

FCC Test Report

Report No.: AGC01110231240FR02A

FCC ID	:	2AOKB-A6611R
APPLICATION PURPOSE	:	Class II Permissive Change
PRODUCT DESIGNATION	:	Wireless Headphone
BRAND NAME	:	soundcore
MODEL NAME	:	A6611R
APPLICANT	:	Anker Innovations Limited
DATE OF ISSUE	:	Jun. 18, 2024
STANDARD(S)	:	FCC Part 15 Subpart C §15.247
REPORT VERSION	:	V1.0
<u>Attestation of</u>	<u><i>G</i>lo</u>	base compliance (Shenzhen) Co., Ltd

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes	
V1.0	/	Jun. 18, 2024	Valid	Initial Release	

Note: The original test report AGC01110231240FR02 (dated Feb. 02, 2024 and tested from Jan. 04, 2024 – Feb. 02, 2024) was modified on Jun. 18, 2024, including the following changes and additions:

- Added the battery of earphone and charging case, the batteries are the same except for the manufacturer and model, see below for details:

Original:

	Model: ZWD1040S1H
Battery Information (Earphone)	Rated Voltage & Cap.: 3.85V 38mAh
	Manufacturer name: Guangdong Mic-power New Energy Co., Ltd.
Detter / Information	Model: M652040
Battery Information	Rated Voltage & Cap.: 3.72V 580mAh
(Charging case)	Manufacturer name: Guangdong Mic-power New Energy Co., Ltd.
Updated:	
	Model: VDL 1040W7
Battery Information (Earphone)	Rated Voltage & Cap.: 3.85V 38mAh
	Chongqing VDL Electronics Co., LTD.
Pottory Information	Model: 672040PN3A
Battery Information	Rated Voltage & Cap.: 3.72V 580mAh
(Charging case)	Chongqing VDL Electronics Co., LTD.

-Changed the Applicant address;

-Changed the Manufacturer address;

For the above described change(s) the following tests was considered to be necessary:

Clause	Testing
§15.209	Radiated Emission

Table of Contents

1. General Information	
2. Product Information	5
2.1 Product Technical Description	5
2.2 Test Frequency List	5
2.3 Related Submittal(S) / Grant (S)	6
2.4 Test Methodology	6
2.5 Receiver Input Bandwidth	
2.6 Equally Average Use of Frequencies And Behaviour	6
2.7 Pseudorandom Frequency Hopping Sequence	7
2.8 Special Accessories	
2.9 Equipment Modifications	
2.10 Antenna Requirement	
3. Test Environment	9
3.1 Address of The Test Laboratory	9
3.2 Test Facility	9
3.3 Environmental Conditions	
3.4 Measurement Uncertainty	
3.5 List of Equipment Used	11
4.System Test Configuration	
4.1 EUT Configuration	
4.2 EUT Exercise	
4.3 Configuration of Tested System	
4.4 Equipment Used in Tested System	
4.5 Summary of Test Results	
5. Description of Test Modes	
6. Radiated Spurious Emission	
6.1 Measurement Limit	
6.2 Measurement Procedure	
6.3 Measurement Setup (Block Diagram of Configuration)	
6.4 Measurement Result	
Appendix I: Photographs of Test Setup	
Appendix II: Photographs of Test EUT	

1. General Information

Anker Innovations Limited
Unit 56, 8th Floor, Tower 2, Admiralty Centre, 18 Harcourt Road, Hong Kong
Anker Innovations Limited
Unit 56, 8th Floor, Tower 2, Admiralty Centre, 18 Harcourt Road, Hong Kong
N/A
N/A
Wireless Headphone
soundcore
A6611R
N/A
N/A
Jun. 04, 2024
Jun. 04, 2024 –Jun. 18, 2024
No any deviation from the test method
Normal
Pass
AGCER-FCC-BR_EDR-V1

Note: The test results of this report relate only to the tested sample identified in this report.

