

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 1 of 34

FCC Test Report

Applicant : Anker Innovations Limited

Address Unit 56, 8th Floor, Tower 2, Admiralty Centre, 18

Harcourt Road, Hong Kong

Product Name : Anker Prime Charger (250W, 6 Ports, GaNPrime)

Report Date : Jul. 05, 2024

Shenzhen Anbotek Con Anbotek

ce Laboratory Limited

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 2 of 34

Contents

1. General Inform	nation	Anboro	b21	70 <u>,,, </u>	oter	Vup.	otek
1.1. Client Ir	nformation	k Anbote	V. Villa		74,004ek	Aupore	5/4boj
1.2. Descrip	tion of Device (EUT) Jurina Toet		otek 'r	V Up Over	Kupo.	
1.4 Operation	on channel list						
1.5. Descrip	tion of Test Modes	Ur	eK	~ 0po.			100go.
1.6. Measur	ement Uncertainty mmary	Who.	VUr.		<u> </u>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1.7. Test Su 1.8 Descrin	mmary tion of Test Facility	Abrodn.	<i>Vil</i> po		otek	Aupoli	1 ¹⁸⁸
1 Q Disclain	north And		· upo.				VUL
1.10. Test E	quipment List	Ans	(S)	ojek	upo,		½1
2. Antenna requi	rement	yek Aupo		- ojek	Anbore.	Arr.	h,,,
2.1. Conclus	quipment Listrement	hotek Ar	pore	Vin.	enbot ^e	FUD TUD	1
3. Conducted En	sion nission at AC power peration tup dwidth peration tup	line	Anbor		المهر	oter p	1
3.1. EUT Or	peration	br.	Vupoter	And		opotek	
3.2. Test Se	tup.*	And		k Vup.			1
3.3. Test Da	ta	Mopo,	т. Бл.	otel A	'po _{le.} .	Anu	1
4. Occupied Ban	dwidth	[†] 0d9 <u>14</u>	e. And		botek	Vupo,	1
4.1. EUT Op	eration		00,46 _K	Yupo,		2000	1
4.2. Test Se	tup	100, N	Yel	Alpore	- Arr		1
4.3. Test Da	ta'	Antois	Vu. Vick	VUPOJEK			1
5. Maximum Cor	nducted Output Pow peration	er		r 200	,eK	,,b2?	
5.1. EUT Op	eration	2004ek		- _K	/e/	Ariooter	1
5.2. Test Se	tupta	-re 120 ₄₆	anb'	39	.ek	No obo	1 ::!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 Dower Spectre	taal Density perationtup	Arr.	_tek	nbotek	Vupo,	~o	tek Anbo
o. Power Spectra	ar Density	orek Art	γΩΩ 	hotek	Aupote.	<u></u>	2
6.1. EUT Op	eration	notek	<u>, poře</u>		odno	68/	2
6.3. Test Da	ta	10 m		· · · · · · · · · · · · · · · · · · ·	.V.	10 ⁷	
7 Fmissions in r	non-restricted freque	ency bands	"potek	Anbo	, A	otek	Anbotek 2
	erationtup						
7.3. Test Da	ta		ote ^k	1001	kr.	, odn	
8. Band edge en	tupta		-yotek	- Aupoter	Anbo	ربیکاه	potek A2
8.1. EUT Op	eration	inpose b	n.	anboter.	Anbo		_{bote^k2}
8.2. Test Se	tup	- Vupo _{ter}	YUD.		<u>k</u>	00,_	2
8.3. Test Da	ta:	obolek	Aupora	-K :-	4970	Anboien	2
9. Emissions in f	requency bands (be	low 1GHz)	, Octuber	e. Vul	-10 P	. Josek	
9.1. EUT Op	eration	Andr	····	orek	Mpo,	<i>b</i>	
9.2. Test Se	tup`	340K	-κ Di- (Δ),		Anoren	Anb	2
9.3. Test Da	ເaນາ		76,-	V07		×	.e:

Report No.: 182513C400022101	FCC ID: 2	AOKB-A2345	5 rek Pa	ige 3 of 34
10. Emissions in frequency bands (above 1GHz)	r.	Aupore Ar		. <u>Anbotek</u> 2
10.1. EUT Operation	botek	Aupor	W. Stek	2
10.2. Test Setup	VI	poier	Augo	30
10.3. Test Data	k Vupo,	Pr. Tek	apoter	Anb3
APPENDIX I TEST SETUP PHOTOGRAPH	tek sobot	iek Vupo,	ok hoji	ek Anbore
APPENDIX II EXTERNAL PHOTOGRAPH		otek Mpo	P.I.	34
APPENDIX III INTERNAL PHOTOGRAPH	spoter An	10-	-otek on	34

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 4 of 34

TEST REPORT

Applicant : Anker Innovations Limited

Manufacturer : Anker Innovations Limited

Product Name : Anker Prime Charger (250W, 6 Ports, GaNPrime)

