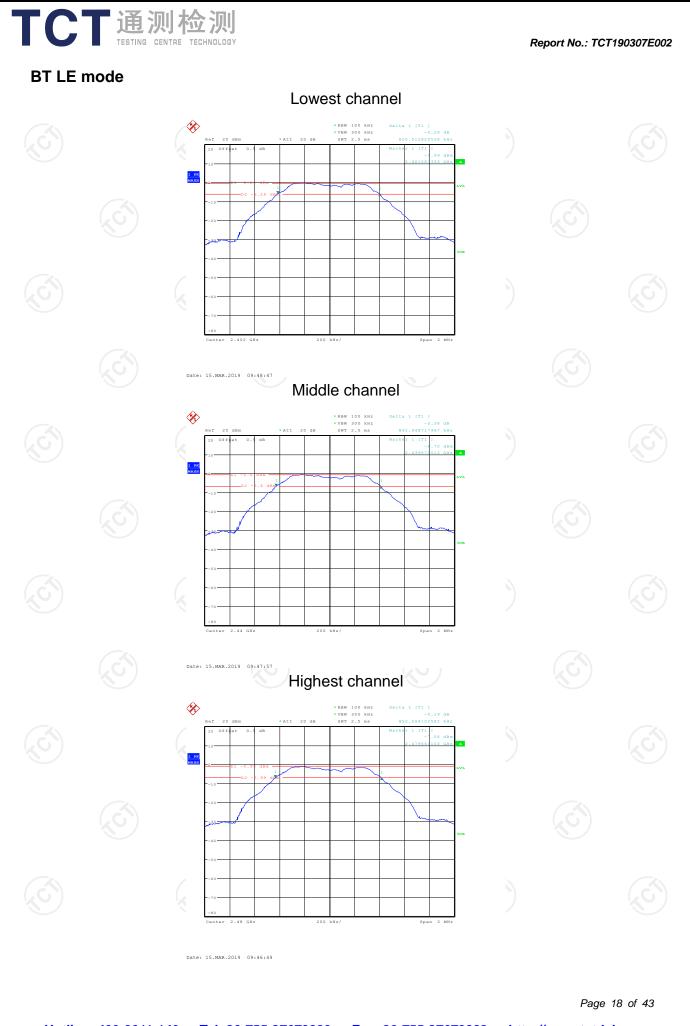
6.4.1. Test Specification

FCC Part15 C Section 15.24	7 (a)(2)	R
KDB558074		
>500kHz		
	EUT	KC C
Refer to item 4.1		
 D01 15.247 Meas Guidar 2. Set to the maximum powe EUT transmit continuousl 3. Make the measurement w resolution bandwidth (RB Video bandwidth (VBW) = an accurate measurement be greater than 500 kHz. 	nce v05r01. r setting and enable the y. ith the spectrum analyze W) = 100 kHz. Set the = 300 kHz. In order to ma nt. The 6dB bandwidth m	er's ake
PASS		
	KDB558074 >500kHz spectrum Analyzer Refer to item 4.1 1. The testing follows FCC K D01 15.247 Meas Guidar 2. Set to the maximum powe EUT transmit continuousl 3. Make the measurement w resolution bandwidth (RB Video bandwidth (VBW) = an accurate measurement be greater than 500 kHz. 4. Measure and record the resolution	 >500kHz Spectrum Analyzer Refer to item 4.1 1. The testing follows FCC KDB Publication No. 5580 D01 15.247 Meas Guidance v05r01. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to ma an accurate measurement. The 6dB bandwidth m be greater than 500 kHz. 4. Measure and record the results in the test report.

6.4.2. Test Instruments

RF Test Room									
Equipment	Manufacturer	Model	Serial Number	Calibration Due					
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019					
RF cable (9kHz-26.5GHz)	🕥 тст	RE-06	N/A	Sep. 20, 2019					
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 20, 2019					


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).