Prepared By

Cool chem

Cool Cheng (Project Engineer)

Jun. 18, 2024

Reviewed By

Calvin Liu (Reviewer)

Jun. 18, 2024

Approved By

we the

Max Zhang Authorized Officer

Jun. 18, 2024

2. Product Information

2.1 Product Technical Description

Frequency Band	2400MHz-2483.5MHz
Operation Frequency Range	2402MHz-2480MHz
Bluetooth Version	V5.3
Modulation Type	BR 🖾 GFSK, EDR 🖾 π /4-DQPSK, 🖾 8DPSK
Number of channels	79 Channels
Channel Separation	1 MHz
Maximum Transmitter Power	7.400dBm
Hardware Version	D
Software Version	V0.09
Antenna Designation	LDS Antenna
Antenna Gain	-4.4dBi
Power Supply	DC3.85V by battery
Adapter Information	N/A

2.2 Test Frequency List

Frequency Band	Channel Number	Frequency		
	0	2402 MHz		
	1	2403 MHz		
	:	:		
2400~2483.5MHz	39	2441MHz		
	•••	:		
	77	2479 MHz		
	78	2480 MHz		
Note: f = 2402 + 1k MHz, k = 0,, 78 ; "f "is the operating frequency (MHz); "k" is the operating channel.				

2.3 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: 2AOKB-A6611R, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.4 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title	
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations	
2	FCC 47 CFR Part 15	Radio Frequency Devices	
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices	
4	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules	

2.5 Receiver Input Bandwidth

The input bandwidth of the receiver is 1.3MHz, in every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally, the type of connection (e.g. single of multi slot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also, the slave of the connection will use these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.6 Equally Average Use of Frequencies And Behaviour

The generation of the hopping sequence in connection mode depends essentially on two input values:

1. LAP/UAP of the master of the connection.

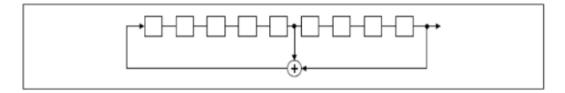
2. Internal master clock.

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24MSB's of the 48BD_ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For behavior action with other units only offset is used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us. The clock has a cycle of about one day(23h30).

In most case it is implemented as 28 bits counter. For the deriving of the hopping sequence the entire. LAP (24 bits),4LSB's(4bits) (Input 1) and the 27MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following behavior:


The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer (and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always differ from the first one.

2.7 Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of The PRBS Sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

44	35	78	03	20) 76	02	19		 21	64	75
				·					 		
			Ιi						1		
			¦			1			i.		
						<u>'i</u>		1	 		

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

2.8 Special Accessories

Not available for this EUT intended for grant.

2.9 Equipment Modifications

Not available for this EUT intended for grant.

2.10 Antenna Requirement

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is -4.4dBi.

3. Test Environment

3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories.)

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842(CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

3.3 Environmental Conditions

	Normal Conditions
Temperature range (℃)	15 - 35
Relative humidity range	20 % - 75 %
Pressure range (kPa)	86 - 106
Power supply	DC3.85V by battery

3.4 Measurement Uncertainty

The reported uncertainty of measurement y $\pm U$, where expended uncertainty U is based on a standard

uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.				
Item	Measurement Uncertainty			
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$			
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$			
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$			
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$			
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$			
Uncertainty of spurious emissions, conducted	$U_c = \pm 2 \%$			
Uncertainty of Occupied Channel Bandwidth	U _c = ±2 %			

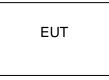
3.5 List of Equipment Used

• F	Radiated Spurious Emission												
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)						
	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2024-02-01	2025-01-31						
\square	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2024-05-24	2025-05-23						
\boxtimes	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2024-05-28	2025-05-27						
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2024-03-05	2026-03-04						
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10						
\boxtimes	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2024-03-31	2025-03-30						
\boxtimes	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2023-09-24	2025-09-23						
\boxtimes	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2022-08-04	2024-08-03						
\boxtimes	AGC-EM-A119	2.4G Filter	SongYi	N/A	N/A	2024-05-23	2025-05-22						
\boxtimes	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08						
	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08						