Model No. : A2345

Trade Mark : N/A

Rating(s) : Please refer to page 7

47 CFR Part 15.247

Test Standard(s) : KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10-2020

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Neceipt.	Juli. 07, 2024
or tek anbotek Anbote Ant hotek An	potek Anbore Anborek Anbore
Date of Test:	Jun. 07, 2024 to Jun. 20, 2024
	Tu Tu Hong
Prepared By:	Aupo, A. Aupore, Aug
ar Anbotek Anbotek Anbore An	(TuTu Hong)
oote And tek Obotek Anbo. A.	otek Anbotek
	Idward pan
Approved & Authorized Signer:	And Joseph And Joseph
hotek Anbors Ant Stek Anborek	(Edward Pan)

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 5 of 34

Revision History

	Report Version	Description	Issued Date		
	Anbore R00 nbotek An	Original Issue.	Jul. 05, 2024		
9	Aupotek Aupotek	Anbotek Anbotek Anbotek	K Anbotek Anbotek Ant		
10	orek Auporek Vuporer	And Anbotek Anbotek Anbot	otek Anbotek Anbotet		

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 6 of 34

1. General Information

1.1. Client Information

Applicant	:	Anker Innovations Limited
Address	:	Unit 56, 8th Floor, Tower 2, Admiralty Centre, 18 Harcourt Road, Hong Kong
Manufacturer	:	Anker Innovations Limited
Address	:	Unit 56, 8th Floor, Tower 2, Admiralty Centre, 18 Harcourt Road, Hong Kong

1.2. Description of Device (EUT)

Product Name	:	Anker Prime Charger (250W, 6 Ports, GaNPrime)
Model No.	:	A2345 And
Trade Mark	:	N/A Anbotek Anbotek Anbotek Anbotek Anbotek A
Test Power Supply	:	AC 120V/60Hz
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A Anbotek Anbotek Anbotek Anbotek Anbotek
RF Specification		
Operation Frequency	:	2402MHz to 2480MHz
Number of Channel	:	40° And Andrek Andrek Andrek Andrek Andrek
Modulation Type	:	GFSK Anbotek Anbotek Anbotek Anbotek Anbotek
Antenna Type		Steel Plate Antenna
Antenna Gain(Peak)		1.97dBi

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

FCC ID: 2AOKB-A2345 Report No.: 182513C400022101 Page 7 of 34

Rating(s):

Anker Prime Charger (250W, 6 Ports, GaNPrime)

充電器 / 充电器 Model / 品番 / 型号: A2345 Input: 100-240V~, 4.0-2.5A, 50-60Hz

USB-C Ports (When Facing the Screen, Left to Right) /

USB-C ポート (スクリーンに向かって左から順に) (USB-C Ports (面向屏幕, 从左到右): C1, C2, C3, C4 USB-A Ports (When Facing the Control Dial, Left to Right) /

USB-A ポート (コントロールダイヤルに向かって左から順に) / USB-A Ports (面向控制旋钮, 从左到右): A1, A2 Single Port Output / 単ポート利用時の出力 / 单口输出: USB-C1: 9.0V=3.0A, 27.0W /

15.0V=3.0A, 45.0W / 20.0V=5.0A, 100.0W / 28.0V=5.0A, 140.0W (140.0W Max / 最大 140.0W)

USB-C2 / C3 / C4: 9.0V = 3.0A, 27.0W / 15.0V = 3.0A, 45.0W /

20.0V=5.0A, 100.0W (10D.0W Max / 最大 100.0W)

USB-A1 / A2: 5.0V = 3.0A, 15.0W / 9.0V = 2.0A, 18.0W / 10.0V = 2.25A, 22.5W /

12.0V=1.5A, 18.0W (22.5W Max / 最大 22.5W)

Multiple Ports Output / 複数ポート同時利用時の出力 / 多口输出:

Two Ports in Use / 2ポート利用時 / 2口向时使用: Up to 240.0W Max / 最大 240.0W

Three Ports in Use / 3ポート利用時 / 3口同时使用: Up to 250.0W Max / 最大 250.0W

Four Ports in Use / 4ポート利用時 / 4口向时使用: Up to 250.0W Max / 最大 250.0W

Five Ports in Use / 5ポート利用時 / 5口向时使用: Up to 250.0W Max / 最大 250.0W

Six Ports in Use / 6ポート利用時 / 6口同时使用: Up to 250.0W Max / 最大 250.0W

Total Output / 合計最大出力 / 总输出: Up to 250.0W Max / 最大 250.0W

Email: support@anker.com ! Anker Innovations Limited

安克创新科技股份有限公司 | Anker设计

FCC ID: 2AOKB-A2345 IC: 23451-A2345 CAN ICES-003(B)/NMB-003(B)

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1)This device may not cause harmful interference, and (2)This device must accept any interference received, including interference that may cause undesired operation.