6.4.3. Test data

	Test channel	6dB Emission Bandwidth (kHz)				
(Test channel	BT LE mode	Limit	Result		
0	Lowest	820.51	>500k	C C		
	Middle	842.95	>500k	PASS		
	Highest	852.56	>500k			

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.5. Power Spectral Density

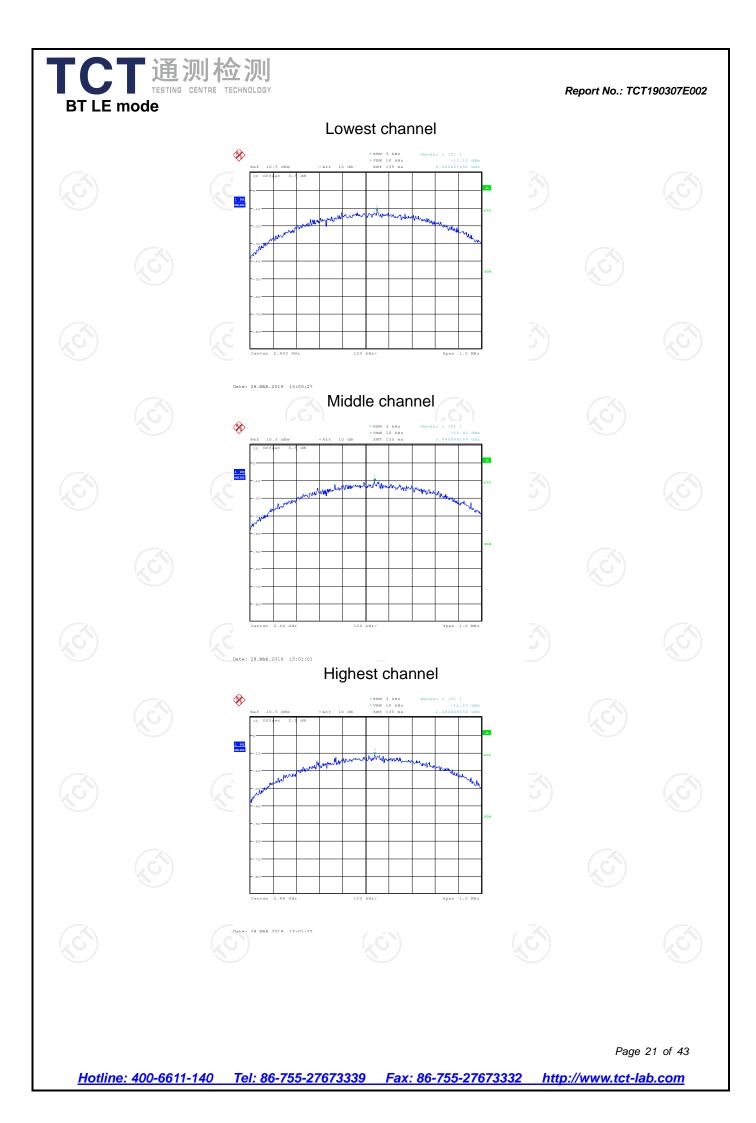
6.6. Test Specification

<u> </u>	
Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r01. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS
rest Result.	FASS

6.6.1. Test Instruments

RF Test Room									
Equipment	Manufacturer	Model	Serial Number	Calibration Due					
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019					
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019					
Antenna Connector	тст	RFC-01	N/A	Sep. 20, 2019					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