• Tes	Test Software												
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information								
	AGC-EM-S003	RE Test System	FARA	EZ-EMC	V.RA-03A								
\square	AGC-EM-S011	RSE Test System	Tonscend	TS ⁺ Ver2.1(JS36-RSE)	4.0.0.0								

4.System Test Configuration

4.1 EUT Configuration


The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

Radiated Emission Configure:

4.4 Equipment Used in Tested System

The following peripheral devices and interface cables were connected during the measurement: Test Accessories Come From The Laboratory

No.	Equipment	Model No.	Manufacturer	Specification Information	Cable
1	Xiaomi Phone	MI 10	Xiaomi		
2	Control Box	USB-TTL			

Test Accessories Come From The Manufacturer

No.	Equipment	Model No.	Manufacturer	Specification Information	Cable
1					

4.5 Summary of Test Results

Item	FCC Rules	Description of Test	Result
1	§15.209	Radiated Spurious Emission	Pass

5. Description of Test Modes

	Summa	ary table of Test Cases		
Tast litera		Data Rate / M	lodulation	
Test Item	Blue	tooth – BR_EDR (GFS	K/π /4-DQPSK/8DPSK)
Radiated & Conducted Test Cases	Mode 2: Blu Mode 3: Blu Mode 4: Blu Mode 5: Blu Mode 6: Blu Mode 7: Blu Mode 8: Blu Mode 9: Blu Mode 10 Mode11	etooth Tx CH39_2441 etooth Tx CH78_2480 etooth Tx CH00_2402 etooth Tx CH39_2441 etooth Tx CH39_2441 etooth Tx CH78_2480 etooth Tx CH39_2441 etooth Tx CH39_2441 etooth Tx CH78_2480 D: Bluetooth Tx Hopping	MHz_1Mbps (Battery p MHz_1Mbps (Battery p MHz_1Mbps (Battery p MHz_2Mbps (Battery p MHz_2Mbps (Battery p MHz_3Mbps (Battery p MHz_3Mbps (Battery p MHz_3Mbps (Battery p g-1Mbps (Battery powe g-3Mbps (Battery powe	owered) owered) owered) owered) owered) owered) owered) owered) red)
AC Conducted Emission		N/A		
 For Conducted Test r Non Signaling Test Tool(20220409) Ele Device 	on, 3axis were chosen nethod, a temporary a	n for testing for each ap antenna connector is pr ware Setting Diagram	plicable mode. ovided by the manufac	ture. - □ ×
levices Port ID Address Name Address Tyj State Ro		IGTEST WOSIGTEST WOO TEST BLE TX TEST BLE TX TEST	V2 BLE TX TEST V3 BLE TX TEST V4 SETTING	
	DEFI	Transmit Frequency 0 Test scenario 00-output LI Address 1 Packet Type DH5_3 Ropping Hode 01-on Fartra Interval 0 Send	2402IN: Pover Leval. 5 Rdr Knabled 01-um Poyload Pattern 4.yu/su/ Poyload Size 1021 Package Humber 02 7777777	

6. Radiated Spurious Emission

6.1 Measurement Limit

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

6.2 Measurement Procedure

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection"

Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.

- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
Start ~Stop Frequency	1GHz~26.5GHz 1MHz/3MHz for Peak, 1MHz/3MHz for Average

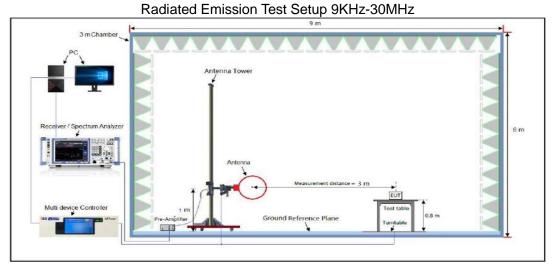
The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