SN: 1234567890123456

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 8 of 34

1.3. Auxiliary Equipment Used During Test

Title		Manufacturer	Model No.	Serial No.	
	Anbores / Anbores	Ant stek/ subotek	Anbor A All botek	Anboret And	

1.4. Operation channel list

Operation Band:

Juliu.		20. Pr.	0.0	- VID. VUL		- Va.
Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
2402	10 ¹	2422	20	2442	30,04	2462
2404	13otek	2424	21 otek	2444	31	2464
2406	12 _{nb} ote	2426	22	2446	32	2466
2408	tek 13 ant	2428	23	2448	33	2468
2410	14	2430	24	2450	34	2470
2412	15	2432	25	2452	Anh 35	2472
2414	16	2434	26	2454	36	2474
2416	17 000	2436	27	2456	37	2476
2418	18	2438	28	2458	38 🗥	2478
2420 And	19	2440	29	2460	oo ^{tek} 39 M	2480
	Frequency (MHz) 2402 2404 2406 2408 2410 2412 2414 2416 2418	Frequency (MHz) Channel 2402 10 2404 11 2406 12 2408 13 2410 14 2412 15 2414 16 2416 17 2418 18	Frequency (MHz) Channel Frequency (MHz) 2402 10 2422 2404 11 2424 2406 12 2426 2408 13 2428 2410 14 2430 2412 15 2432 2414 16 2434 2416 17 2436 2418 18 2438	Frequency (MHz) Channel Frequency (MHz) Channel 2402 10 2422 20 2404 11 2424 21 2406 12 2426 22 2408 13 2428 23 2410 14 2430 24 2412 15 2432 25 2414 16 2434 26 2416 17 2436 27 2418 18 2438 28	Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) 2402 10 2422 20 2442 2404 11 2424 21 2444 2406 12 2426 22 2446 2408 13 2428 23 2448 2410 14 2430 24 2450 2412 15 2432 25 2452 2414 16 2434 26 2454 2416 17 2436 27 2456 2418 18 2438 28 2458	Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel 2402 10 2422 20 2442 30 2404 11 2424 21 2444 31 2406 12 2426 22 2446 32 2408 13 2428 23 2448 33 2410 14 2430 24 2450 34 2412 15 2432 25 2452 35 2414 16 2434 26 2454 36 2416 17 2436 27 2456 37 2418 18 2438 28 2458 38

1.5. Description of Test Modes

Pretest Modes	Descriptions
Anbotek TM1Anbo otek	Keep the EUT works in continuously transmitting mode (BLE 1M)
TM2 Anboret	Keep the EUT works in continuously transmitting mode (BLE 2M)

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 9 of 34

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Conducted Spurious Emission	1.24dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 10 of 34

1.7. Test Summary

Test Items	Test Modes	Status
Antenna requirement	Anbotek / Anboten	And Potek
Conducted Emission at AC power line	Mode1,2	P Nor
Occupied Bandwidth	Mode1,2	P Pur
Maximum Conducted Output Power	Mode1,2	P
Power Spectral Density	Mode1,2	hpor Pk
Emissions in non-restricted frequency bands	Mode1,2	Anb Prek
Band edge emissions (Radiated)	Mode1,2	P
Emissions in frequency bands (below 1GHz)	Mode1,2	PART
Emissions in frequency bands (above 1GHz)	Mode1,2	P And
Note: Anbore Anbore Art	Jpp. Pr. Polek	nbore

Note: P: Pass

N: N/A, not applicable

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 11 of 34

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 12 of 34

1.10. Test Equipment List

Cond	ucted Emission at A	C power line				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
. 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
otek 2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
30t	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	Alootek	Auport Losek
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11

Occupied Bandwidth

Maximum Conducted Output Power

Power Spectral Density
Emissions in non-restrict

Emissions in non-restricted frequency bands

Emis	sions in non-restricte	a trequency bands	- Yek	700,0	- K	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 _{An} l	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2023-10-16	2024-10-15
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
An4ore	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-02-22	2025-02-21
5,00	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

Hotline

www.anbotek.com.cn

400-003-0500

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 13 of 34

ote.	And	Liek Vupo,	br.	-pote.	VUD.	iek
	edge emissions (Ra sions in frequency b		Anboro	Anbotek	Aupotek	Anbotek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 0.0	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
100 to 1	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Andotek	Aupotek
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
e ^V 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06
°8	Double Ridged Horn Antenna	Chengyi Electronics Co., td.	GTH-0118	351600	2022-11-02	2024-11-01

Emiss	sions in frequency ba	ands (below 1GHz)				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
e ^K 1	Bilog Broadband Antenna	SCHWARZBECK	VULB 9163	01109	2022-10-16	2025-10-15
·2	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
~3 ¹⁶	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
4,00	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
5 P	EMI Test Software EZ-EMC	SHURPLE	N/A AU	orek N/A Ant	Purp Vulp	otek / Anbore

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 14 of 34

2. Antenna requirement

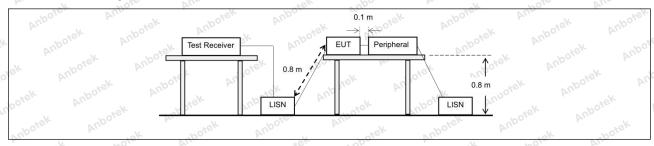
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1. Conclusion

The antenna is a Steel Plate Antenna which permanently attached, and the best case gain of the antenna is **1.97 dBi** . It complies with the standard requirement.