6.6.2. Test data

TCT通测检测 TESTING CENTRE TECHNOLOGY

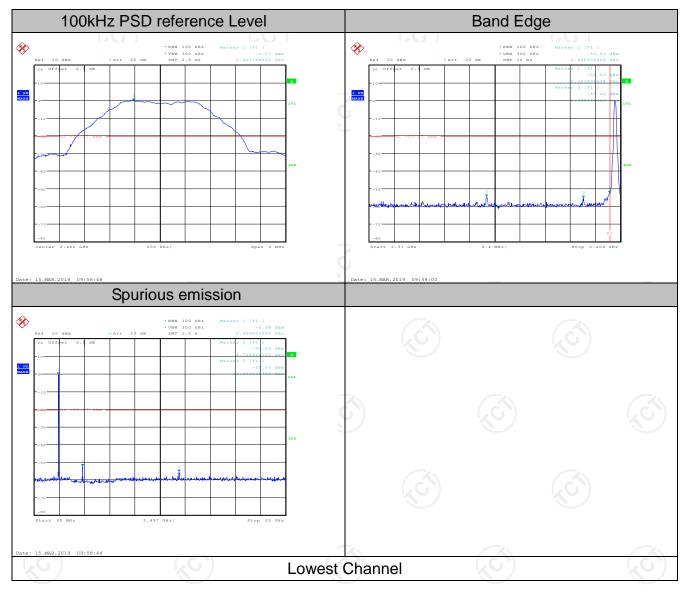
Test channel		Power Spectral Density (dBm/3kHz)				
		BT LE mode		Limit	Result	
Lowest		-12.12		8 dBm/3kHz		
Middle		-10.40		8 dBm/3kHz	PASS	
Highest		-11.23	(ć	8 dBm/3kHz		
)		

Test plots as follows:

	ots as follow	vs:						
Hotline	e: 400-6611-	140 Tel: 8	36-755-27673	3339 Fax:	<u>86-755-2767</u>	<u>3332 http</u>	Page ://www.tct-la	20 of 43 1b.com

6.7. Conducted Band Edge and Spurious Emission Measurement

6.7.1. Test Specification


Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	KDB558074				
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).				
Test Setup:					
	Spectrum Analyzer EUT				
Test Mode:	Refer to item 4.1				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 				
	4. Measure and record the results in the test report.5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.				

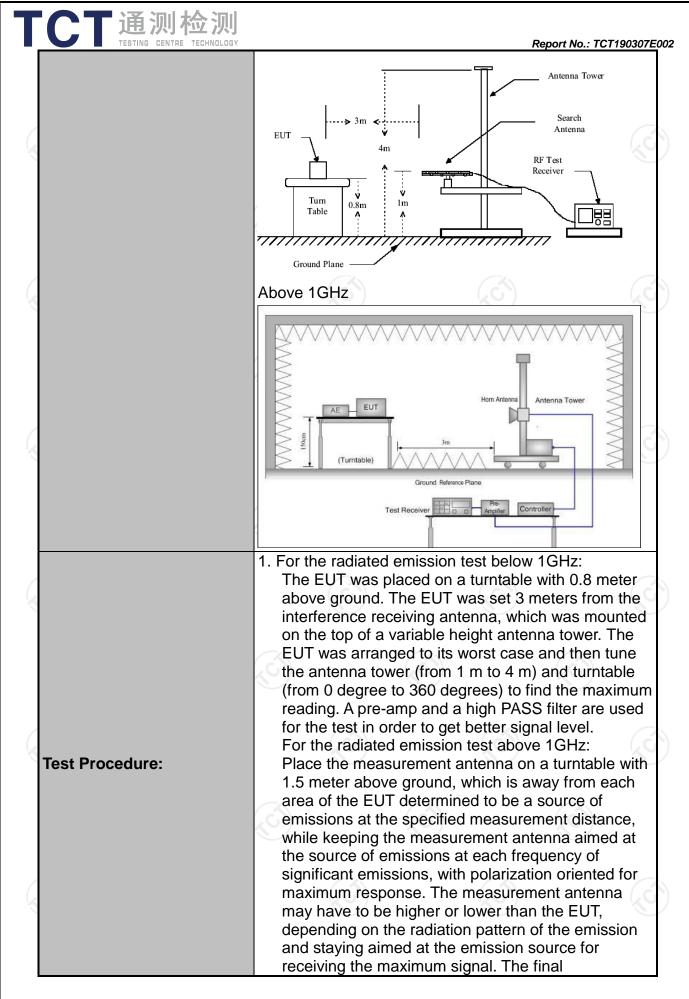
6.7.2. Test Instruments


	RF Test Room										
Equipment	Manufacturer	Model	Serial Number	Calibration Due							
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019							
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019							
Antenna Connector	тст	RFC-01	N/A	Sep. 20, 2019							

