

FCC Test Report

Report No.: AGC01110240644FR02

FCC ID	:	2A0KB-A31X1
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	Wireless Speaker
BRAND NAME	:	soundcore
MODEL NAME	:	A31X1
APPLICANT	:	Anker Innovations Limited
DATE OF ISSUE	:	Jul. 29, 2024
STANDARD(S)	:	FCC Part 15 Subpart C §15.247
REPORT VERSION	:	V1.0

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes	
V1.0	/	Jul. 29, 2024	Valid	Initial Release	

Table of Contents

1. General Information	5
2. Product Information	6
2.1 Product Technical Description	6
2.2 Test Frequency List	6
2.3 Related Submittal(S) / Grant (S)	7
2.4 Test Methodology	7
2.5 Receiver Input Bandwidth	7
2.6 Equally Average Use of Frequencies And Behaviour	7
2.7 Pseudorandom Frequency Hopping Sequence	8
2.8 Special Accessories	9
2.9 Equipment Modifications	9
2.10 Antenna Requirement	9
3. Test Environment	
3.1 Address of The Test Laboratory	
3.2 Test Facility	
3.3 Environmental Conditions	11
3.4 Measurement Uncertainty	11
3.5 List of Equipment Used	
4.System Test Configuration	14
4.1 EUT Configuration	14
4.2 EUT Exercise	14
4.3 Configuration of Tested System	14
4.4 Equipment Used in Tested System	14
4.5 Summary of Test Results	
5. Description of Test Modes	
6. RF Output Power Measurement	
6.1 Provisions Applicable	
6.2 Measurement Procedure	
6.3 Measurement Setup (Block Diagram of Configuration)	
6.4 Measurement Result	
7. 20dB Bandwidth and 99% Occupied Bandwidth Measurement	24
7.1 Provisions Applicable	
7.2 Measurement Procedure	
7.3 Measurement Setup (Block Diagram of Configuration)	
7.4 Measurement Results	
8. Conducted Band Edge and Out-of-Band Emissions	
8.1 Provisions Applicable	
8.2 Measurement Procedure	
8.3 Measurement Setup (Block Diagram of Configuration)	
9.4 Macourement Baculta	24

9. Radiated Spurious Emission	51
9.1 Measurement Limit	51
9.2 Measurement Procedure	
9.3 Measurement Setup (Block Diagram of Configuration)	
9.4 Measurement Result	
10. Number of Hopping Frequency Measurement	63
10.1 Provisions Applicable	
10.2 Measurement Procedure	
10.3 Measurement Setup (Block Diagram of Configuration)	
10.4 Measurement Result	
11. Time of Occupancy (Dwell Time) Measurement	65
11.1 Provisions Applicable	
11.2 Measurement Procedure	
11.3 Measurement Setup (Block Diagram of Configuration)	65
11.4 Measurement Result	65
12. Frequency Separation Measurement	69
12.1 Provisions Applicable	69
12.2 Measurement Procedure	
12.3 Measurement Setup (Block Diagram of Configuration)	
12.4 Measurement Result	
13. AC Power Line Conducted Emission Test	71
13.1 Measurement Limit	71
13.2 Measurement Setup (Block Diagram of Configuration)	71
13.3 Preliminary Procedure of Line Conducted Emission Test	72
13.4 Final Procedure of Line Conducted Emission Test	72
13.5 Measurement Results	72
Appendix I: Photographs of Test Setup	75
Appendix II: Photographs of Test EUT	

1. General Information

Applicant	Anker Innovations Limited
Address	Unit 56, 8th Floor, Tower 2, Admiralty Centre, 18 Harcourt Road, Hong Kong
Manufacturer	Anker Innovations Limited
Address	Unit 56, 8th Floor, Tower 2, Admiralty Centre, 18 Harcourt Road, Hong Kong
Factory	N/A
Address	N/A
Product Designation	Wireless Speaker
Brand Name	soundcore
Test Model	A31X1
Series Model(s)	N/A
Difference Description	N/A
Date of receipt of test item	Jul. 02, 2024
Date of Test	Jul. 02, 2024~ Jul. 29, 2024
Deviation from Standard	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Test Report Form No	AGCER-FCC-BR_EDR-V1

Note: The test results of this report relate only to the tested sample identified in this report.

Bibo zhang Prepared By Bibo Zhang Jul. 29, 2024 (Project Engineer) Calvin Lin **Reviewed By** Calvin Liu Jul. 29, 2024 (Reviewer) Max Zhang Approved By Max Zhang Jul. 29, 2024 Authorized Officer

2. Product Information

2.1 Product Technical Description

Frequency Band	2400MHz-2483.5MHz
Operation Frequency Range	2402MHz-2480MHz
Bluetooth Version	V5.4
Modulation Type	BR 🖾 GFSK, EDR 🖾 π /4-DQPSK, 🖾 8DPSK
Number of channels	79 Channels
Channel Separation	1 MHz
Maximum Transmitter Power	3.248dBm
Hardware Version	V02
Software Version	2.2.0
Antenna Designation	PCB Antenna
Antenna Gain	1.29dBi
Power Supply	DC 3.65V by battery or DC 5V by adapter

2.2 Test Frequency List

Frequency Band	Channel Number	Frequency			
	0	2402 MHz			
	1	2403 MHz			
	:	:			
2400~2483.5MHz	39	2441MHz			
	:	:			
	77	2479 MHz			
	78	2480 MHz			
Note: f = 2402 + 1k MHz, k =	Note: f = 2402 + 1k MHz, k = 0,, 78 ; "f "is the operating frequency (MHz); "k" is the operating channel.				

2.3 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: 2AOKB-A31X1, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.4 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	2 FCC 47 CFR Part 15 Radio Frequency Devices	
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices
4	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules

2.5 Receiver Input Bandwidth

The input bandwidth of the receiver is 1.3MHz, in every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally, the type of connection (e.g. single of multi slot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also, the slave of the connection will use these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.6 Equally Average Use of Frequencies and Behaviour.

The generation of the hopping sequence in connection mode depends essentially on two input values:

1. LAP/UAP of the master of the connection.

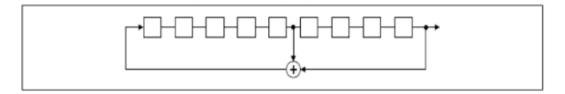
2. Internal master clock.

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24MSB's of the 48BD_ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For behavior action with other units only offset is used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us. The clock has a cycle of about one day(23h30).

In most case it is implemented as 28 bits counter. For the deriving of the hopping sequence the entire. LAP (24 bits),4LSB's(4bits) (Input 1) and the 27MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following behavior:


The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer (and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always differ from the first one.

2.7 Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of The PRBS Sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

44	35	78	03	20	76	02	19		21	64	75
				· · · · · · · · · · · · · · · · · · ·]			\square
			l i						1		
			¦						i.		
						<u>'i</u>		1	Ľ_		

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

2.8 Special Accessories

Not available for this EUT intended for grant.

2.9 Equipment Modifications

Not available for this EUT intended for grant.

2.10 Antenna Requirement

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is 1.29dBi.

3. Test Environment

3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories.)

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842(CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

3.3 Environmental Conditions

	Normal Conditions
Temperature range (°C)	15 - 35
Relative humidity range	20 % - 75 %
Pressure range (kPa)	86 - 106
Power supply	DC 3.65V by battery or DC 5V by adapter

3.4 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty		
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$		
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$		
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$		
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$		
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$		
Uncertainty of spurious emissions, conducted	$U_c = \pm 2 \%$		
Uncertainty of Occupied Channel Bandwidth	$U_c = \pm 2 \%$		

3.5 List of Equipment Used

• R	RF Conducted Test System								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
\boxtimes	AGC-ER-E036	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024-05-24	2025-05-23		
\boxtimes	AGC-ER-E062	Power Sensor	Agilent	U2021XA	MY54110007	2024-02-01	2025-01-31		
\boxtimes	AGC-ER-E063	Power Sensor	Agilent	U2021XA	MY54110009	2024-02-01	2025-01-31		
\boxtimes	AGC-ER-A001	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-09-21	2025-09-20		
	AGC-ER-E083	Signal Generator	Agilent	E4421B	US39340815	2024-05-23	2025-05-22		
	N/A	RF Connection Cable	N/A	1#	N/A	Each time	N/A		
	N/A	RF Connection Cable	N/A	2#	N/A	Each time	N/A		

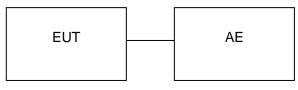
• F	Radiated Spurious Emission							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2024-02-01	2025-01-31	
\boxtimes	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2024-05-24	2025-05-23	
\square	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2024-05-28	2025-05-27	
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2024-03-05	2026-03-04	
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10	
\boxtimes	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2024-03-31	2025-03-30	
\boxtimes	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2023-09-24	2025-09-23	
\boxtimes	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2022-08-04	2024-08-03	
\boxtimes	AGC-EM-A119	2.4G Filter	SongYi	N/A	N/A	2024-05-23	2025-05-22	
\square	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08	
	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08	

• A	AC Power Line Conducted Emission								
Used	Used Faunment No. 1. Jest Faunment I. Manutacturer I. Model No. 1. Serial No. 1						Next Cal. Date (YY-MM-DD)		
\boxtimes	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2024-05-28	2025-05-27		
\boxtimes	AGC-EM-A130	6dB Attenuator	Eeatsheep	LM-XX-6-5W	DC-6GZ	2023-06-09	2025-06-08		
\boxtimes	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2024-05-28	2025-05-27		

• Te	Test Software							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information			
	AGC-EM-S001	CE Test System	R&S	ES-K1	V1.71			
\boxtimes	AGC-EM-S003	RE Test System	FARA	EZ-EMC	VRA-03A			
	AGC-ER-S012	BT/WIFI Test System	Tonscend	JS1120-2	2.6			
	AGC-EM-S011	RSE Test System	Tonscend	TS+-Ver2.1(JS36-RSE)	4.0.0.0			

4.System Test Configuration

4.1 EUT Configuration


The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

Radiated Emission Configure:

Conducted Emission Configure:

EUT	 AE

4.4 Equipment Used in Tested System

The following peripheral devices and interface cables were connected during the measurement: Test Accessories Come From The Laboratory