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 15 of 34


3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except section, for an intentional radiator public utility (AC) power line, the reback onto the AC power line on ar band 150 kHz to 30 MHz, shall no measured using a 50 µH/50 ohms	that is designed to be con adio frequency voltage tha ny frequency or frequencie t exceed the limits in the f	nected to the at is conducted as, within the ollowing table, as
o h spoiek	(LISN).	Can duated limit (dD:\/)	Anbore
Aupore All.	Frequency of emission (MHz)	Conducted limit (dBµV)	Averego
sotek Anbo.	W. The Work William	Quasi-peak	Average
Test Limit:	0.15-0.5	66 to 56*	56 to 46*
rest Littit.	0.5-5 dek nabote Ame	56 hotel An	46
Ans above	5-30 And San	60	50 And
Anbors Air	*Decreases with the logarithm of t	he frequency.	
Test Method:	ANSI C63.10-2020 section 6.2	Anbores.	Aug Otek
Procedure:	Refer to ANSI C63.10-2020 section line conducted emissions from unline conducted emissions from the conducted emission		

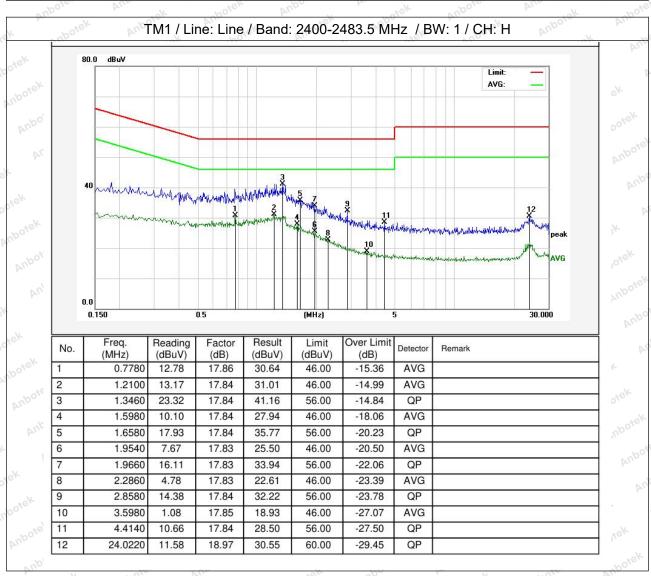
3.1. EUT Operation

	Operating Envir	onment:	Anbo.	rok M	boick	Anbois.	Vur	rek	Anbotek	Vupo.
3/6	ak Ando	1: TX mod 1M)	de(BLE 1N	/ I): Кеер	the EUT	works in	continuou	ısly trans	smitting mod	de (BLE
,c	Test mode:	2: TX mo	de(BLE 2N	/I): Кеер	the EUT	works in	continuou	ısly trans	smitting mod	de (BLE
		2M)								

3.2. Test Setup

Hotline

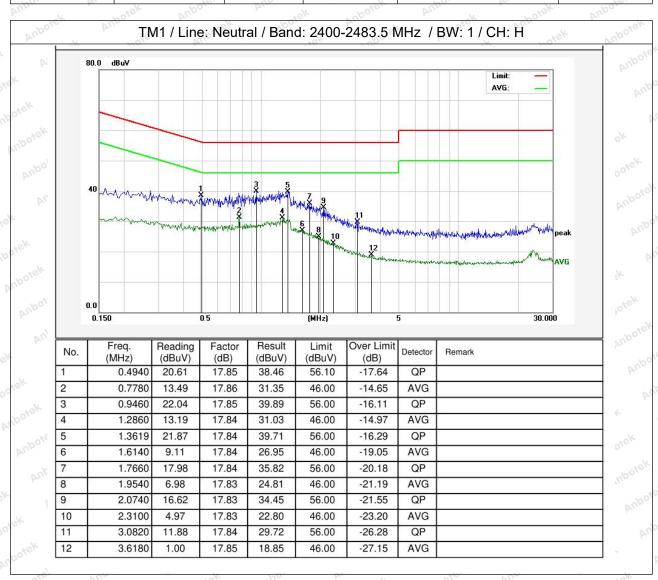
www.anbotek.com.cn


400-003-0500

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 16 of 34

3.3. Test Data

Temperature:	24.8 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------



Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 17 of 34

Temperature: 24.8 °C Humidity: 49 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 18 of 34


4. Occupied Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Anbotek	11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value.
sek Aupotek Aupo	11.8.2 Option 2
potek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW \geq 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