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.7.3. Test Data

Page 23 of 43



6.8. Radiated Spurious Emission Measurement

6.8.1. Test Specification

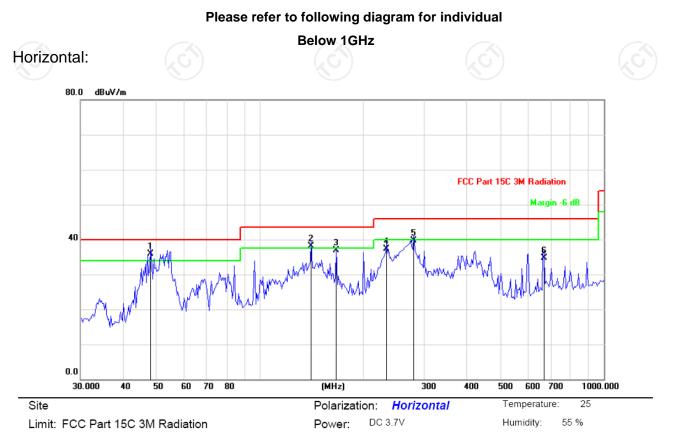
TCT通测检测 TESTING CENTRE TECHNOLOGY

FCC Part15	C Section	15.209			
ANSI C63.10): 2013				
9 kHz to 25 (GHz				
3 m	X	9		K	9
Horizontal &	Vertical				
Refer to item	n 4.1	(3		(,
Frequency 9kHz- 150kHz	Detector Quasi-peal	RBW < 200Hz	VBW 1kHz	Qua	Remark si-peak Value
150kHz- 30MHz	Quasi-peal	9kHz	30kHz	Qua	si-peak Value
30MHz-1GHz			300KHz		si-peak Value
Above 1GHz	Peak				eak Value erage Value
	Teak				6
	-	(microvolts	/meter)		easurement ance (meters)
				300	
V 1/2	1		KHZ)		30 30
				3	
					3
					3
					3
	(`ر`	((°)		
E F A C I A A C V		eld Strength rovolts/meter)		ce	Detector
	(500			Average
Above 1GH	z t	5000	3	1	Peak
		s below 30)MHz		Computer -
	ANSI C63.10 9 kHz to 25 0 3 m Horizontal & Refer to item Frequency 9kHz-150kHz 150kHz- 30MHz-1GHz Above 1GHz Frequency 0.009-0.4 0.490-1.1 1.705-3 30-88 88-210 216-96 Above 9 Frequency Above 1GHz	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1 Frequency Detector 9kHz-150kHz Quasi-peal 30MHz-30MHz Quasi-peal 30MHz Quasi-peal 30MHz-1GHz Quasi-peal Above 1GHz Peak Peak Peak 88-216 30-88 30-88 88-216 216-960 Above 960 Frequency Fiel Above 1GHz Fiel Frequency Fiel 0.490-1.705 1.705-30 30-88 88-216 216-960 Above 960 Frequency Fiel Move 1GHz Fiel For radiated emissions Distance = 3m Distance = 3m Image: Stance = 3m	9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1 Frequency Detector RBW 9kHz-150kHz Quasi-peak 200Hz 150kHz- Quasi-peak 9kHz 30MHz-1GHz Quasi-peak 100KHz Above 1GHz Peak 1MHz Peak 1MHz 0.009-0.490 2400/F(t) 0.1705 24000/F(t) 0.490-1.705 24000/F(t) 0.400-1.705 24000/F(t) 0.400-1.705 24000/F(t) 0.400-1.705 24000/F(t) 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 1GHz 500 5000 500 Above 1GHz	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1 <u>Frequency</u> <u>Detector</u> <u>RBW</u> <u>VBW</u> <u>9kHz-150kHz</u> <u>Quasi-peak</u> <u>200Hz</u> <u>1kHz</u> <u>150kHz</u> <u>Quasi-peak</u> <u>9kHz</u> <u>30MHz-1GHz</u> <u>Quasi-peak</u> <u>100KHz</u> <u>300Hz-1GHz</u> <u>Quasi-peak</u> <u>100KHz</u> <u>300Hz-1GHz</u> <u>Quasi-peak</u> <u>100KHz</u> <u>300Hz-10Hz</u> <u>100z</u> <u>100z</u> <u>Frequency</u> <u>Field Strength</u> (microvolts/meter) <u>0.009-0.490</u> <u>2400/F(KHz)</u> <u>1.705-30</u> <u>30</u> <u>30-88</u> <u>100</u> <u>88-216</u> <u>150</u> <u>216-960</u> <u>200</u> <u>Above 960</u> <u>500</u> <u>S000 <u>30</u> <u>30-88</u> <u>100</u> <u>30-88</u> <u>100</u> <u>30-88</u> <u>100</u> <u>38-216</u> <u>150</u> <u>216-960</u> <u>200</u> <u>Above 960</u> <u>500</u> <u>30 </u> <u>30-00</u> <u>30 </u> <u>30-30 </u> <u>30-30 </u></u>	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1 <u>Frequency Detector RBW VBW</u> <u>9kHz-150kHz Quasi-peak 200Hz 1kHz Qua</u> <u>10kHz-150kHz Quasi-peak 200Hz 1kHz Qua</u> <u>30MHz Quasi-peak 9kHz 30kHz Qua</u> <u>30MHz Quasi-peak 100KHz 300KHz Qua</u> <u>30MHz Quasi-peak 100KHz 300KHz Qua</u> <u>Above 1GHz Peak 1MHz 30HHz FP</u> <u>Peak 1MHz 10Hz Av</u> Frequency Field Strength (microvolts/meter) Distance <u>0.009-0.490 2400/F(KHz)</u> <u>1.705-30 30</u> <u>30-88 1000</u> <u>88-216 150 200 Above 960 500 Frequency Field Strength (microvolts/meter) Distance (meters) <u>Above 1GHz 500 3</u> <u>500 3</u> For radiated emissions below 30MHz Distance = 3m Image: Distance = 3m </u>