No.	Equipment	Manufacturer	Model No.	Specification Information	Cable		
1	Control Box		USB-TTL				
2	Adapter	Huawei	HW-200440C00				
	Test Accessories Come From The Manufacturer						
No.	Equipment	Manufacturer	Model No.	Specification Information	Cable		
1							

4.5 Summary of Test Results

Item	FCC Rules	Description of Test	Result
1	§15.203&15.247(b)(4)	Antenna Equipment	Pass
2	§15.247 (b)(1)	RF Output Power	Pass
3	§15.247 (a)(1)	20 dB Bandwidth	Pass
4	§15.247 (d)	Conducted Band Edge and Out-of-Band Emissions	Pass
5	§15.209	Radiated Spurious Emission	Pass
6	§15.247 (a)(1)(iii)	Number of Hopping Frequency	Pass
7	§15.247 (a)(1)(iii)	Time of Occupancy	Pass
8	§15.247 (a)(1)	Frequency Separation	Pass
9	§15.207	AC Power Line Conducted Emission	Pass

5. Description of Test Modes

	Summary table of Test Cases						
Test Item	Data Rate / Modulation						
iest item	Bluetooth – BR_EDR (GFSK/π /4-DQPSK/8DPSK)						
Radiated & Conducted Test Cases	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps (Battery powered or AC/DC adapter) Mode 2: Bluetooth Tx CH39_2441 MHz_1Mbps (Battery powered or AC/DC adapter) Mode 3: Bluetooth Tx CH78_2480 MHz_1Mbps (Battery powered or AC/DC adapter) Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps (Battery powered or AC/DC adapter) Mode 5: Bluetooth Tx CH39_2441 MHz_2Mbps (Battery powered or AC/DC adapter) Mode 6: Bluetooth Tx CH39_2441 MHz_2Mbps (Battery powered or AC/DC adapter) Mode 6: Bluetooth Tx CH39_2441 MHz_2Mbps (Battery powered or AC/DC adapter) Mode 7: Bluetooth Tx CH78_2480 MHz_3Mbps (Battery powered or AC/DC adapter) Mode 8: Bluetooth Tx CH39_2441 MHz_3Mbps (Battery powered or AC/DC adapter) Mode 8: Bluetooth Tx CH39_2441 MHz_3Mbps (Battery powered or AC/DC adapter) Mode 9: Bluetooth Tx CH78_2480 MHz_3Mbps (Battery powered or AC/DC adapter) Mode 10: Bluetooth Tx Hopping-1Mbps (Battery powered or AC/DC adapter) Mode11: Bluetooth Tx Hopping-3Mbps (Battery powered or AC/DC adapter)						
AC Conducted Emission	Mode 1: Bluetooth Link + Battery + USB Cable (Charging from AC Adapter)						
Note:							
1. Only the result of the worst case was recorded in the report, if no other cases.							

- The battery is full-charged during the test. For Radiated Emission, 3axis were chosen for testing for each applicable mode. 2. 3.
- For Conducted Test method, a temporary antenna connector is provided by the manufacture. 4.
 - Software Setting Diagram

串口设置	配置数据发送成功!	
	▼ reply data: 04 0E 04 01 01 FC 00	
	return code: 0x0	
波特率 115200		
数据位 8	 reply data: 04 0E 04 01 01 FC 00 	
校验位 None	✓ return code: 0x0	
10002122	配置数据发送成功!	
1711.12	reply data: 04 0E 04 01 01 FC 00	
流 控 NoFlow	 return code: 0x0 	
关闭	配置数据发送成功!	
2 613	reply data: 04 0E 04 01 01 FC 00	
BR/EDR BLE	return code: 0x0	
NODE TH	配置数据发送成功!	
	reply data: 04 0E 04 01 01 FC 00	
Channel 78	return code: 0x0 配置数据发送成功!	
Transmit_Power 10	配直数据反达成功! reply data: 04 0E 04 01 01 FC 00	
Packet_Type 1-DH5	return code: 0x0	
	配署数据发送成功	
Hopping ON	reply data: 04 0E 04 01 01 FC 00	
Data_Types Pn9	return code: 0x0	
Send configuration	reply data: 04 0E 04 01 01 FC 00	
	return code: 0x0	
	配置数据发送成功!	
	reply data: 04 0E 04 01 01 FC 00	
	return code: 0x0	
	配置数据发送成功!	

6. RF Output Power Measurement

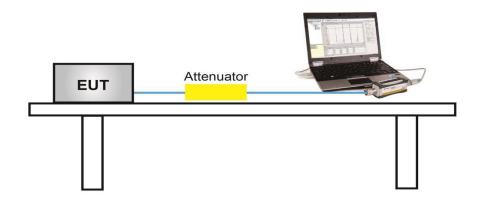
6.1 Provisions Applicable

The maximum out power permissible output power is 1 Watt for all frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels.

The maximum out power permissible output power is 0.125 watts for all other frequency hopping systems in the 2400-2483.5 MHz band.

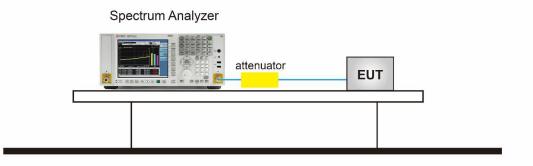
6.2 Measurement Procedure

⊠For Peak power test:


- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 3. RBW > 20 dB bandwidth of the emission being measured.
- 4. VBW \geq RBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.
- 8. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

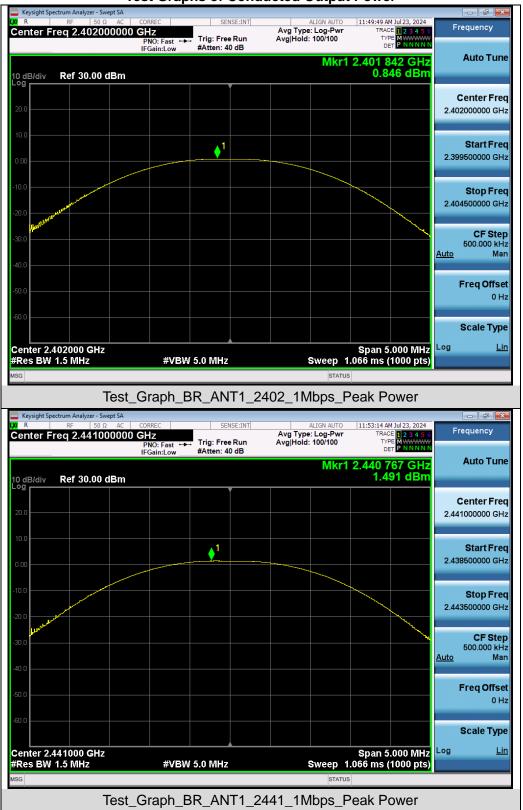
For Average power test:

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required


6.3 Measurement Setup (Block Diagram of Configuration)

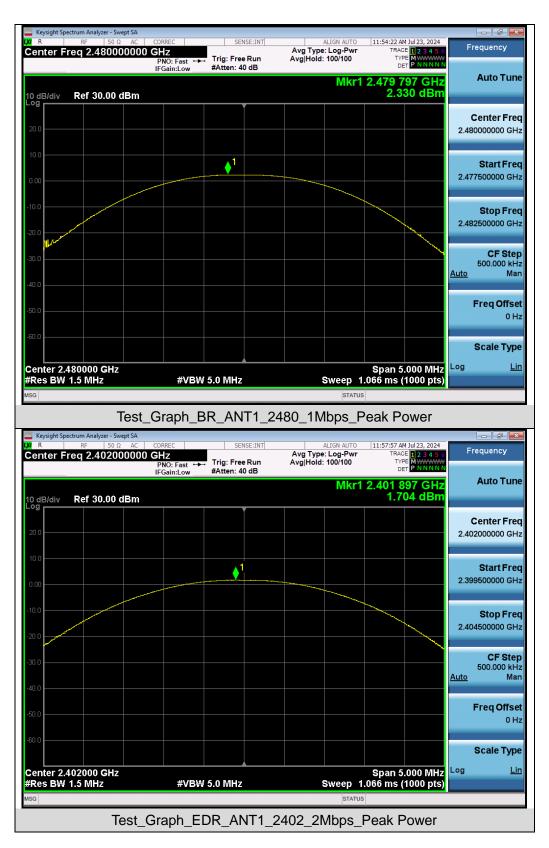
For Average power test setup

For peak power test setup

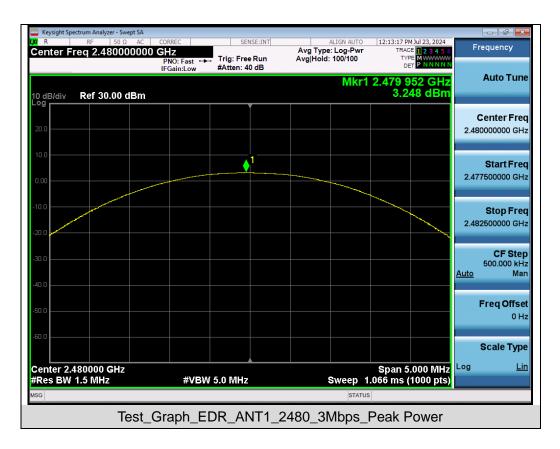


6.4 Measurement Result

Test Data of Conducted Output Power							
Test Mode	Test Frequency (MHz)	Peak Power (dBm)	Limits (dBm)	Pass or Fail			
	2402	0.846	≤21	Pass			
GFSK	2441	1.491	≤21	Pass			
	2480	2.330	≤21	Pass			
	2402	1.704	≤21	Pass			
π /4-DQPSK	2441	2.319	≤21	Pass			
	2480	2.987	≤21	Pass			
	2402	2.129	≤21	Pass			
8DPSK	2441	2.661	≤21	Pass			
	2480	3.248	≤21	Pass			

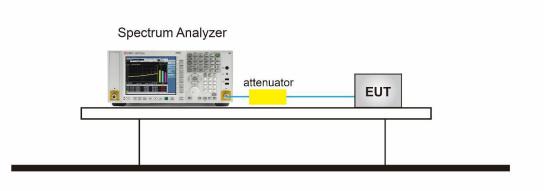


Test Graphs of Conducted Output Power



7. 20dB Bandwidth and 99% Occupied Bandwidth Measurement

7.1 Provisions Applicable

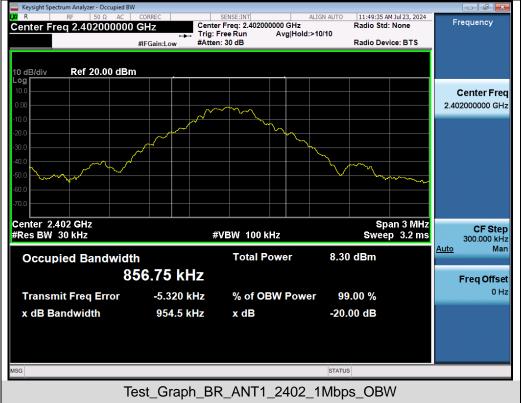

There is no corresponding limit requirement for this test item.