4.1. EUT Operation

Operating Envi	ironment: Anbore	And	Anbote	Anb.	· ek	aboiek	Aupore	\.
Test mode:	1: TX mode(BL 1M) 2: TX mode(BL	otek Anbo			abotek	Aupo	V	
Anboren	2M)	inbotek Ar	.ok	hotek	Anboile	ARTON	g mede (~upot

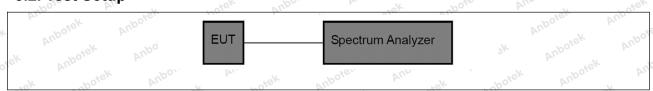
4.2. Test Setup

4.3. Test Data

Temperature:	25.3 °C	Humidity:	48 %	Atmospheric Pre	ssure: 101 kPa

Please Refer to Appendix for Details.

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 19 of 34


5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

5.1. EUT Operation

Operating Envi	ronment:	Ar. abotek	Anbote	Aug	Anbotek	Aupo,	
Test mode:	1M)	Anbo	- NO	works in cont	bru.	ek anbo	ien. Vi

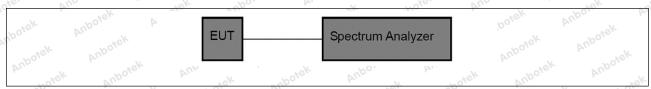
5.2. Test Setup

5.3. Test Data

Temperature: 25.3 °C	Humidity: 48 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------

Please Refer to Appendix for Details.

FCC ID: 2AOKB-A2345 Report No.: 182513C400022101 Page 20 of 34


6. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

6.1. EUT Operation

Operating Envir	onment:	hotek	Anboten	AUD	Yek.	hotek	Aupor	V.	Poisk
Test mode:	1: TX mod 1M) 2: TX mod	Anbore	VII.					hotek	Anbord
Ande	2M)	And A	w). Reep	abořek	Aupolia Vipolia	COITHIIGO	usiy ilalisi	Anbore Hoo	AUD AUD

6.2. Test Setup

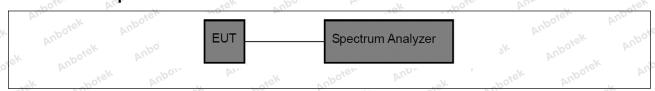
6.3. Test Data

Temperature:	25.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa
10.	-/-	NO	Par.	7.60. I V.U.	1

Please Refer to Appendix for Details.

Hotline

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 21 of 34


7. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit: Anborek	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

7.1. EUT Operation

Operating Envir	onment:	boiek	Anbore	Arra	otek a	hotek	Aupo *ek	200
Test mode:	1M) 30000	e(BLE 1M): K e(BLE 2M): K	. 100			Vur.	abote	SK. Di

7.2. Test Setup

7.3. Test Data

Temperature:	25.3 °C	_ k:	Humidity:	48 %	Atmospheric Pressure:	101 kPa	

Please Refer to Appendix for Details.

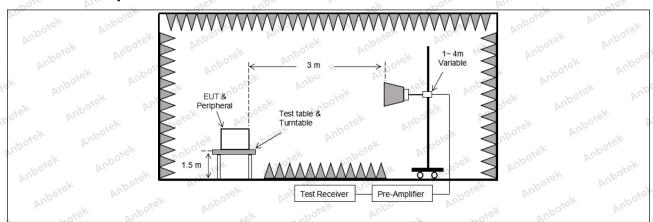
FCC ID: 2AOKB-A2345 Report No.: 182513C400022101 Page 22 of 34

8. Band edge emissions (Radiated)

, np _k	MOIL WILL	401	- K 107				
Test Requirement:	restricted bands, as defined	, In addition, radiated emissions d in § 15.205(a), must also comp ecified in § 15.209(a)(see § 15.2	ly with the				
k Anbotek Anbo	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
abotek Anbo	0.490-1.705	24000/F(kHz)	30 Stell				
tek upotek	1.705-30.0	30	30				
	30-88	100 **	3,ek noore				
	88-216	150 **	3				
	216-960	200 **	3 botes Anto				
	Above 960	500 Morell Andrea	3 sek				
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz, 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector except for the frequency band 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits these three bands are based on measurements employing an average detector.							
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 N	· 42	sk Pupoter				
Procedure:	ANSI C63.10-2020 section	6.10.5.2 And	Pote, Purple				