Page 26 of 43

CT 通测检测	
	 Report No.: TCT190307E measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f □ 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 4.1 for details
Test results:	PASS C

Page 27 of 43

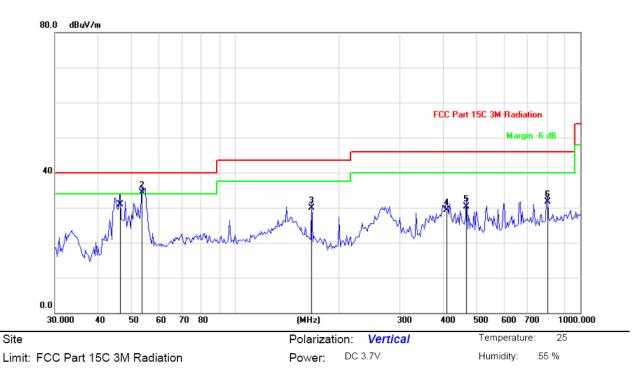


6.8.2. Test Instruments

	Radiated Em	ission Test Site	e (966)		
Name of Equipment	Manufacturer	ufacturer Model		Calibration Due	
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 17, 2019	
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 20, 2019	
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 16, 2019	
Pre-amplifier	HP	8447D	2727A05017	Sep. 16, 2019	
Loop antenna	ZHINAN	ZN30900A	12024	Oct. 20, 2019	
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 02, 2019	
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Oct. 20, 2019	
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 16, 2019	
Antenna Mast	Keleto	RE-AM	N/A	N/A	
Coax cable (9KHz-1GHz)	тст	RE-low-01	N/A	Sep. 16, 2019	
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 16, 2019	
Coax cable (9KHz-1GHz)	тст	RE-low-03	N/A	Sep. 16, 2019	
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 16, 2019	
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.8.3. Test Data