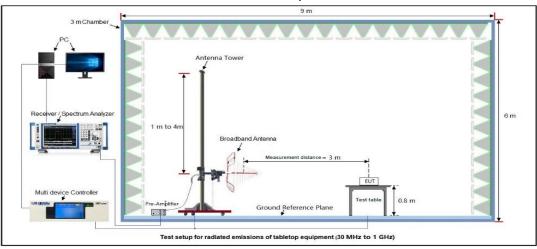
• Quasi-Peak Measurements below 1GHz

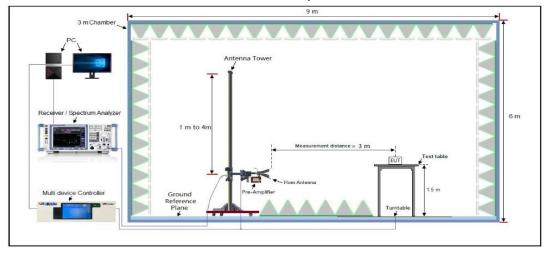
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as shown in the table above
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Peak Measurements above 1GHz


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

<u>Average Measurements above 1GHz</u>


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW \geq [3 × RBW]
- 4. Detector = Power averaging (rms)
- 5. Averaging type = power (i.e., rms)
- 6. Sweep time = auto
- 7. Perform a trace average of at least 100 traces.
- The applicable correction factor is [10*log (1 / D)], where D is the duty cycle. The factor had been edited in the "Input Correction" of the Spectrum Analyzer.


6.3 Measurement Setup (Block Diagram of Configuration)

Radiated Emission Test Setup 30MHz-1000MHz

Radiated Emission Test Setup Above 1000MHz

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

 Web: http://www.agccert.com/

6.4 Measurement Result

Radiated Emission Below 30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

			Rad	diated E	mission	Test R	esults at	30MHz-1	GH	z		
EUT Name	Wi	Wireless Headphone							е		A6611	२
Temperature	22.	8° ℃					Re	Relative Humidity				
Pressure 960hPa								Test Voltage			Normal Voltage	
Test Mode	Мо	de 3					An	Antenna Polarity			Horizontal	
72.0	dBuV/m	1										
32 	handhakhak	*			2 ,1%-1/	The and the second second second		and a second the	*	5	Linit Morgin:	
30.00	00 4	0 50	60	70 80		(MHz)		300	400	500 60	0 700	1000.000
N	No. N	lk. F	req.	Read Leve	<u> </u>	orrect actor	Measu ment		it	Over		
		1	MHz	dBu	V	dB	dBuV/m	dBu\	//m	dB	Deteo	tor
	1	40.0	0404	8.0	1 1	3.48	04.50	40.0	0	-18.48	pea	ık
	<u> </u>	46.0	0164	0.0	<u> </u>	3.40	21.52	40.0	0	-10.10		
	2	46.0 114.(6.4		6.35	21.52	40.0		-20.66	· ·	
_	· ·	114.			9 1			43.5	0		pea	ık
-	2 3 4	114.9 290.0 438.0	5146 0172 6554	6.4 6.1 6.6	9 1 1 1 3 2	6.35 5.70 24.81	22.84 21.81 31.44	43.5 46.0 46.0	0	-20.66 -24.19 -14.56	pea pea pea	ik ik
-	2	114.(290.(5146 0172 6554	6.4 6.1	9 1 1 1 3 2	6.35 5.70	22.84 21.81	43.5 46.0 46.0	0	-20.66 -24.19	pea pea pea	ik ik