8.1. EUT Operation

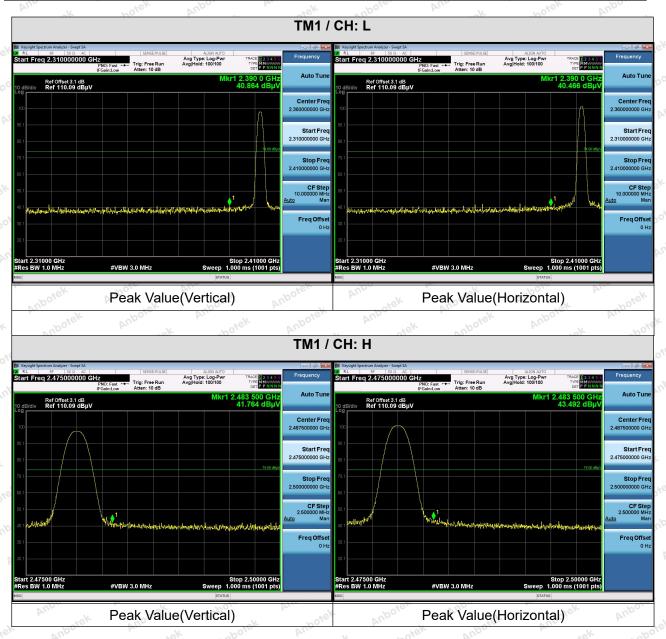
oie	Operating Envir	onment:	Anbotek	Anbe	F	notek A	upore Ar	siek vi
o'n,	Test mode:	1: TX mode(BLE 1M)	1M): Keep	the EUT v	works in	continuousl	y transmitting	mode (BLE
9	inbounde.	2: TX mode(BLE 2M)	2M): Keep	the EUT v	works in	continuousl	y transmitting	mode (BLE



Hotline

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 23 of 34

8.2. Test Setup



Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 24 of 34

8.3. Test Data

Temperature: 25.3 °C Humidity: 48 % Atmospheric Pressure: 101 kPa

Remark

- 1. During the test, pre-scan all modes, the report only record the worse case mode.
- 2. When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

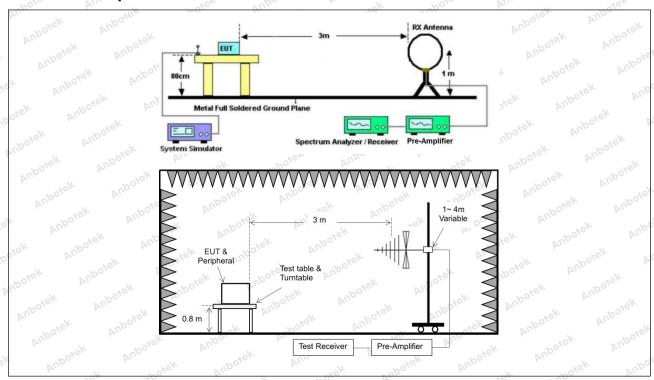
Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 25 of 34

9. Emissions in frequency bands (below 1GHz)

N N	701, VI.	-40" UD	- K 107
Test Requirement:	restricted bands, as defined	In addition, radiated emissions d in § 15.205(a), must also comp ecified in § 15.209(a)(see § 15.2	ly with the
k Anbotek Anbot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
o. Alek	0.009-0.490	2400/F(kHz)	300
spotek Aupo	0.490-1.705	24000/F(kHz)	30
"It" "boten	1.705-30.0	30	30
Aupor Ar.	30-88	100 **	3,ek note
botek Anbo.	88-216	150 **	3
An abote	216-960	200 **	3 boten And
Aupora Air	Above 960	500 Marie Anibo	3
Test Limit: orek Anhorek hborek Anborek Anborek Anborek Anborek Anborek Anborek Anborek Anborek Anborek	intentional radiators operatifrequency bands 54-72 MH However, operation within t sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-page 110–490 kHz, 110–490 kHz and a	ragraph (g), fundamental emissing under this section shall not bz, 76-88 MHz, 174-216 MHz or these frequency bands is permitt§ 15.231 and 15.241. If the tighter limit applies at the bin the above table are based on peak detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	e located in the 470-806 MHz. ed under other and edges. measurements uency bands 9– sion limits in
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 M		ok Anbotek
Procedure:	ANSI C63.10-2020 section	6.6.4 Ant	Pur Pur

9.1. EUT Operation

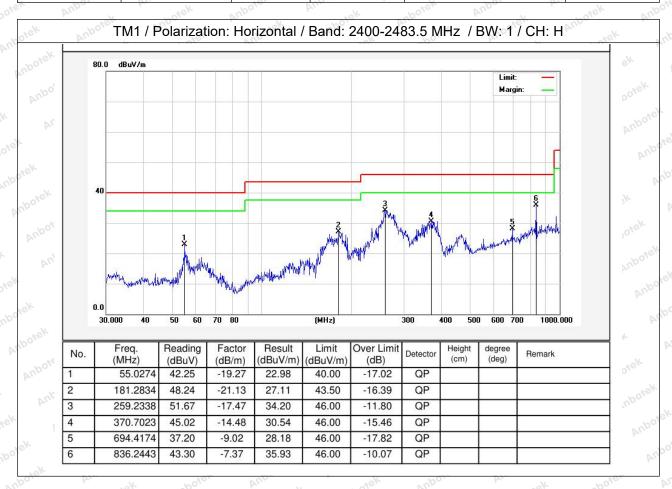
oie	Operating Envir	onment:	Anbotek	Anbe	F	notek A	upore Ar	siek vi
o'n,	Test mode:	1: TX mode(BLE 1M)	1M): Keep	the EUT v	works in	continuousl	y transmitting	mode (BLE
9	inbounde.	2: TX mode(BLE 2M)	2M): Keep	the EUT v	works in	continuousl	y transmitting	mode (BLE