7.2 Measurement Procedure

The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 6.9.2 (20dB BW).

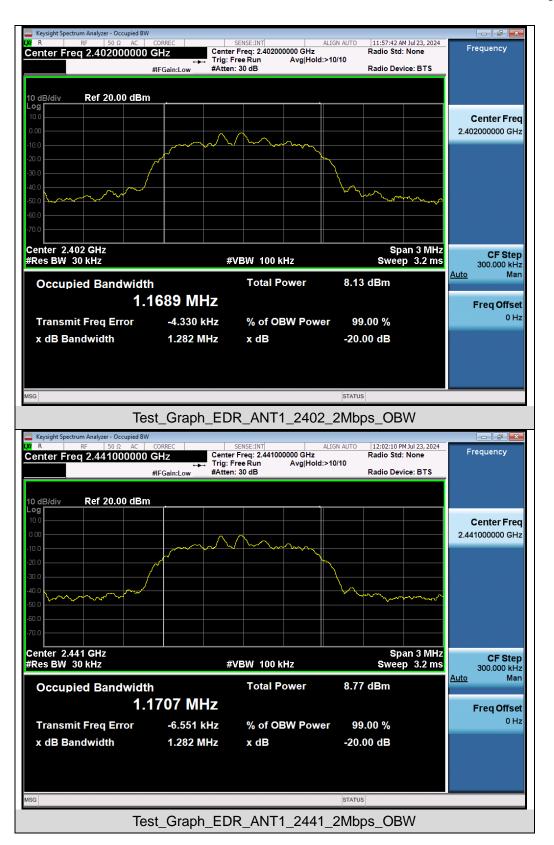
- The 20dB bandwidth spectrum analyzer setting reference is as follows:
- 1. Set RBW ≥ 1% to 5% of the 20dB bandwidth
- 2. VBW = Approximately three times RBW
- 3. Span = Approximately 2 to 5 times the 20dB bandwidth, centered on a hopping channel
- 4. Detector = Peak
- 5. Trace mode = Max hold
- 6. Sweep = Auto couple
- 7. Allow the trace to stabilize
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated
- 9. with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20
- 10. dB relative to the maximum level in the fundamental emission.
- The 99% bandwidth spectrum analyzer setting reference is as follows:
- 1. Span = 1.5 times to 5 times the OBW
- 2. Set RBW = 1% to 5% the OBW
- 3. VBW \geq 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = Max hold
- 6. Sweep = Auto couple
- 7. Allow the trace was allowed to stabilize

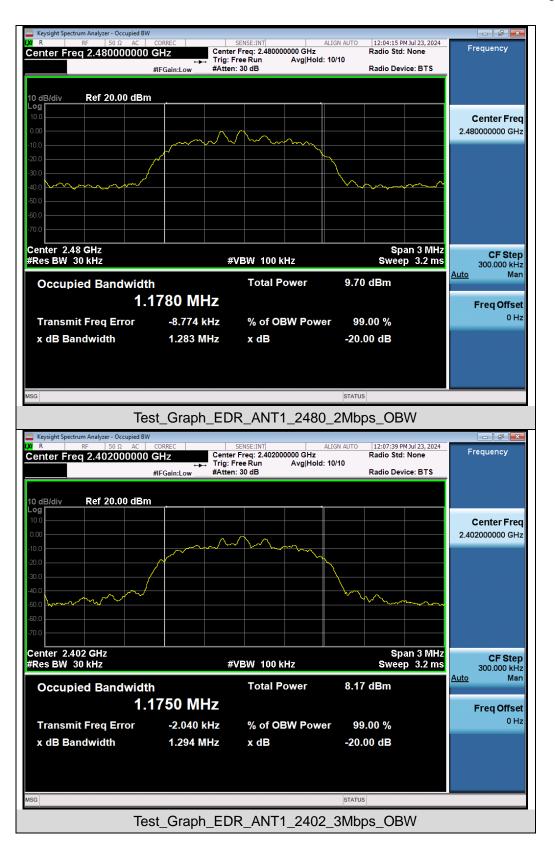
7.3 Measurement Setup (Block Diagram of Configuration)

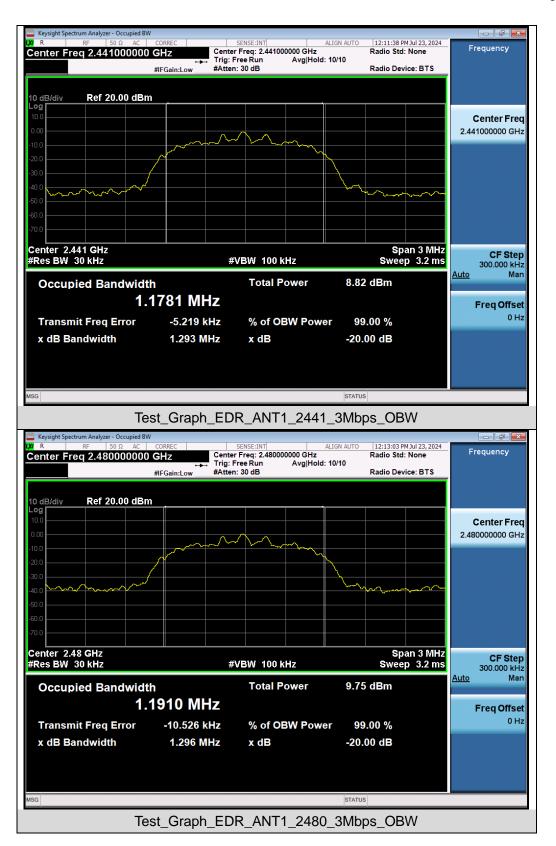



7.4 Measurement Results

Test Data of Occupied Bandwidth and -20dB Bandwidth							
Test Mode	Test Frequency (MHz)	99% Occupied Bandwidth (MHz)	-20dB Bandwidth (MHz)	Limits	Pass or Fail		
	2402	0.857	0.955	N/A	Pass		
GFSK	2441	0.859	0.951	N/A	Pass		
	2480	0.854	0.946	N/A	Pass		
	2402	1.169	1.282	N/A	Pass		
π /4-DQPSK	2441	1.171	1.282	N/A	Pass		
	2480	1.178	1.283	N/A	Pass		
	2402	1.175	1.294	N/A	Pass		
8DPSK	2441	1.178	1.293	N/A	Pass		
	2480	1.191	1.296	N/A	Pass		

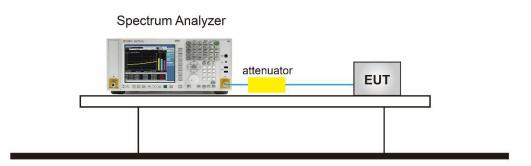

Test Graphs of Occupied Bandwidth and -20 Bandwidth





8. Conducted Band Edge and Out-of-Band Emissions

8.1 Provisions Applicable

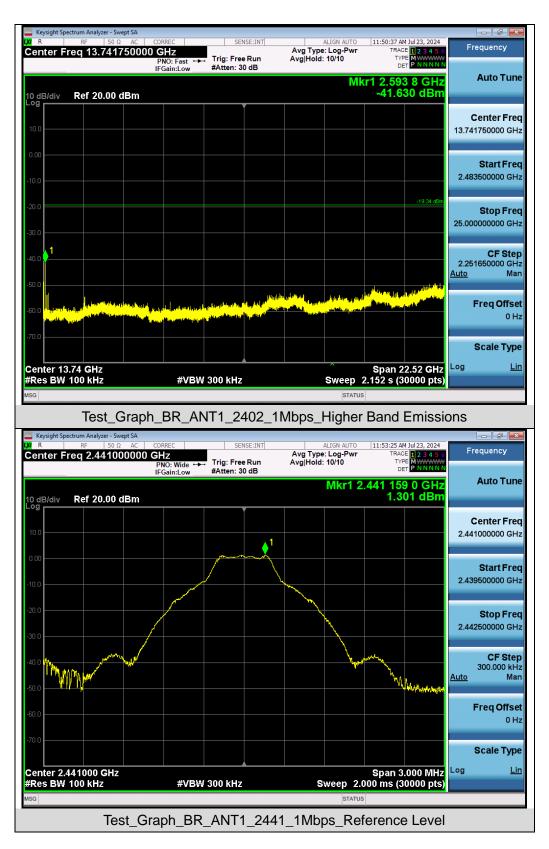

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

8.2 Measurement Procedure

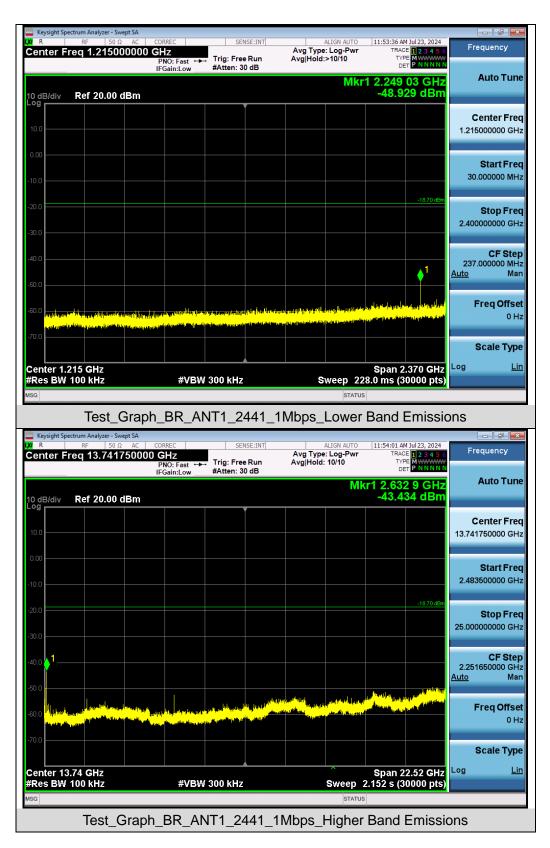
The testing follows the ANSI C63.10 Section 6.10.4 and 7.8.8:

- Reference level measurement
- 1. Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Sweep time = Auto couple
- 6. Trace mode = Max hold
- 7. Allow the trace to stabilize. Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- Emission level measurement
- 1. Span = Wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Sweep time = Auto couple
- 6. Trace mode = Max hold
- 7. Trace was allowed to stabilize
- 8. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this section.