					_				••••	-1G⊦				
EUT Name	UT Name Wireless Headphone							Мо	odel Nar	ne		A661	1R	
Temperatur	erature 22.8°C					Relative Humidity					59.8%			
Pressure	ç	960h	Pa					Те	Test Voltage Antenna Polarity			Normal Voltage Vertical		
Test Mode	Ν	Node	3					Ar						
72.	0 dBu\	//m												
												Limit: Margin:		
												5	E	
32	!									4		, 1 000	word	1 /
	would	www.ww	uhantu	her the state of t	ry-magel	www.www.	wand water the second	hankantalata	where the adverter of	and a start	Mary Anthy			
-8	unis-why-v	und with	de la compañía	Automotion of the	ry-waydd	the stranger	unan landan	nan aventaliana	south the office of the office	and a start of the	hanna duirth)			
-8	unsaller ^{ad}	40	1 X X X X X X X X X X X X X X X X X X X	60	70 8		(MHz)	han an a	300	3 400		10 700	100	0.000
-8		40	50	60 Freq.	70 8 F		(MHz)	Measu	300 re-				100	0.000
-8	0.000	40	50		70 8 F	Readin	(MHz) ig Correct	Measu	300 re- Lir	400	500 60	10 700	100	0.000
-8	0.000	40	50	Freq.	70 8	o Readin Level	(MHz) Ig Correct Factor dB	Measu	300 re- Lir n dBu	400 mit	500 G0	00 700 Det		-
-8	0.000 No.	40	50 F	Freq. MHz	70 8 F	Readin Level	(MHz) g Correct Factor dB 17.03	Measu ment dBuV/n	300 re- Lir dBu 40.	400 mit uV/m	500 GO Over dB	Det	tector	-
-8	No.	40 Mk	50 F 52.1 134.1	Freq. MHz 9453	70 8 F	Readin Level dBuV 6.07	(MHz) Ig Correct Factor dB 17.03 18.05	Measu ment dBuV/n 23.10	300 re- Lir dBu 40. 43.	400 mit uV/m .00 .50	500 G0 Over dB -16.90	Det	tector eak	-
-8	No.	40 Mk.	50 F 52. 134. 383.	Freq. MHz 9453 0882	70 8/	o Readin Level dBu∨ 6.07 5.70	(MHz) ig Correct Factor dB 17.03 18.05 21.56	Measu ment dBuV/n 23.10 23.75	300 re- Lir dBu 40. 43. 46.	400 mit uV/m .00 .50 .00	500 G0 Over dB -16.90 -19.75	Det	tector eak eak	- - -
-8	No.	40 Mk.	50 F 52. 134. 383. 447.	Freq. MHz 9453 0882 9318	70 8/	■ Readin Level dBuV 6.07 5.70 6.08	(MHz) ig Correct Factor dB 17.03 18.05 21.56 25.74	Measu ment dBuV/n 23.10 23.75 27.64	300 re- Lir 40. 43. 46. 46.	400 mit uV/m .00 .50 .00 .00	500 GO Over dB -16.90 -19.75 -18.36	Det	tector eak eak eak	- - - -