Hotline

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 26 of 34

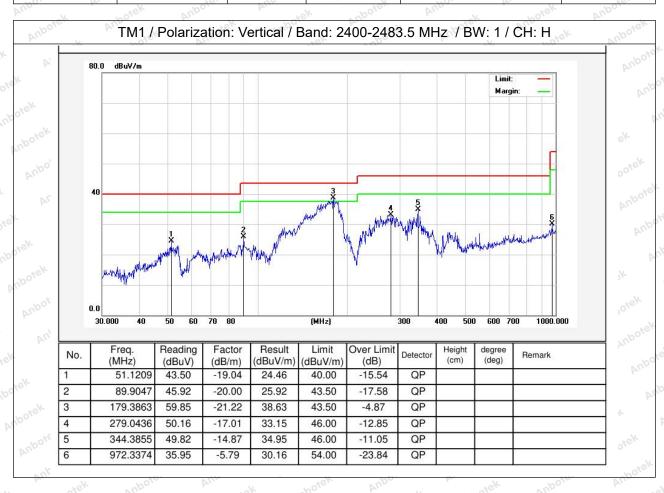
9.2. Test Setup



Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 27 of 34

9.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.


	Temperature:	25.3 °C	VUP	Humidity:	48%	Atmos	spheric Pressure:	101 kPa
--	--------------	---------	-----	-----------	-----	-------	-------------------	---------

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 28 of 34

Temperature: 25.3 °C Humidity: 48 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

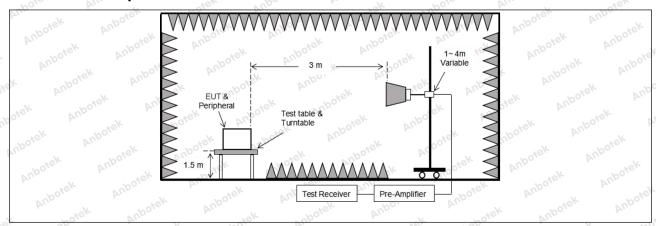
Page 29 of 34 Report No.: 182513C400022101 FCC ID: 2AOKB-A2345

10. Emissions in frequency bands (above 1GHz)

Test Requirement:		ons which fall in the restricted ba omply with the radiated emission 5(c)).`	
k Anbotek Anbot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
aborek Ando	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30° kek	30
	30-88	100 **	3,ek nbore
	88-216	150 **	3
	216-960	200 **	3 boier And
	Above 960	500 horek Ambo	3 364 01
	intentional radiators operat frequency bands 54-72 MH However, operation within the sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and a	aragraph (g), fundamental emissing under this section shall not be lz, 76-88 MHz, 174-216 MHz or these frequency bands is permitted in the tighter limit applies at the bein the above table are based on peak detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	e located in the 470-806 MHz. ted under other band edges. measurements uency bands 9—ssion limits in
pore, but	ANSI C63.10-2020 section	6 6 A A A A A A A A A A A A A A A A A A	ok hotek
Test Method:	KDB 558074 D01 15.247 N	· Uh	Ans botek
Procedure:	ANSI C63.10-2020 section	6.6.4	DO. 71.

10.1. EUT Operation

Operating Envir	onment:	anbotek	Anbe	-hoi	k Anbor	All.	stek no
Test mode:	1: TX mode(BLE 1M)	And			, , , , , , , , , , , , , , , , , , ,	otek	Anbore.
Anbor Mode.	2: TX mode(BLE 2M)	2M): Keep	the EUT w	orks in cor	ntinuously tra	nsmitting m	ode (BLE



Hotline

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 30 of 34

10.2. Test Setup

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 31 of 34

10.3. Test Data

Temperature: 25.3 °C	Humidity: 48 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------