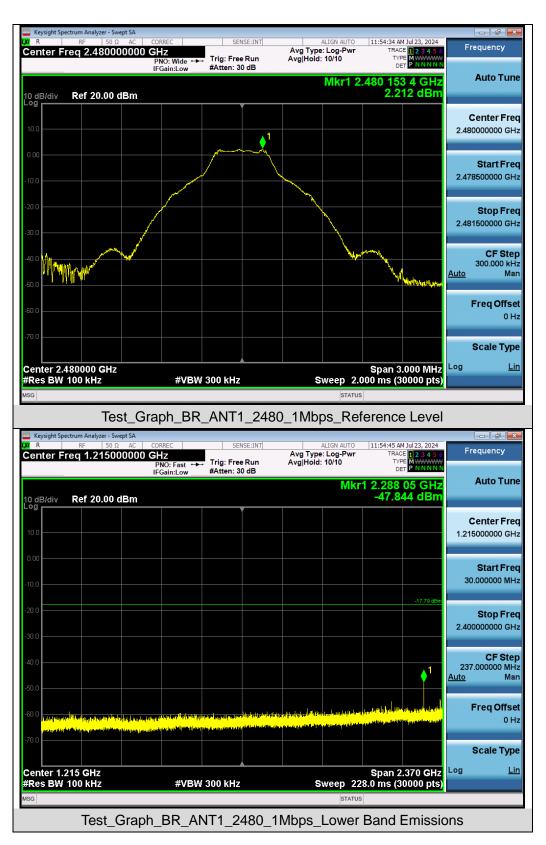
8.3 Measurement Setup (Block Diagram of Configuration)

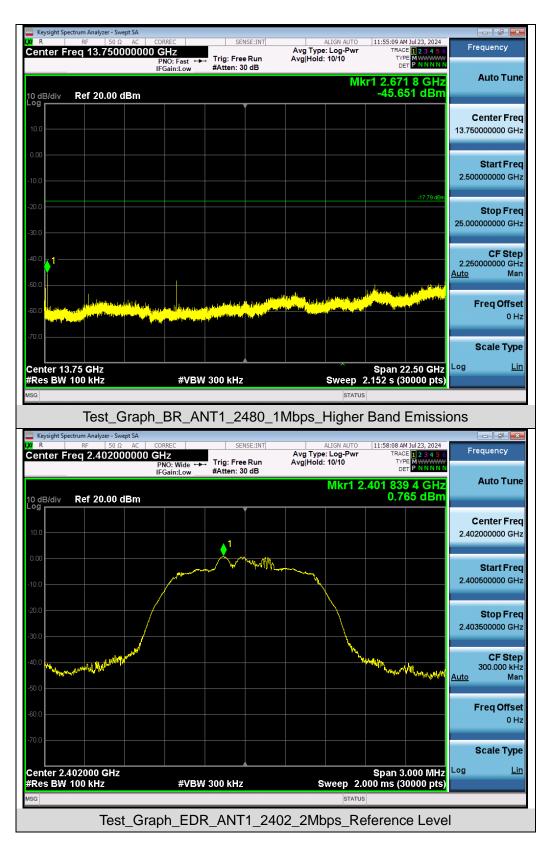


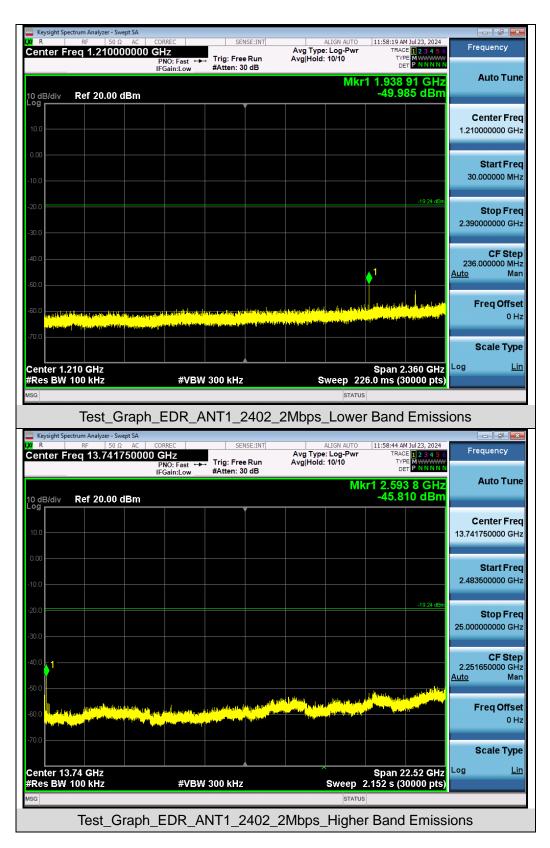
8.4 Measurement Results

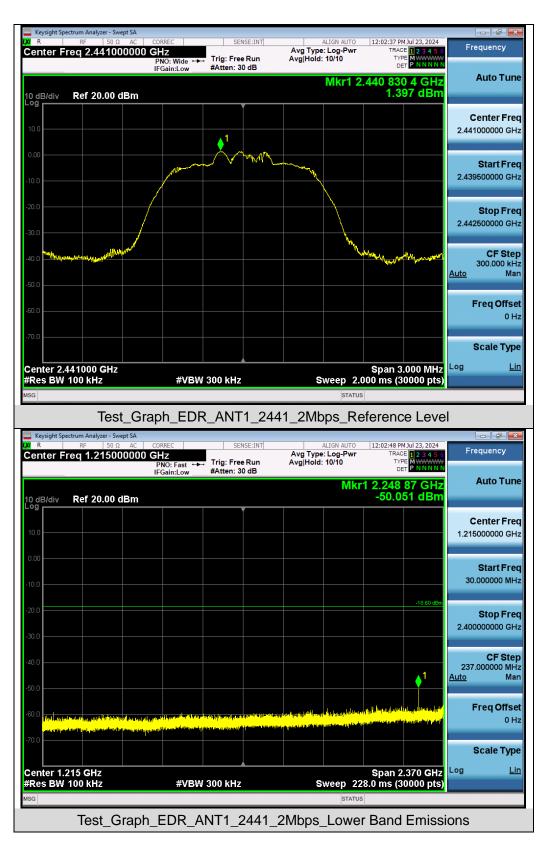


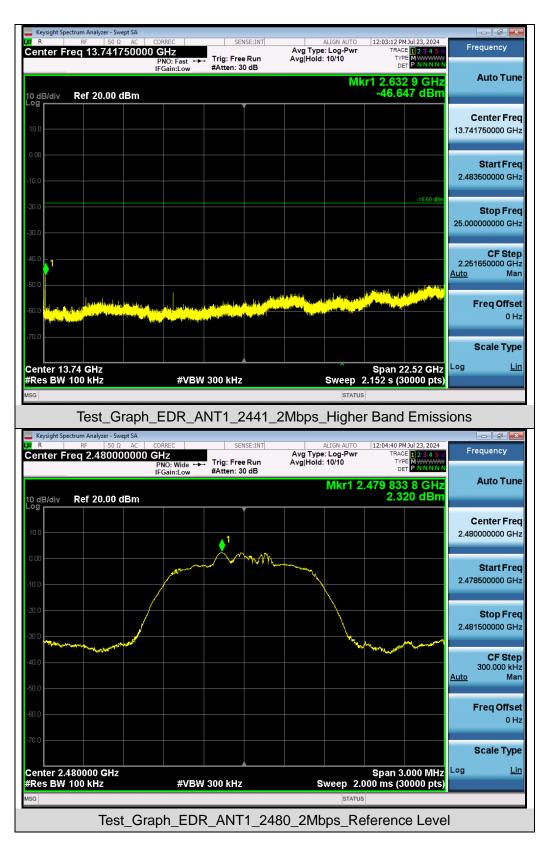
Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands

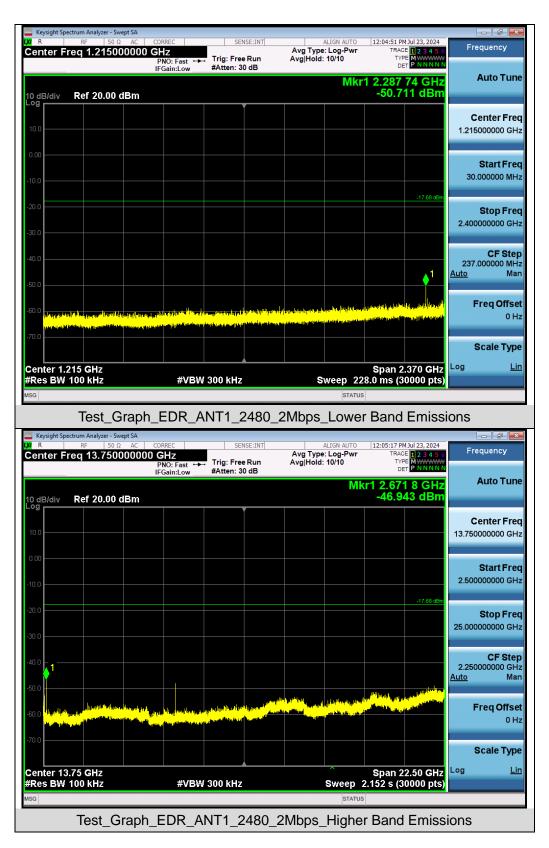


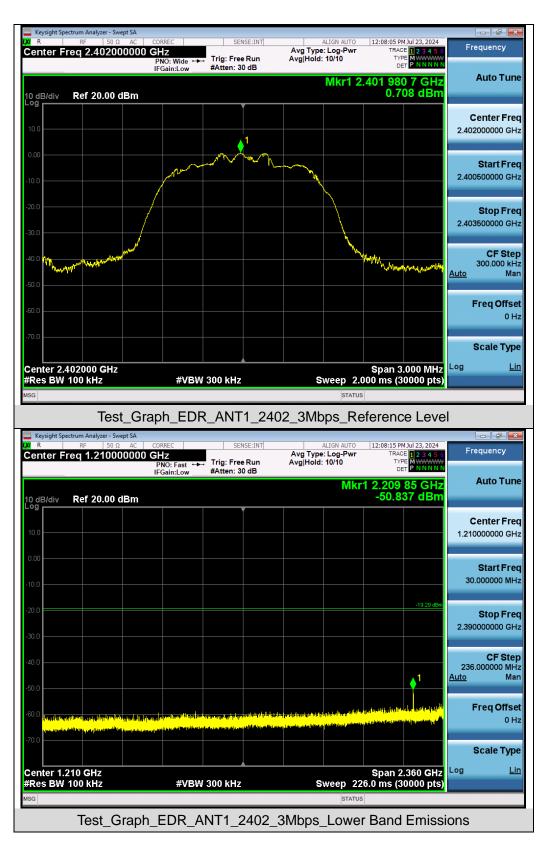


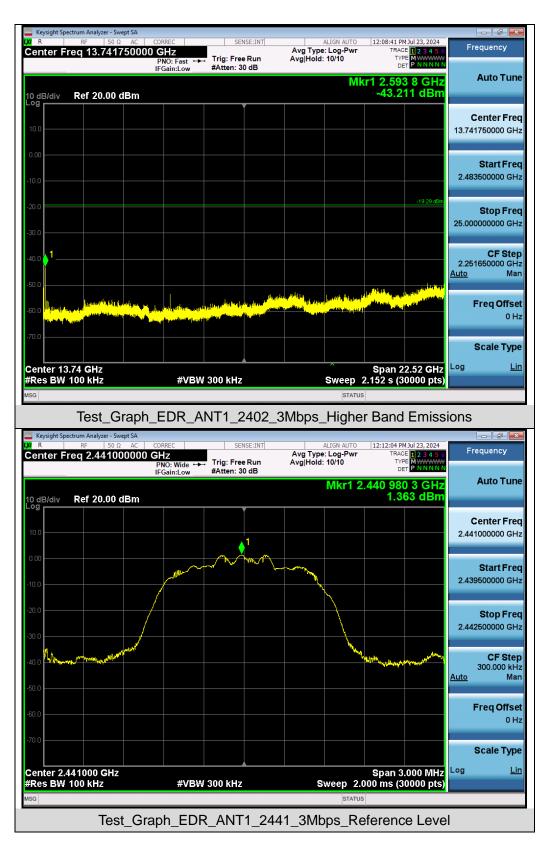


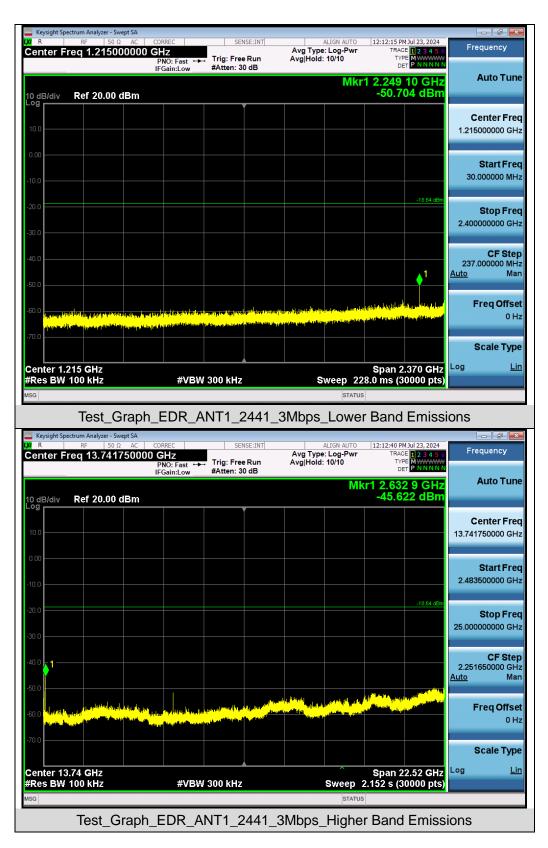


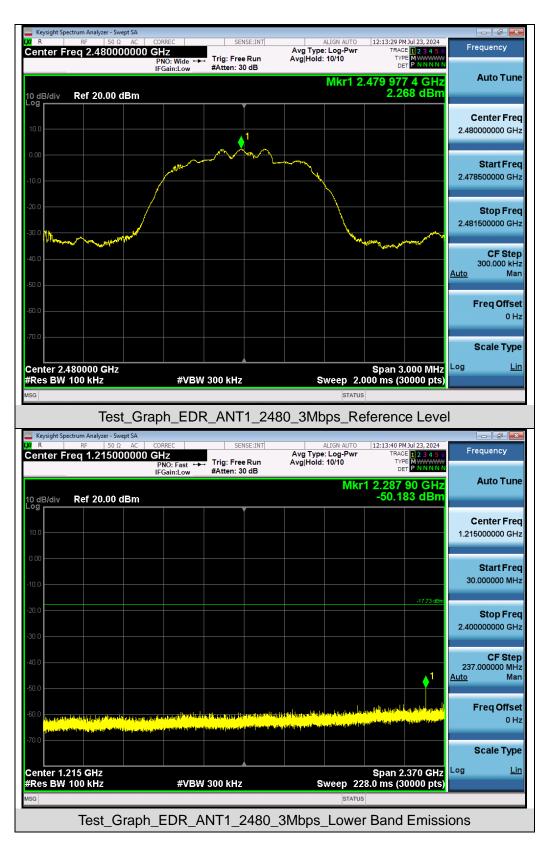


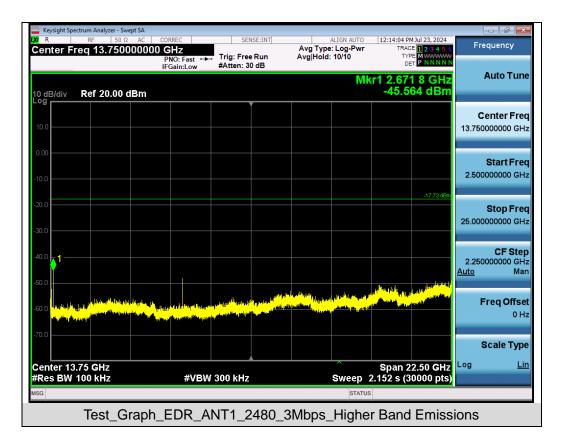


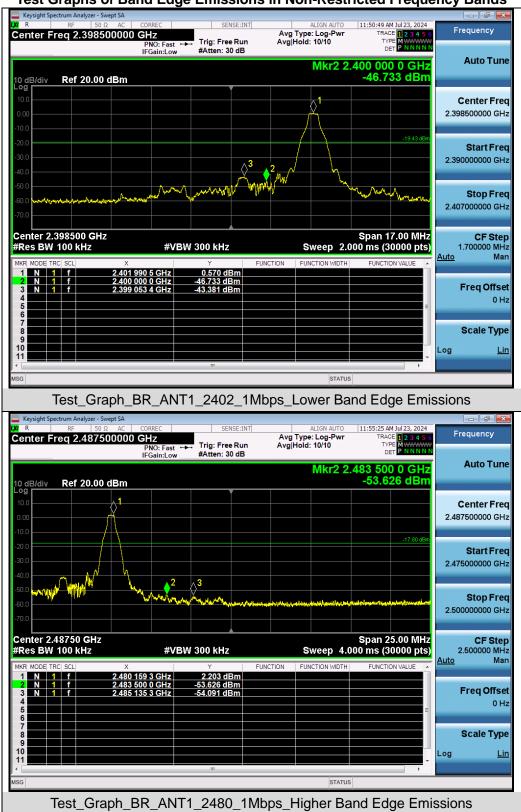


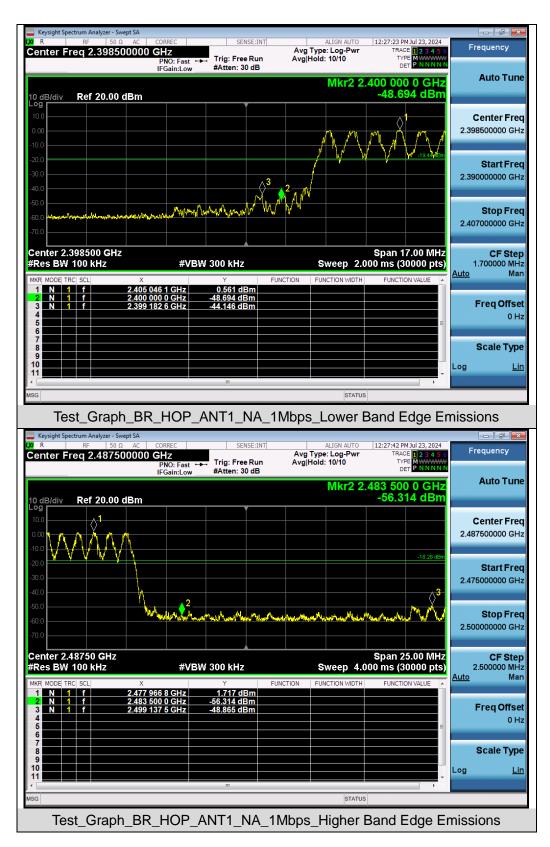












Test Graphs of Band Edge Emissions in Non-Restricted Frequency Bands

9. Radiated Spurious Emission

9.1 Measurement Limit

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

9.2 Measurement Procedure

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection"

Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.

- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
Start ~Stop Frequency	1GHz~26.5GHz
	1MHz/3MHz for Peak, 1MHz/3MHz for Average

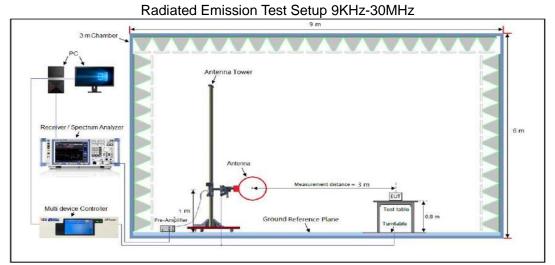
The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

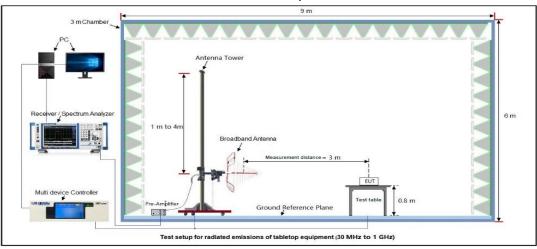
• Quasi-Peak Measurements below 1GHz

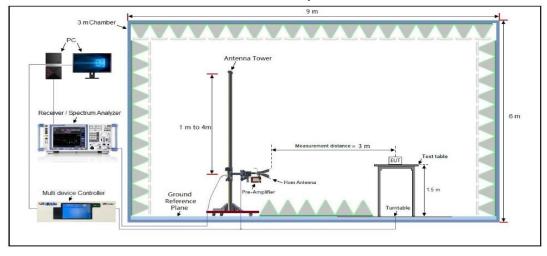
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as shown in the table above
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Peak Measurements above 1GHz


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

<u>Average Measurements above 1GHz</u>


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW \geq [3 × RBW]
- 4. Detector = Power averaging (rms)
- 5. Averaging type = power (i.e., rms)
- 6. Sweep time = auto
- 7. Perform a trace average of at least 100 traces.
- 8. The applicable correction factor is [10*log (1 / D)], where D is the duty cycle. The factor had been edited in the "Input Correction" of the Spectrum Analyzer.


9.3 Measurement Setup (Block Diagram of Configuration)

Radiated Emission Test Setup 30MHz-1000MHz

Radiated Emission Test Setup Above 1000MHz

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

 Web: http://www.agccert.com/

9.4 Measurement Result

Radiated Emission Below 30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

		Radia	ated Emiss	sion Test Re	sults at 30	MHz-1GH	łz			
EUT Name	Wireless	Speaker			Mode	el Name	ļ	A31X1		
Temperature	22.4 ℃				Relat	Relative Humidity				
Pressure	960hPa Test Voltage					[DC 5V			
Test Mode	Mode 9				Ante	nna Polar	ity H	Horizonta	rizontal	
72.0 d	dBuV/m						L. L			
								imit — (argin: —		
32 ₩****	edin ubububuruykan tuburu	utherease and and	A Repair of the second	inenenthionen the physiologic of	netween the second		***	Jacob Carlos Andrea	ци 	
			80	(NHz)		300 400			DD.000	
-8 30.000						300 400			UN 00.000	
-8 30.000	0 40 50	60 70	80 Reading	(MH₂) Correct	Measure-	200 400	500 600			
-8 30.000	0 40 50 Io. Mk.	60 70 Freq.	80 Reading Level	(мн₂) Correct Factor	Measure- ment	100 400	500 600 Over) 700 100		
-8 30.000	0 40 50 lo. Mk. 1 75	60 70 Freq. MHz	80 Reading Level dBuV	(мн₂) Correct Factor dB	Measure- ment dBuV/m	00 400 Limit dBuV/m	500 600 Over dB	0 700 100 Detector		
-8 30.000	lo. Mk. 1 75 2 97	60 70 Freq. MHz 5.7114	80 Reading Level dBuV 7.79	(MH₂) Correct Factor dB 12.97	Measure- ment dBuV/m 20.76	00 400 Limit dBuV/m 40.00	500 600 Over dB -19.24	Detector peak		
-8 30.000 N	1 75 2 97 3 234	60 70 Freq. MHz 5.7114 7.4560	80 Reading Level dBuV 7.79 6.62	(MH₂) Correct Factor dB 12.97 15.81	Measure- ment dBuV/m 20.76 22.43	00 400 Limit dBuV/m 40.00 43.50	500 600 Over dB -19.24 -21.07	Detector peak peak		
-8 30.000 N	1 75 2 97 3 234 4 452	60 70 Freq. MHz 5.7114 7.4560 9.9909	80 Reading Level dBuV 7.79 6.62 6.24	(мн₂) Correct Factor dB 12.97 15.81 15.15	Measure- ment dBuV/m 20.76 22.43 21.39	00 400 Limit dBuV/m 40.00 43.50 46.00	500 600 Over dB -19.24 -21.07 -24.61	Detector peak peak peak		

					uia	LEU L	_111133		n ne	sults a	1 30			~						
EUT Name	V	Wireless Speaker					M	ode	l Nam	е		ļ	A31X	1						
Temperature	2	22.4°C					R	Relative Humidity 56.8%			6									
Pressure	9	060hPa Test Voltage DC 5					DC 5\	V												
Test Mode	N	lode	9							A	nten	na Po	Polarity Vertical							
72.0	dBuV	In																		
																imit: largin:				
_																		F		
_																				
32													4			*******	underlage	Б.		
32				1			_		2			3 X. L.M.	A A A	-vudyra	nmeter	,	vnelenter	Xa		
	Mundlyth	Maralas	humenter	n din		and the shale		physicallybrained	2 X	therefundant	الإفراجي	3 June	A A A A A A A A A A A A A A A A A A A	~vudyr^	produce	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	vn4W141	Ka		
	hundhada	enter alphi	humedam	n de la		and the state	why where the	yengeneriquena	2	then when the	MARTHAN .	3 Angelinde	4 4	~~~der^	produce	5 	vndwhyt	× × ci		
	handhada		humon Cherry	******	when	andar of the	Mannada	yd ydan arfebrau y	2 Minter Mar	thorymouth	ngh the fille	3 June	un the	un der	product	5	₩₩₩₩₩₩₩₩₩ ₩	₹ [*] Xci		
H 	Wuullyt	gent to a strong of	hum A Ar			anna dhara	Mandal	yksykeren open and	2 Andread Ar	thereforeship	up years and a	3. July	And the second sec	~~webyr^	rmular			A		
		4 ⁰	۱۰۰۰۰۰۰۰۰۰ 50	1 ******		anhanihalan 890	why where the		2 Autom	hond and a second			400	^{سر} المراجعة المراجعة مراجعة المراجعة المراج		5		000.0	000	
-8 30.1		40	50		70		ding		H ₂)	Measu	30 Ire-		400		600				000	
-8 30.1	000	40	50 F	60	70	80 Read	ding	(∾ Corre	H ₂)	Measu	30 Ire- t	00	400 it	500	600 Er		11	000.0	000	
-8 30.1	000	40	50 F	60	70	⁸⁰ Read Lev	ding vel uV	(M Corre Facto	Hz) ct	Measu	30 Ire- t	00 Limi	400 it /m	500 Ove	600 600	700	11 ctor	000.0	000	
-8 30.1	000 No.	40 Mk.	50 F	60 Freq. MHz 3132	70 F	Read Lev dBu	ding vel uV	(N Corre Facto dB	H2) ct or	Measu ment dBuV/n	30 Ire- t	Limi dBuV	400 it /m D	500 Ove dB	600 er 43	Deter	11 ctor	000.0	000	
-8 30.1	000 No. 1	40 Mk.	50 F 63.3	60 Freq. MHz 3132	70 F	80 Read Lev dBu 6.5	ding vel uV 50	Corre Facto dB 17.07	H=2) ct pr 7 3	Measu ment dBuV/n 23.57	30 Ire- t	Limi dBuV 40.00	100 it /m D	500 Ove dB -16.4	600 er 43	Detec	ctor	000.0	000	
-8 30.1	No.	40 Mk.	50 F 63.3	60 Freq. MHz 3132 9946 7011	70 F	80 Read Lev dBu 6.1 6.2	ding vel uv 50 12	Corre Facto dB 17.07 18.38	H=2) ct Dr 7 3 4	Measu ment dBuV/n 23.57 24.50	31 re- t)	Limi dBuV 40.00 43.50	400 it /m D D	500 Ove dB -16.4 -19.0	600 er 43 00 74	Deter pea	ctor ak ak	000.0	000	
-8 30.1	No.	40 Mk.	50 F 63.3 171.9 317.7	60 Freq. MHz 3132 9946 7011	70 F	80 Read Lev dBu 6.2 6.2 6.2	ding vel uv 50 12 12	(M Corre Facto dB 17.07 18.38 20.14	H=2) ct pr 7 3 4 2	Measu ment dBuV/n 23.57 24.50 26.26	30 rre- t	Limi dBuV 40.00 43.50 46.00	400 it /m)))	500 Ove dB -16.4 -19.0 -19.7	600 er 43 00 74	Detec pea pea	ctor ak ak ak	000.0	000	