RESULT: Pass

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

Radiated Emissions Test Results Above 1 GHz	

Pressure 9 Test Mode N Frequency Met (MHz) (Met) 4804.000 4804.000 4804.000 7206.000 7206.000 7206.000 Remark: Factor = Antenna Fat EUT Name V Temperature 2 Pressure 9		Factor (dB) 0.08 0.08 2.21 2.21 2.21	Emissior (dBµV 48.7 37.5 44.3 34.5 	Test V Anter	ive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54 74 54	59.8% Norma Horizo Margin (dB) -25.29 -16.43 -29.64 -19.43	I Voltage
Test Mode N Frequency Met (MHz) (MHz) 4804.000 4804.000 4804.000 7206.000 7206.000 7206.000 Remark: Factor = Antenna Fa EUT Name V Temperature 2 Pressure 9	Vode 1 ter Reading (dBµV) 48.63 37.49 42.15 32.36 actor + Cable	(dB) 0.08 0.08 2.21 2.21	(dBµV 48.7 37.5 44.3 34.5	Anter	Limits (dBµV/m) 74 54 74	Margin (dB) -25.29 -16.43 -29.64	Value Type peak AVG peak
Frequency Met (MHz) (MHz) 4804.000 (MHz) 4804.000 (MHz) 7206.000 (MHz) 7206.000 (MHz) Remark: Factor = Antenna Fa EUT Name V Temperature 2 Pressure 9	ter Reading (dBµV) 48.63 37.49 42.15 32.36 actor + Cable	(dB) 0.08 0.08 2.21 2.21	(dBµV 48.7 37.5 44.3 34.5	n Level //m) /1 57 36	Limits (dBµV/m) 74 54 74	Margin (dB) -25.29 -16.43 -29.64	Value Type peak AVG peak
(MHz) 4804.000 4804.000 4804.000 7206.000 7206.000 Remark: Factor = Antenna Fa EUT Name V Temperature 2 Pressure 9	(dBµV) 48.63 37.49 42.15 32.36 actor + Cable	(dB) 0.08 0.08 2.21 2.21	(dBµV 48.7 37.5 44.3 34.5	//m) /1 57 86	(dBµV/m) 74 54 74	(dB) -25.29 -16.43 -29.64	peak AVG peak
(MHz) 4804.000 4804.000 4804.000 7206.000 7206.000 Remark: Factor = Antenna Fa EUT Name V Temperature 2 Pressure 9	(dBµV) 48.63 37.49 42.15 32.36 actor + Cable	(dB) 0.08 0.08 2.21 2.21	(dBµV 48.7 37.5 44.3 34.5	//m) /1 57 86	(dBµV/m) 74 54 74	(dB) -25.29 -16.43 -29.64	peak AVG peak
4804.000 4804.000 7206.000 7206.000 Remark: Factor = Antenna Fa EUT Name V Temperature 2 Pressure 9	48.63 37.49 42.15 32.36 actor + Cable	0.08 0.08 2.21 2.21	48.7 37.5 44.3 34.5	71 57 56	74 54 74	-25.29 -16.43 -29.64	peak AVG peak
4804.000 7206.000 7206.000 Remark: Factor = Antenna Fa EUT Name V Temperature 2 Pressure 9	37.49 42.15 32.36 actor + Cable	0.08 2.21 2.21	37.5 44.3 34.5	67 6	54 74	-16.43 -29.64	AVG peak
7206.000 7206.000 Remark: Factor = Antenna Fa EUT Name V Temperature 2 Pressure 9	42.15 32.36 actor + Cable	2.21 2.21	44.3 34.5	6	74	-29.64	peak
7206.000 Remark: Factor = Antenna Factor EUT Name V Temperature 2 Pressure 9	32.36 actor + Cable	2.21	34.5				· · · · · · · · · · · · · · · · · · ·
Remark:Factor = Antenna FaEUT NameVTemperature2Pressure9	actor + Cable			57	54	-19.43	AVG
Factor = Antenna FactorEUT NameVTemperature2Pressure9		Loss – Pre-a	amplifier.				
Factor = Antenna FactorEUT NameVTemperature2Pressure9		Loss – Pre-a	amplifier.		I		
EUT NameVTemperature2Pressure9		Loss – Pre-a	amplifier.				
Temperature2Pressure9							
Temperature2Pressure9		1.1				10011	
Pressure 9	Nireless Hea	apnone		wode	I Name	A6611	ĸ
	22.8℃			Relati	ive Humidity	59.8%	
	960hPa			Test \	Voltage	Norma	I Voltage
Test Mode	Mode 1		Antenna Polarity		Vertical		
Frequency Met	ter Reading	Factor	Emissior	n l evel	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV		(dBµV/m)	(dB)	Value Type
4804.000	47.69	0.08	47.7	,	74	-26.23	peak
4804.000	37.52	0.08	37.6		54	-16.4	AVG
7206.000	41.06	2.21	43.2		74	-30.73	peak
7206.000	32.94	2.21	35.1	5	54	-18.85	AVG
Remark:			1				
Factor = Antenna Fa							

