CALIBRATION DATA PROBE CALIBRATION DATA E-mail: cttl@chinattl.com Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client agc-cert Certificate No: Z21-60300 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN: 3953 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: August 27, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |----------------------|---------|------------|--|-----------------------| | Power Meter NRP2 101 | | 01919 | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Power sensor NRP-Z9 | 1 1 | 01547 | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Power sensor NRP-Z9 | 1 1 | 01548 | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Reference 10dBAttenu | uator 1 | 8N50W-10dB | 10-Feb-20(CTTL, No.J20X00525) | Feb-22 | | Reference 20dBAttenu | uator 1 | 8N50W-20dB | 10-Feb-20(CTTL, No.J20X00526) | Feb-22 | | Reference Probe EX3I | DV4 S | N 3617 | 27-Jan-21(SPEAG, No.EX3-3617_Jan2 | 21) Jan-22 | | DAE4 | S | N 1556 | 15-Jan-21(SPEAG, No.DAE4-1556_Jan | n21) Jan-22 | | Secondary Standards | 10 |) # | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGenerator MG37 | 700A 6 | 201052605 | 16-Jun-21(CTTL, No.J21X04467) | Jun-22 | | Network Analyzer E50 | 71C N | 1Y46110673 | 21-Jan-21(CTTL, No.J20X00515) | Jan-22 | | | Name | | Function | Signature | | Calibrated by: | Yu Zo | ongying | SAR Test Engineer | 12000 | | Reviewed by: | Lin H | ao | SAR Test Engineer | 根格 | | Approved by: | Qi Dia | anyuan | SAR Project Leader | | | | | | Issued: Augus | st 29, 2021 | | | | | | | Certificate No: Z21-60300 Page 1 of 9 Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 iEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010. d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" Methods Applied and Interpretation of Parameters: NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF). NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. • ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z21-60300 Page 2 of 9 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3953 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.53 | 0.54 | 0.48 | ±10.0% | | DCP(mV) ^B | 101.5 | 103.3 | 101.1 | | ### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(<i>k</i> =2) | |-----|------------------------------|---|---------|-----------|-----|---------|----------|------------------------------------| | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 175.9 | ±2.1% | | | | Υ | 0.0 | 0.0 | 1.0 | | 181.7 | | | | | Z | 0.0 | 0.0 | 1.0 | | 163.7 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor *k*=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. Certificate No:Z21-60300 Page 3 of 9 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3953 ## Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.37 | 10.37 | 10.37 | 0.40 | 0.80 | ±12.1% | | 835 | 41.5 | 0.90 | 10.01 | 10.01 | 10.01 | 0.22 | 1.07 | ±12.1% | | 900 | 41.5 | 0.97 | 9,98 | 9.98 | 9.98 | 0.16 | 1.32 | ±12.1% | | 1450 | 40.5 | 1.20 | 8.82 | 8.82 | 8.82 | 0.21 | 1.01 | ±12.1% | | 1640 | 40.3 | 1.29 | 8.70 | 8.70 | 8.70 | 0.29 | 0.84 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.55 | 8.55 | 8.55 | 0.27 | 0.93 | ±12.1% | | 1810 | 40.0 | 1.40 | 8.35 | 8.35 | 8.35 | 0.22 | 1.07 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.26 | 8.26 | 8.26 | 0.25 | 1.09 | ±12.1% | | 2100 | 39.8 | 1.49 | 8.20 | 8.20 | 8.20 | 0.22 | 1.15 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.82 | 7.82 | 7.82 | 0.65 | 0.66 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.60 | 7.60 | 7.60 | 0.64 | 0.67 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.42 | 7.42 | 7.42 | 0.65 | 0.68 | ±12.1% | | 3500 | 37.9 | 2.91 | 6.82 | 6.82 | 6.82 | 0.44 | 1.03 | ±13.3% | | 3700 | 37.7 | 3.12 | 6.52 | 6.52 | 6.52 | 0.41 | 1.06 | ±13.3% | | 3900 | 37.5 | 3.32 | 6.45 | 6.45 | 6.45 | 0.35 | 1.35 | ±13.3% | | 4600 | 36.7 | 4.04 | 6.16 | 6.16 | 6.16 | 0.40 | 1.30 | ±13.3% | | 4950 | 36.3 | 4.40 | 5.87 | 5.87 | 5.87 | 0.40 | 1.35 | ±13.3% | | 