RESULT: Pass

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

IT Na	me	Wireless Sp	eaker		Model Name	•	A31X1		
mper	ature	22.4 °C			Relative Hur	nidity	56.8%		
essui	re	960hPa			Test Voltage		DC 5V Horizontal		
st Mo	ode	Mode 9			Antenna Pol	arity			
				I					
	130			FCC Part 1	5C				
	120								
	110 100								
	90								
	80 E 70								
	Import 70 Gpp 60 50 1								
	50 40				Antohologia antoine	WARden of the		6	
	30 Williamer	have a set of the set of the second	and a second a second and a second	ware to wanter and the second second	Minish Managaran and a second second	and the state of t			
	20								
	10								
	10 0								
	-10	20	3	3 46	ĥG	86		18G	
	0 -10 1G	20		G 4G Frequency	6G Hz]	8G		18G	
	-10	AV Limit	3 30 — Horizontal PK			8G		18G	
PK	0 -10 1G —— PK Limit	AV Limit				8G		18G	
PK [0 -10 1G 	AV Limit				8G Height [cm]	Angle [°]	18G Polarity	
	O -10 1G -10 -10 -10 -10 -10 -10 -10 -10	AV Limit -	- Horizontal PK	Frequency	Hz] Margin	Height			
NO.	0 -10 1G PK Limit * AV Dete Data List Freq. [MHz]	Level [dBµV/m]	- Horizontal PK Factor [dB]	Frequency Limit [dBµV/m]	H2] Margin [dB]	Height [cm]	[°]	Polarity	
NO. 1	0 -10 1G PK Limit * AV Dete Data List Freq. [MHz] 1032.3032	Level [dBµV/m] 43.56	Factor [dB] -18.29	Erequency Limit [dBµV/m] 74.00	Margin [dB] 30.44	Height [cm] 150	[°] 333	Polarity Horizontal	
NO. 1 2	Data List Freq. [MHz] 1032.3032 3268.0268 4959.696 7440.244	AV Limit Level [dBµV/m] 43.56 39.40 50.51 51.89	- Horizontal PK Factor [dB] -18.29 -11.26 -7.78 -3.71	Frequency Limit [dBµV/m] 74.00 74.00 74.00 74.00	H2) Margin [dB] 30.44 34.60 23.49 22.11	Height [cm] 150 150	[°] 333 248	Polarity Horizontal Horizontal Horizontal Horizontal	
NO. 1 2 3	PKLimit 1G * AV Dete Data List Freq. [MHz] 1032.3032 3268.0268 4959.696 7440.244 11025.9026		- Horizontal PK Factor [dB] -18.29 -11.26 -7.78	Frequency Limit [dBµV/m] 74.00 74.00 74.00 74.00 74.00	Hz] Margin [dB] 30.44 34.60 23.49	Height [cm] 150 150 150	[°] 333 248 5	Polarity Horizontal Horizontal Horizontal Horizontal Horizontal	
NO. 1 2 3 4	Data List Freq. [MHz] 1032.3032 3268.0268 4959.696 7440.244	AV Limit Level [dBµV/m] 43.56 39.40 50.51 51.89	- Horizontal PK Factor [dB] -18.29 -11.26 -7.78 -3.71	Frequency Limit [dBµV/m] 74.00 74.00 74.00 74.00	H2) Margin [dB] 30.44 34.60 23.49 22.11	Height [cm] 150 150 150 150	[°] 333 248 5 328	Polarity Horizontal Horizontal Horizontal Horizontal	
NO. 1 2 3 4 5 6	Determined in the second secon		- Horizontal PK Factor [dB] -18.29 -11.26 -7.78 -3.71 2.61	Frequency Limit [dBµV/m] 74.00 74.00 74.00 74.00 74.00	Hz] Margin [dB] 30.44 34.60 23.49 22.11 23.92	Height [cm] 150 150 150 150 150	[°] 333 248 5 328 254	Polarity Horizontal Horizontal Horizontal Horizontal Horizontal	
NO. 1 2 3 4 5 6	PKLimit 1G * AV Dete Data List Freq. [MHz] 1032.3032 3268.0268 4959.696 7440.244 11025.9026		- Horizontal PK Factor [dB] -18.29 -11.26 -7.78 -3.71 2.61	Frequency Limit [dBµV/m] 74.00 74.00 74.00 74.00 74.00	Hz] Margin [dB] 30.44 34.60 23.49 22.11 23.92	Height [cm] 150 150 150 150 150	[°] 333 248 5 328 254	Polarity Horizontal Horizontal Horizontal Horizontal Horizontal	
NO. 1 2 3 4 5 6 AV F	Data List Freq. [MHz] 1032.3032 3268.0268 4959.696 7440.244 11025.9026 16566.7567 Final Data Lis Freq.		- Horizontal PK Factor [dB] -18.29 -11.26 -7.78 -3.71 2.61 5.69 AV Value	Frequency Limit [dBµV/m] 74.00 74.00 74.00 74.00 74.00 74.00	Hz] Margin [dB] 30.44 34.60 23.49 22.11 23.92 25.22 AV Margin	Height [cm] 150 150 150 150 150 150 Height	[°] 333 248 5 328 254 1 Angle	Polarity Horizontal Horizontal Horizontal Horizontal Horizontal	
NO. 1 2 3 4 5 6 AV F NO.	0 10 1G * AV Dete Data List Freq. [MHz] 1032.3032 3268.0268 4959.696 7440.244 11025.9026 16566.7567 Freq. Freq. [MHz]		- Horizontal PK Factor [dB] -18.29 -11.26 -7.78 -3.71 2.61 5.69 XV Value [dBµV/m]	Frequency Limit [dBµV/m] 74.00 74.00 74.00 74.00 74.00 74.00 74.00	Hz] Margin [dB] 30.44 34.60 23.49 22.11 23.92 25.22 AV Margin [dB]	Height [cm] 150 150 150 150 150 150 Height [cm]	[°] 333 248 5 328 254 1 Angle [°]	Polarity Horizontal Horizontal Horizontal Horizontal Horizontal Polarity	

Radiated Emissions Test Results Above 1GHz

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

IT Na	me	Wireless S	Speaker		Model Name	•	A31X1		
mper	ature	22.4 ℃			Relative Hur	nidity	56.8%		
essur	е	960hPa Te			Test Voltage		DC 5V		
st Mo	de	Mode 9				arity	Vertical		
	130 120 110 100 90 80 70 60 50 40 1 1 20	and the second	~~~~~~	FCC Part 1	3 1	Mar Stateshort Marganite			
	10 0 10 16 PK Limit * AV Det	AV Limit	2G 30 Vertical PK	G 4G Frequency[i	6G Hz]	8G		18G	
PKC	0 -10 1G —— PK Limit					8G		18G	
PK D	0 -10 1G W Limit * AV Dete					BG Height [cm]	Angle [°]	18G Polarity	
	0 -10 1G PK Limit * AV Detr Data List Freq.	Level	Vertical PK Factor	Frequency[]	Hz] Margin	Height			
NO.	Deta List Freq. [MHz] 1032.3032 3446.5447	Level [dBµV/m] 40.41 40.18	Vertical PK Factor [dB]	Frequency[Limit [dBµV/m] 74.00 74.00	Hz) Margin [dB]	Height [cm]	[°]	Polarity Vertical Vertical	
NO. 1 2 3	Deta List Freq. [MHz] 1032.3032 3446.5447 4959.696	Level [dBµV/m] 40.41 40.18 54.27		Frequency(I Limit [dBµV/m] 74.00 74.00 74.00	Hz] Margin [dB] 33.59 33.82 19.73	Height [cm] 150 150 150	[°] 222 239 205	Polarity Vertical Vertical Vertical	
NO. 1 2 3 4	Data List Freq. [MHz] 1032.3032 3446.5447 4959.696 7440.244	Level [dBµV/m] 40.41 40.18 54.27 51.42		Frequency[Limit [dBµV/m] 74.00 74.00 74.00 74.00	Hz] Margin [dB] 33.59 33.82 19.73 22.58	Height [cm] 150 150 150 150	[°] 222 239 205 159	Polarity Vertical Vertical Vertical Vertical	
NO. 1 2 3 4 5	PKLimit * AV Det Data List Freq. [MHz] 1032.3032 3446.5447 4959.696 7440.244 11024.2024	Level [dBµV/m] 40.41 40.18 54.27 51.42 50.18		Frequency(I Limit [dBµV/m] 74.00 74.00 74.00 74.00 74.00	Hz] Margin [dB] 33.59 33.82 19.73 22.58 23.82	Height [cm] 150 150 150 150 150	[°] 222 239 205 159 320	Polarity Vertical Vertical Vertical Vertical Vertical	
NO. 1 2 3 4	Data List Freq. [MHz] 1032.3032 3446.5447 4959.696 7440.244	Level [dBµV/m] 40.41 40.18 54.27 51.42		Frequency[Limit [dBµV/m] 74.00 74.00 74.00 74.00	Hz] Margin [dB] 33.59 33.82 19.73 22.58	Height [cm] 150 150 150 150	[°] 222 239 205 159	Polarity Vertical Vertical Vertical Vertical	
NO. 1 2 3 4 5 6	Deta List Freq. [MHz] 1032.3032 3446.5447 4959.696 7440.244 11024.2024 15915.5916	Level [dBµV/m] 40.41 40.18 54.27 51.42 50.18 48.40		Frequency(I Limit [dBµV/m] 74.00 74.00 74.00 74.00 74.00	Hz] Margin [dB] 33.59 33.82 19.73 22.58 23.82	Height [cm] 150 150 150 150 150	[°] 222 239 205 159 320	Polarity Vertical Vertical Vertical Vertical Vertical	
NO. 1 2 3 4 5 6	• • • • • • • • • • • • • •	Level [dBµV/m] 40.41 40.18 54.27 51.42 50.18 48.40		Frequency(I Limit [dBµV/m] 74.00 74.00 74.00 74.00 74.00	Hz] Margin [dB] 33.59 33.82 19.73 22.58 23.82	Height [cm] 150 150 150 150 150	[°] 222 239 205 159 320	Polarity Vertical Vertical Vertical Vertical Vertical	
NO. 1 2 3 4 5 6 AV F	• • • • • • • • • • • • • •	Level [dBµV/m] 40.41 40.18 54.27 51.42 50.18 48.40		Erequency(I Limit [dBµV/m] 74.00 74.00 74.00 74.00 74.00 74.00 74.00	Hz] Margin [dB] 33.59 33.82 19.73 22.58 23.82 25.60 AV Margin	Height [cm] 150 150 150 150 150 150 Height	[°] 222 239 205 159 320 274 Angle	Polarity Vertical Vertical Vertical Vertical Vertical Vertical	

RESULT: Pass

Note:

- 1. The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.
- 2. Factor = Antenna Factor + Cable loss Pre-amplifier gain, Margin = Emission Level-Limit.
- 3. The "Factor" value can be calculated automatically by software of measurement system.