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	*	48.0392	46.22	-10.22	36.00	40.00	-4.00	QP	200	261	
2	ļ	140.7767	54.22	-16.10	38.12	43.50	-5.38	QP	200	261	
3		166.6385	52.33	-15.50	36.83	43.50	-6.67	QP	200	261	
4		233.4881	50.33	-13.04	37.29	46.00	-8.71	QP	200	261	
5		280.2936	51.22	-11.57	39.65	46.00	-6.35	QP	200	261	
6		669.9523	40.33	-5.54	34.79	46.00	-11.21	QP	200	261	

Page 29 of 43

Report No.: TCT190307E002

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Vertical:

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	46.3806	41.23	-10.39	30.84	40.00	-9.16	QP	100	183	
2 *	53.7559	45.22	-10.90	34.32	40.00	-5.68	QP	100	183	
3	166.6385	45.33	-15.50	29.83	43.50	-13.67	QP	100	183	
4	409.6506	38.22	-8.83	29.39	46.00	-16.61	QP	100	183	
5	468.1650	38.23	-7.99	30.24	46.00	-15.76	QP	100	183	
6	804.2523	36.22	-4.60	31.62	46.00	-14.38	QP	100	183	
	/ · · ·									

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Lowest channel) was submitted only.

Report No.: TCT190307E002

Above 1GHz

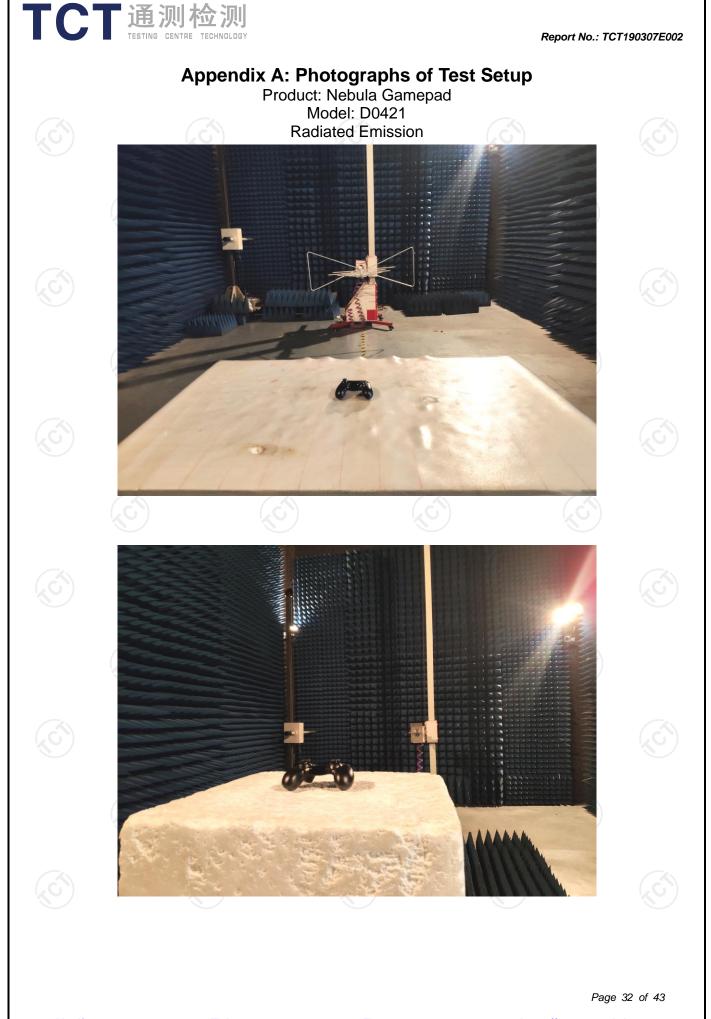
Low chann	el: 2402 N	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2390	Н	46.53		-7.52	39.01		74	54	-14.99
4804	Н	41.32		7.44	48.76		74	54	-5.24
7206	Н	36.47		13.54	50.01		74	54	-3.99
	Н								
	.G)				(.G		(\mathbf{G})	
2390	V	45.68		-7.52	38.16	<u> </u>	74	54	-15.84
4804	V	42.05		7.44	49.49		74	54	-4.51
7206	V	37.13		13.54	50.67		74	54	-3.33
×	V			(×				
G)		(\mathcal{O})	•		5)	•	(\mathcal{O})		5
Middle cha	nnel: 2440) MHz							

Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4880	KCH)	42.51	-4,0	7.01	49.52	<u>, C -</u> -	74	54	-4.48
7320	F	37.07		13.21	50.28		74	54	-3.72
	Н								
						1			
4880	V	43.19		7.01	50.20		74	54	-3.80
7320	V	37.52		13.21	50.73		74	54	-3.27
)	V								

High channel: 2480 MHz

Frequency	equency Ant. Pol.		AV	Correction	Emissic	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)		(dBµV/m)	(dB)
2483.5	Н	46.13		-7.52	38.61		74	54	-15.39
4960	Н	41.76		7.44	49.20		74	54	-4.80
7440	Н	34.33		13.54	47.87		74	54	-6.13
<u> </u>	Н			\)		· · · · ·		
2483.5	V	48.74		-7.52	41.22		74	54	-12.78
4960	V	42.09		7.44	49.53		74	54	-4.47
7440	S V	34.28		13.54	47.82	G^{-}	74	54	-6.18
	V								

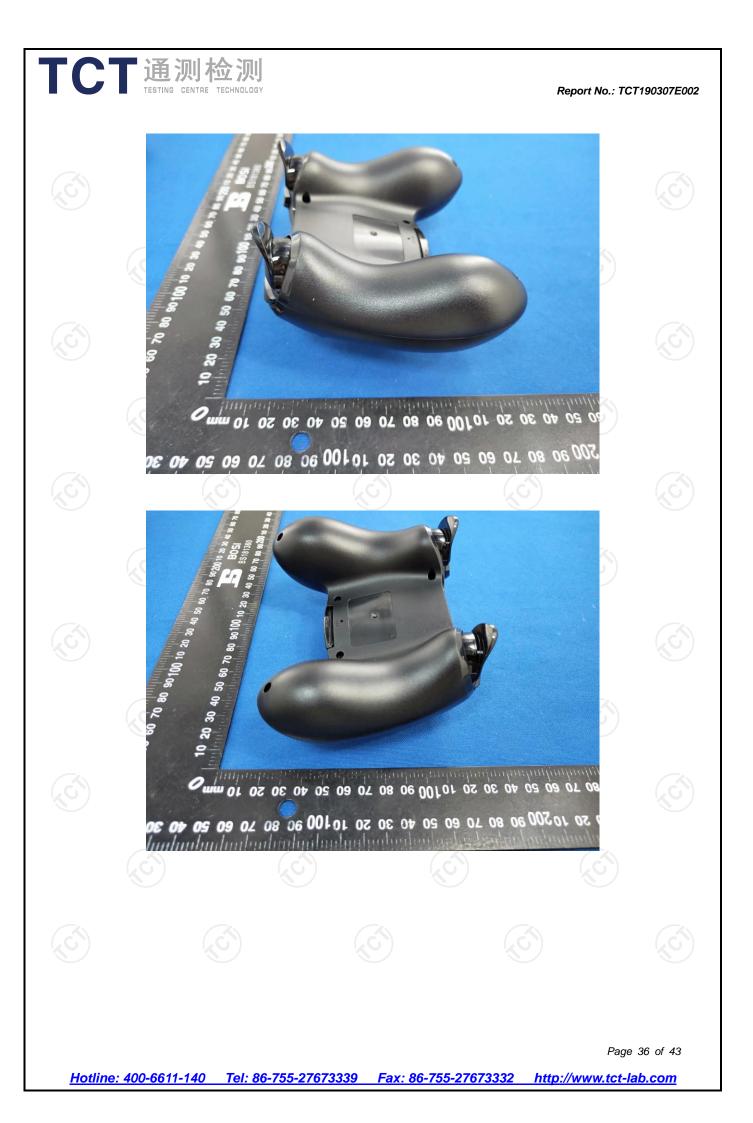
Note:


1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.


5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