5250 | 35.9 | 4.71 | 5.42 | 5.42 | 5.42 | 0.45 | 1.35 | ±13.3% | | 5600 | 35.5 | 5.07 | 4,91 | 4.91 | 4.91 | 0.50 | 1.30 | ±13.3% | | 5750 | 35.4 | 5.22 | 4.96 | 4.96 | 4.96 | 0.50 | 1.30 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No:Z21-60300 Page 4 of 9 F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z21-60300 Page 5 of 9 ## Receiving Pattern (Φ), θ =0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z21-60300 Page 6 of 9 ## Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) ## **Conversion Factor Assessment** ## f=750 MHz,WGLS R9(H_convF) ## f=1750 MHz,WGLS R22(H_convF) ## **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z21-60300 Page 8 of 9 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3953 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 37.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z21-60300 Page 9 of 9 ### **DAE CALIBRATION DATA** Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Client: agc-cert Certificate No: Z22-60161 中国认可 **CNAS L0570** ### **CALIBRATION CERTIFICATE** Object DAE4 - SN: 1398 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: May 17, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Name **Primary Standards** ID# Cal Date(Calibrated by, Certificate No.) **Scheduled Calibration** Process Calibrator 753 1971018 15-Jun-21 (CTTL, No.J21X04465) Jun-22 Calibrated by: Function Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: May 23, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60161 Page 1 of 3 Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### **Methods Applied and Interpretation of Parameters:** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z22-60161 Page 2 of 3 ### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV, full range = -100...+300 m Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec -100...+300 mV | Calibration Factors | х | Υ | z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.210 ± 0.15% (k=2) | 404.196 ± 0.15% (k=2) | 403.652 ± 0.15% (k=2) | | Low Range | 3.97376 ± 0.7% (k=2) | 3.99193 ± 0.7% (k=2) | 3.96908 ± 0.7% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY system | 48° ± 1 ° | |---|-----------| |---|-----------| Certificate No: Z22-60161 Page 3 of 3 ### **DIPOLE CALIBRATION DATA** ### **SAR Reference Dipole Calibration Report** Ref: ACR.118.22.22.BES.A ## ATTESTATION OF GLOBAL COMPLIANCE CO. LTD. 1-2/F, BUILDING 19, JUNFENG INDUSTRIAL PARK, CHONGQING ROAD, HEPING COMMUNITY, FUHAI STREET BAO 'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ SERIAL NO.: SN 29/15 DIP2G450-393 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 04/28/2022 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr ### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Page: 1/13 Ref: ACR.118.22.22.BES.A | | Name | Function | Date | Signature | |---------------|--------------|---------------------|-----------|--------------| | Prepared by: | Jérôme Luc | Technical Manager | 4/28/2022 | JES | | Checked by : | Jérôme Luc | Technical Manager | 4/28/2022 | JE | | Approved by : | Yann Toutain | Laboratory Director | 4/28/2022 | Yann TOUTAAN | 2022.04.28 17:03:42 +02'00' | | Customer Name | |----------------|---| | Distribution : | ATTESTATION OF GLOBAL COMPLIANCE CO. LTD. | | Name | Date | Modifications | |------------|-----------|-----------------| | Jérôme Luc | 4/28/2022 | Initial release | | | | | | | | | | | | | | | | | Page: 2/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. ### TABLE OF CONTENTS | 1 | Intro | oduction4 | | |---|-------|--|----| | 2 | Dev | ice Under Test | | | 3 | Proc | luct Description4 | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | | | 6 | Cali | bration Measurement Results6 | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 7 | | 7 | Vali | dation measurement | | | | 7.1 | Head Liquid Measurement | 8 | | | 7.2 | SAR Measurement Result With Head Liquid | | | | 7.3 | Body Liquid Measurement | 11 | | | 7.4 | SAR Measurement Result With Body Liquid | | | 8 | List | of Equipment | | ### Page: 3/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. ### INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | | | |--------------------------------|-----------------------------------|--|--|--| | Device Type | COMOSAR 2450 MHz REFERENCE DIPOLE | | | | | Manufacturer | MVG | | | | | Model | SID2450 | | | | | Serial Number | SN 29/15 DIP2G450-393 | | | | | Product Condition (new / used) | Used | | | | #### 3 PRODUCT DESCRIPTION #### 3.1 **GENERAL INFORMATION** MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/13 Template ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vI This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR.118.22.22.BES.A ### 4 MEASUREMENT METHOD The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. ### 4.2 <u>MECHANICAL REQUIREMENTS</u> The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a $2\ mm$ phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. ### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.08 LIN | ### 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 0 - 300 | 0.20 mm | | 300 - 450 | 0.44 mm | ### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. Page: 5/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR.118.22.22.BES.A | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 19 % (SAR) | | 10 g | 19 % (SAR) | ### CALIBRATION MEASUREMENT RESULTS ### 6.1 <u>RETURN LOSS AND IMPEDANCE IN HEAD LIQUID</u> | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 2450 | -27.80 | -20 | $52.3 \Omega + 3.4 i\Omega$ | ### 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|--------------| | 2450 | -22.61 | -20 | 573 O + 11iO | ### Page: 6/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR. 118.22.22.BES. A ### 6.3 MECHANICAL DIMENSIONS | Frequency MHz | Lr | nm | hm | hmm | | nm | |---------------|---------------------|-----------|---------------------|-----------|--------------------|-----------| | | required | m easured | required | m easured | required | m easured | | 300 | 420.0 ±1 % . | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 % . | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 % . | | 6.35 ±1 % . | | | 835 | 161.0 ±1 % . | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 % . | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 86.2 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ± 1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ± 1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 % . | | 35.7 ±1 % . | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 % . | - | 30.4 ±1 % . | - | 3.6 ±1 %. | - | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3300 | - | | - | | - | | | 3500 | 37.0 ±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7 ±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3900 | - | | - | | - | | | 4200 | - | | - | | - | | | 4600 | - | | - | | - | | | 4900 | - | | - | | - | | ### VALIDATION MEASUREMENT The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. Page: 7/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR. 118.22.22.BES. A ### HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity ($\mathbf{s}_{\mathbf{r}}'$) | | Conductiv | ity (σ) S/m | |------------------|--|-----------|--------------------|-------------| | | required | m easured | required | measured | | 300 | 45.3 ± 10 % | | 0.87 ± 10 % | | | 450 | 43.5 ± 10 % | | 0.87 ± 10 % | | | 750 | 41.9 ± 10 % | | 0.89 ± 10 % | | | 835 | 41.5 ± 10 % | | 0.90 ± 10 % | | | 900 | 41.5 ± 10 % | | 0.97 ± 10 % | | | 1450 | 40.5 ± 10 % | | 1.20 ± 10 % | | | 1500 | 40.4 ± 10 % | | 1.23 ± 10 % | | | 1640 | 40.2 ± 10 % | | 1.31 ± 10 % | | | 1750 | 40.1 ± 10 % | | 1.37 ± 10 % | | | 1800 | 40.0 ± 10 % | | 1.40 ± 10 % | | | 1900 | 40.0 ± 10 % | | 1.40 ± 10 % | | | 1950 | 40.0 ± 10 % | | 1.40 ± 10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | | 2100 | 39.8 ± 10 % | | 1.49 ± 10 % | | | 2300 | 39.5 ± 10 % | | 1.67 ± 10 % | | | 2450 | 39.2 ± 10 % | 36.4 | 1.80 ± 10 % | 1.98 | | 2600 | 39.0 ± 10 % | | 1.96 ± 10 % | | | 3000 | 38.5 ± 10 % | | 2.40 ± 10 % | | | 3300 | 38.2 ± 10 % | | 2.71 ± 10 % | | | 3500 | 37.9 ± 10 % | | 2.91 ± 10 % | | | 3700 | 37.7 ± 10 % | | 3.12 ± 10 % | | | 3900 | 37.5 ± 10 % | | 3.32 ± 10 % | | | 4200 | 37.1 ± 10 % | | 3.63 ± 10 % | | | 4600 | 36.7 ± 10 % | | 4.04 ± 10 % | | | 4900 | 36.3 ± 10 % | | 4.35 ± 10 % | | ### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. Page: 8/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR.118.22.22.BES.A | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 36.4 sigma: 1.98 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | Frequency | 2450 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR | (W/kg/W) | |------------------|------------------|--------------|----------|--------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | 54.32 (5.43) | 24 | 24.25 (2.42) | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3300 | - | | - | | | 3500 | 67.1 | | 25 | | | 3700 | 67.4 | | 24.2 | | | 3900 | - | | - | | | 4200 | - | | - | | | 4600 | - | | - | | | 4900 | - | | - | | Page: 9/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR.118.22.22.BES.A Page: 10/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR.118.22.22.BES.A ### 7.3 BODY LIQUID MEASUREMENT | Frequency
MHz | Relative per | mittivity (s _r ') | Conductiv | ity (σ) S/m | |------------------|--------------------|--------------------------------------|--------------------|-------------| | | required | m easured | required | measured | | 150 | 61.9 ± 10 % | | 0.80 ±1 0 % | | | 300 | 58.2 ±10 % | | 0.92 ± 10 % | | | 450 | 56.7 ± 10 % | | 0.94 ± 10 % | | | 750 | 55.5 ±10 % | | 0.96 ± 10 % | | | 835 | 55.2 ± 10 % | | 0.97 ± 10 % | | | 900 | 55.0 ± 10 % | | 1.05 ± 10 % | | | 915 | 55.0 ± 10 % | | 1.06 ± 10 % | | | 1450 | 54.0 ± 10 % | | 1.30 ± 10 % | | | 1610 | 53.8 ± 10 % | | 1.40 ± 10 % | | | 1800 | 53.3 ± 10 % | | 1.52 ± 10 % | | | 1900 | 53.3 ±10 % | | 1.52 ±10 % | | | 2000 | 53.3 ±10 % | | 1.52 ± 10 % | | | 2100 | 53.2 ±10 % | | 1.62 ±10 % | | | 2300 | 52.9 ± 10 % | | 1.81 ± 10 % | | | 2450 | 52.7 ±10 % | 53.4 | 1.95 ± 10 % | 2.14 | | 2600 | 52.5 ±10 % | | 2.16 ± 10 % | | | 3000 | 52.0 ±10 % | | 2.73 ±10 % | | | 3300 | 51.6 ± 10 % | | 3.08 ±10 % | | | 3500 | 51.3 ± 10 % | | 3.31 ± 10 % | | | 3700 | 51.0 ± 10 % | | 3.55 ±10 % | | | 3900 | 50.8 ± 10 % | | 3.78 ±10 % | | | 4200 | 50.4 ± 10 % | | 4.13 ± 10 % | | | 4600 | 49.8 ± 10 % | | 4.60 ± 10 % | | | 4900 | 49.4 ± 10 % | | 4.95 ±10 % | | | 5200 | 49.0 ±10 % | | 5.30 ±10 % | | | 5300 | 48.9 ±10 % | | 5.42 ±10 % | | | 5400 | 48.7 ±10 % | | 5.53 ±10 % | | | 5500 | 48.6 ±10 % | | 5.65 ±10 % | | | 5600 | 48.5 ±10 % | | 5.77 ±10 % | | | 5800 | 48.2 ±10 % | | 6.00 ±10 % | | Page: 11/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR.118.22.22.BES.A ### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Body Liquid Values: eps': 53.4 sigma: 2.14 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | Frequency | 2450 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | |------------------|------------------|-------------------| | | measured | m easured | | 2450 | 53.59 (5.36) | 23.63 (2.36) | Page: 12/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR.118.22.22.BES.A ### 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | |---------------------------------------|----------------------------|--------------------|---|---| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | SAM Phantom | мvg | SN 13/09 SAM68 | Validated. No cal
required. | Validated. No cal
required. | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2019 | 10/2022 | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | Reference Probe | мvg | SN 41/18 EPGO333 | 10/2021 | 10/2022 | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | Power Meter | Rohde & Schwarz
NRVD | 832839-056 | 11/2019 | 11/2022 | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | Page: 13/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.