RESULT: Pass

22.8 °C 960hPa Mode 2 ter Reading (dBμV) 48.61 37.52 42.16 32.49 actor + Cable Wireless Hea	Factor (dB) 0.14 0.14 2.36 2.36 e Loss – Pre-	Emission Le (dBµV/m) 48.75 37.66 44.52 34.85		Norma	al Voltage	
Mode 2 ter Reading (dBµV) 48.61 37.52 42.16 32.49	(dB) 0.14 0.14 2.36 2.36 e Loss – Pre-	Emission Le (dBµV/m) 48.75 37.66 44.52 34.85	Limits (dBµV/m) 74 54 74	Margin (dB) -25.25 -16.34 -29.48	Value Type peak AVG peak	
ter Reading (dBµV) 48.61 37.52 42.16 32.49 actor + Cable	(dB) 0.14 0.14 2.36 2.36 e Loss – Pre-	Emission Le (dBµV/m) 48.75 37.66 44.52 34.85	Level Limits h) (dBμV/m) 74 54 74	Margin (dB) -25.25 -16.34 -29.48	Value Type peak AVG peak	
(dBµV) 48.61 37.52 42.16 32.49 actor + Cable	(dB) 0.14 0.14 2.36 2.36 e Loss – Pre-	(dBµV/m) 48.75 37.66 44.52 34.85	n) (dBµV/m) 74 54 74	(dB) -25.25 -16.34 -29.48	peak AVG peak	
(dBµV) 48.61 37.52 42.16 32.49 actor + Cable	(dB) 0.14 0.14 2.36 2.36 e Loss – Pre-	(dBµV/m) 48.75 37.66 44.52 34.85	n) (dBµV/m) 74 54 74	(dB) -25.25 -16.34 -29.48	peak AVG peak	
48.61 37.52 42.16 32.49 actor + Cable	0.14 0.14 2.36 2.36 e Loss – Pre-	48.75 37.66 44.52 34.85	74 54 74	-25.25 -16.34 -29.48	peak AVG peak	
37.52 42.16 32.49 actor + Cable	0.14 2.36 2.36 e Loss – Pre-	37.66 44.52 34.85	54 74	-16.34 -29.48	AVG peak	
42.16 32.49 actor + Cable	2.36 2.36 e Loss – Pre-	44.52 34.85 amplifier.	74	-29.48	peak	
32.49 actor + Cable	2.36 e Loss – Pre-	34.85				
actor + Cable	e Loss – Pre-	amplifier.	54	-19.15	AVG	
Vireless Hea	adabaaa					
	auphone	N	Nodel Name	A6611	R	
22.8 ℃		R	Relative Humidit	y 59.8%)	
960hPa		т	Fest Voltage	Norma	Normal Voltage	
Mode 2		A	Antenna Polarity	Vertica	al	
tor Dooding	Factor	Emission	aval Limita	Morgin		
				÷	Value Type	
1 . ,	. ,		, , ,		peak	
	-				AVG	
					peak	
					AVG	
52.11	2.30	33.07	54	-10.93		
t	ter Reading (dBµV) 48.61 37.59 42.46 32.71	(dBµV) (dB) 48.61 0.14 37.59 0.14 42.46 2.36	(dBµV) (dB) (dBµV/m 48.61 0.14 48.75 37.59 0.14 37.73 42.46 2.36 44.82	(dBµV) (dB) (dBµV/m) (dBµV/m) 48.61 0.14 48.75 74 37.59 0.14 37.73 54 42.46 2.36 44.82 74	(dBµV) (dB) (dBµV/m) (dBµV/m) (dB) 48.61 0.14 48.75 74 -25.25 37.59 0.14 37.73 54 -16.27 42.46 2.36 44.82 74 -29.18	