EUT Name	Wireless Speaker	Model Name	A31X1
Temperature	24.6℃	Relative Humidity	52%
Pressure	960hPa	Test Voltage	DC 5V
Test Mode	Mode 1	Antenna Polarity	Horizontal

Band Edge Emission Test Results for Restricted Bands

Test Graph for Peak Measurement

Test Graph for Average Measurement

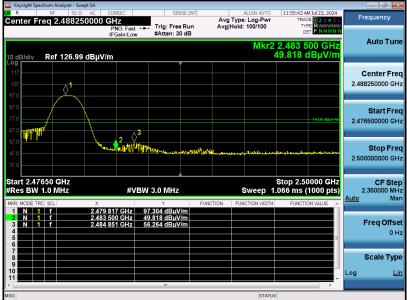
RESULT: Pass



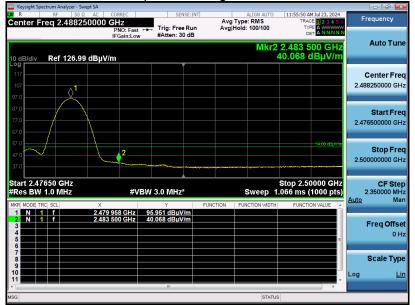
EUT Name	Wireless Speaker	Model Name	A31X1
Temperature	24.6 ℃	Relative Humidity	52%
Pressure	960hPa	Test Voltage	DC 5V
Test Mode	Mode 1	Antenna Polarity	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement

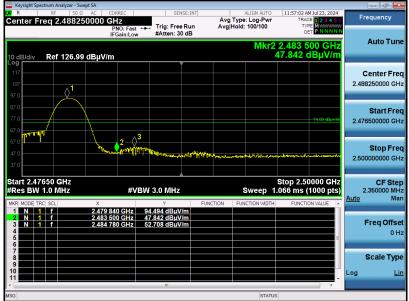


RESULT: Pass



EUT Name	Wireless Speaker	Model Name	A31X1
Temperature	24.6 ℃	Relative Humidity	52%
Pressure	960hPa	Test Voltage	DC 5V
Test Mode	Mode 3	Antenna Polarity	Horizontal

Test Graph for Average Measurement



RESULT: Pass

EUT Name	Wireless Speaker	Model Name	A31X1
Temperature	24.6 ℃	Relative Humidity	52%
Pressure	960hPa	Test Voltage	DC 5V
Test Mode	Mode 3	Antenna Polarity	Vertical

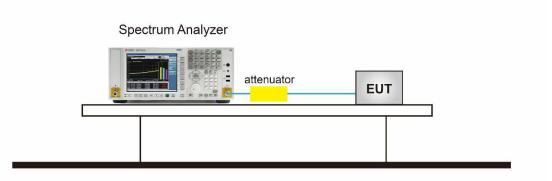
Test Graph for Average Measurement

RESULT: Pass

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer.

10. Number of Hopping Frequency Measurement

10.1 Provisions Applicable


This frequency hopping system must employ a minimum of 15 hopping channels.

10.2 Measurement Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span = The frequency band of operation. Depending on the number of channels the device
- 2. supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- 3. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 4. VBW \geq RBW
- 5. Sweep time = Auto couple
- 6. Detector = Peak
- 7. Trace mode = Max hold
- 8. Allow the trace to stabilize

10.3 Measurement Setup (Block Diagram of Configuration)

10.4 Measurement Result

Test Data of Number of Hopping Frequency				
Test Mode	Number of Hopping Frequency	Limits	Pass or Fail	
8DPSK Hopping	79	>=15	Pass	

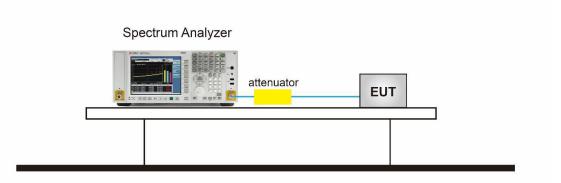
🔤 Keysight Spectrum Analyzer - Swept SA			••• •	•	
R RF 50 Ω AC Center Freq 2.4417500		SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	12:19:04 PM Jul 23, 2024 TRACE 1 2 3 4 5 6	Frequency
Center 11eq 2.4417300	PNO: Fast 🔸	Trig: Free Run #Atten: 40 dB	Avg Hold: 100/100	DET P N N N N	
	IFGain:Low	#Atten: 40 dB	Mkr	1 2.478 82 GHz	Auto Tune
10 dB/div Ref 30.00 dBn	n .			2.290 dBm	
		Ţ			
					Center Freq
20.0					2.441750000 GHz
10.0					
10.0				1	Start Freq
	สงโลกิตส์ลิสติมได้เ	<u>արկերու աներու ան</u>	uhhhalaahaahAradA	andahahaha	2.40000000 GHz
HAMA BARA A A A A A A A A A A A A A A A A A	0444004448148	**********	the langue of keeps		
-10.0					Stop Freq
					2.483500000 GHz
-20.0					
-30.0					CF Step
-30.0				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.350000 MHz Auto Man
-40.0					<u>Auto</u> marr
				h h	Freg Offset
-50.0					0 Hz
-60.0					Scale Type
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Center 2.44175 GHz			_	Span 83.50 MHz	Log <u>Lin</u>
#Res BW 200 kHz	#VBN	/ 620 kHz		.998 ms (1000 pts)	
MSG					
Test_Graph_EDR_HOP_ANT1_NA_3Mbps_Number of Hopping					

Test Graphs of Number of Hopping Frequency

Note: All mode rates are tested and evaluated, 8DPSK modulated 3DH5 mode is the worst case and documented in the report.

11. Time of Occupancy (Dwell Time) Measurement

11.1 Provisions Applicable

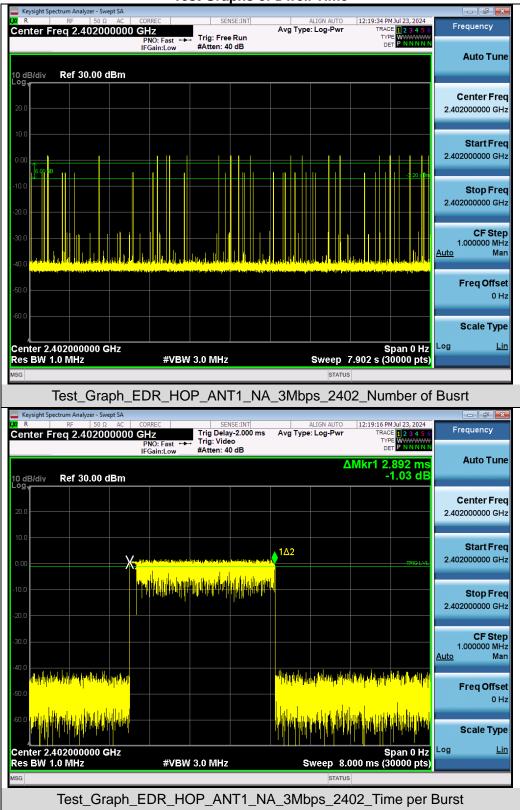

The maximum permissible time of occupancy is 400ms within a period of 400ms multiplied by the number of hopping channels employed.

11.2 Measurement Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

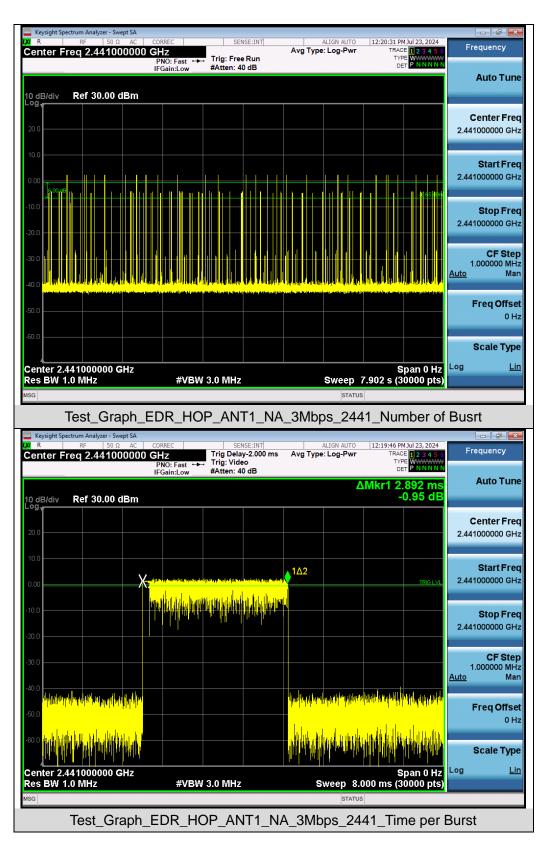

- 1. Span = Zero span, centered on a hopping channel.
- 2. RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3. VBW \geq RBW
- 4. Sweep time = As necessary to capture the entire dwell time per hopping channel
- 5. Detector = Peak
- 6. Trace mode = Free Run
- 7. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. An oscilloscope may be used instead of a spectrum analyzer. The EUT shall show compliance with the appropriate regulatory limit for the number of hopping channels. A plot of the data shall be included in the test report.

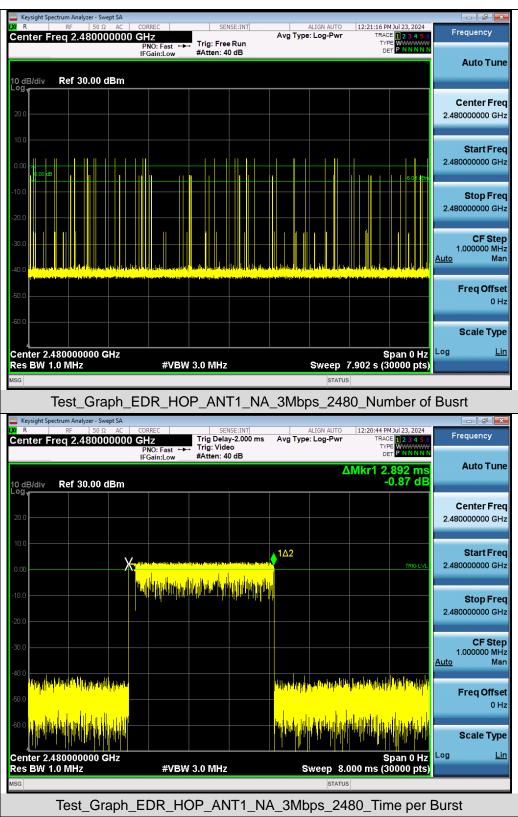
11.3 Measurement Setup (Block Diagram of Configuration)



11.4 Measurement Result

Test Data of Dwell Time					
Channel	Time of Pulse for 3DH5 (ms)	Number of hops in the period specified in the requirements	Dwell Time (ms)	Limit (ms)	Pass or Fail
2402	2.892	22.0*4	254.496	400	Pass
2441	2.892	29.0*4	335.472	400	Pass
2480	2.892	33.0*4	381.744	400	Pass





Test Graphs of Dwell Time

Note: All mode rates are tested and evaluated, 8DPSK modulated 3DH5 mode is the worst case and documented in the report.