Radiated Emissions Test Results for Above 1 GHz

RESULT: Pass

EUT Name	Wireless Hea	dphone	Model	Name	A6611R		
Temperature	22.8 ℃		Relati	ve Humidity	59.8%		
Pressure	960hPa		Test V	Test Voltage		Normal Voltage	
Test Mode	Mode 3		Anten	na Polarity	Horizontal		
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
4960.000	48.91	0.22	49.13	74	-24.87	peak	
4960.000	38.64	0.22	38.86	54	-15.14	AVG	
7440.000	41.27	2.64	43.91	74	-30.09	peak	
7440.000	32.64	2.64	35.28	54	-18.72	AVG	
Remark:							
	nna Factor + Cable	e Loss – Pre-	amplifier.				
Factor = Anter	nna Factor + Cable Wireless Hea			Name	A6611R		
			Model	Name	A6611R 59.8%		
Factor = Anter EUT Name Temperature	Wireless Hea		Model Relati			/oltage	
Factor = Anter EUT Name Temperature Pressure	Wireless Hea 22.8℃		Model Relati Test V	ve Humidity	59.8%	/oltage	
Factor = Anter	Wireless Hea 22.8℃ 960hPa Mode 3	dphone	Model Relati Test V Anten	ve Humidity /oltage na Polarity	59.8% Normal V Vertical	/oltage	
Factor = Anter	Wireless Hea 22.8°C 960hPa Mode 3 Meter Reading	dphone Factor	Model Relati Test V Anten Emission Level	ve Humidity /oltage na Polarity Limits	59.8% Normal Vertical Margin	Voltage Value Type	
Factor = Anter	Wireless Hea 22.8℃ 960hPa Mode 3 Meter Reading (dBµV)	dphone Factor (dB)	Model Relati Test V Anten Emission Level (dBµV/m)	ve Humidity oltage na Polarity Limits (dBµV/m)	59.8% Normal Vertical Margin (dB)	- Value Type	
Factor = Anter EUT Name Temperature Pressure Test Mode Frequency (MHz) 4960.000	Wireless Hea 22.8°C 960hPa Mode 3 Meter Reading (dBµV) 48.61	dphone Factor (dB) 0.22	Model Relati Test V Anten Emission Level (dBµV/m) 48.83	ve Humidity foltage na Polarity Limits (dBµV/m) 74	59.8% Normal Vertical Margin (dB) -25.17	- Value Type peak	
Factor = Anter EUT Name Temperature Pressure Test Mode Frequency (MHz) 4960.000 4960.000	Wireless Hea 22.8°C 960hPa Mode 3 Meter Reading (dBµV) 48.61 37.53	dphone Factor (dB) 0.22 0.22	Model Relati Test V Anten Emission Level (dBµV/m) 48.83 37.75	Ve Humidity Voltage na Polarity Limits (dBµV/m) 74 54	59.8% Normal Vertical Margin (dB) -25.17 -16.25	- Value Type peak AVG	
Factor = Anter EUT Name Temperature Pressure Test Mode Frequency (MHz) 4960.000 7440.000	Wireless Hea 22.8 °C 960hPa Mode 3 Meter Reading (dBµV) 48.61 37.53 42.55	dphone Factor (dB) 0.22 0.22 2.64	Model Relati Test V Anten Emission Level (dBµV/m) 48.83 37.75 45.19	ve Humidity oltage na Polarity Limits (dBµV/m) 74 54 74	59.8% Normal V Vertical Margin (dB) -25.17 -16.25 -28.81	Value Type peak AVG peak	
Factor = Anter EUT Name Temperature Pressure Test Mode Frequency (MHz) 4960.000 4960.000	Wireless Hea 22.8°C 960hPa Mode 3 Meter Reading (dBµV) 48.61 37.53	dphone Factor (dB) 0.22 0.22	Model Relati Test V Anten Emission Level (dBµV/m) 48.83 37.75	Ve Humidity Voltage na Polarity Limits (dBµV/m) 74 54	59.8% Normal Vertical Margin (dB) -25.17 -16.25	- Value Type peak AVG	
Factor = Anter EUT Name Temperature Pressure Test Mode Frequency (MHz) 4960.000 7440.000	Wireless Hea 22.8 °C 960hPa Mode 3 Meter Reading (dBµV) 48.61 37.53 42.55	dphone Factor (dB) 0.22 0.22 2.64	Model Relati Test V Anten Emission Level (dBµV/m) 48.83 37.75 45.19	ve Humidity oltage na Polarity Limits (dBµV/m) 74 54 74	59.8% Normal V Vertical Margin (dB) -25.17 -16.25 -28.81	Value Type peak AVG peak	

RESULT: Pass

Note:

- 1. The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.
- 2. Factor = Antenna Factor + Cable loss Pre-amplifier gain, Margin = Emission Level-Limit.
- 3. The "Factor" value can be calculated automatically by software of measurement system.

Report No.: AGC01110231240FR02A Page 24 of 24

Appendix I: Photographs of Test Setup

Refer to the Report No.: AGC01110231240AP01A

Appendix II: Photographs of Test EUT

Refer to the Report No.: AGC01110231240AP02A

-----End of Report-----

Conditions of Issuance of Test Reports

1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").

2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.

3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.

7. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.