Vur.	Potek Aup		rick abort	And	ok hotek	Anbo.
			TM1 / CH: L			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	31.33°	15.27	46.60	74.00	-27.40	Vertical
7206.00	30.90	18.09	48.99	74.00	-25.01	Vertical
9608.00	32.74	23.76	56.50	74.00	-17.50	Vertical
12010.00	Anbore* A	iek.	abotek Anb	74.00	otek Anbote	Vertical
14412.00	VUPO*SK	Pupo.	hotek P	74.00	rick not	Vertical
4804.00	30.75	15.27	46.02	74.00	-27.98	Horizontal
7206.00	32.49	18.09	50.58	74.00	-23.42	Horizontal
9608.00	29.34	23.76	53.10	74.00	-20.90	Horizontal
12010.00	otek * Aupo	-K 20	ick Aupote	74.00	- nbotek	Horizontal
14412.00	hotek* An	boye. Yun	rick and	74.00	ok hote	Horizontal
Average value:	Reading	Factor	Result	Limit	Over Limit	
Frequency (MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	polarization
4804.00	19.60	15.27	34.87	54.00	-19.13	Vertical
7206.00	19.95	18.09	38.04	54.00	-15.96	Vertical
9608.00	22.21	23.76	45.97	54.00	-8.03	Vertical
12010.00	NO tek	Aupote. Au	iek .	54.00	e, br.	Vertical
14412.00	Ant *	, upotek	Aupo.	54.00	pore. And	Vertical
4804.00	19.08	15.27	34.35	54.00	-19.65	Horizontal
7206.00	21.52	18.09	39.61	54.00	-14.39	Horizontal
9608.00	18.85	23.76	42.61	54.00	-11.39	Horizontal
12010.00	-10× *	otek Aupor	-K MO,	54.00	YUP "FEK	Horizontal
14412.00	Vpo. *	indiek ant	OTO AND	54.00	er Aupo	Horizontal

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 32 of 34

SK Aupo,	Ar. stek	*upote,	Anto	hotek	Aupo, V	, dek
		1	ГМ1 / CH: M			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	30.88	15.42	46.30	74.00	-27.70 m	Vertical
7320.00	30.87	18.02	48.89	74.00	-25.11	Vertical
9760.00	32.24	23.80	56.04	74.00	-17.96	Vertical
12200.00	ek * shotek	Aupo	k. hotek	74.00	And	Vertical
14640.00	* * *	iek Aupore	bus of	74.00	Aupor	Vertical
4880.00	30.56	15.42	45.98	74.00	-28.02	Horizontal
7320.00	32.36	18.02	50.38	74.00	-23.62	Horizontal
9760.00	29.06	23.80	52.86	74.00 Ant	-21.14	Horizontal
12200.00	* * hotek	Anbore	And	74.00	YUPO. VK	Horizontal
14640.00	Ar. otok	Anbotek	Aupon	74.00	Anbore	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4880.00	19.69	15.42	35.11	54.00	-18.89	Vertical
7320.00	19.81	18.02	37.83	54.00	-16.17 Am	Vertical
9760.00	22.06	23.80	45.86	54.00	-8.14	Vertical
12200.00	k Anbor	Dir.	Vupo, ex	54.00	boiek	Vertical
14640.00	otek * Anbote	Augo	ek spojek	54.00	pi, otek	Vertical
4880.00	19.19	15.42	34.61	54.00	-19.39	Horizontal
7320.00	21.87	18.02	39.89	54.00	-14.11	Horizontal
9760.00	19.15	23.80	42.95	54.00	11.05 And	Horizontal
12200.00	Anbotek	Aup. *ek	abotek	54.00	- wotek	Horizontal
14640.00	* *botek	Anboro	R. Otek	54.00	PLUP -OK	Horizontal

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 33 of 34

Le. AUD	- stek	"upo,	Dr.	-hote.	VUR.	rek.
		•	TM1 / CH: H			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	31.01	15.58	46.59	74.00	-27.41	Vertical
7440.00	31.03	17.93	48.96	74.00	-25.04	Vertical
9920.00	32.94	23.83	56.77	74.00	-17.23	Vertical
12400.00	* Stell	anbotes	Aug	74.00	Anbor	Vertical
14880.00	* And	rek "Upotel	Aupo.	74.00	Aupore.	Vertical
4960.00	30.70	15.58	46.28	74.00	-27.72	Horizontal
7440.00	32.57	17.93	50.50	74.00	-23.50	Horizontal
9920.00	29.44	23.83	53.27	74.00	-20.73	Horizontal
12400.00	Anb * *ek	abotek	Aupo, K	74.00	Anbote, An	Horizontal
14880.00	W.*po,	hotek	Anbores	74.00	anbotek	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	20.81	15.58	36.39	54.00	-17.61	Vertical
7440.00	21.08	17.93	39.01	54.00	-14.99	Vertical
9920.00	22.71	23.83	46.54	54.00	-7.46	Vertical
12400.00	k * hotek	Anbo	hotek	54.00	Pur	Vertical
14880.00	* * *	sk Vupoje	And	54.00	Aupo	Vertical
4960.00	20.37	15.58	35.95	54.00	-18.05	Horizontal
7440.00	22.67	17.93	40.60	54.00	-13.40	Horizontal
9920.00	19.30	23.83	43.13	54.00	-10.87	Horizontal
12400.00	* tek	Aupotes	Aur	54.00	ipo. bis	Horizontal
14880 00	Aux *	hotelk	Anbo	54 00	Vupotes b	Horizontal

Remark:

- 1. Result =Reading + Factor
- "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.
- 3. Only the worst case is recorded in the report.

Report No.: 182513C400022101 FCC ID: 2AOKB-A2345 Page 34 of 34

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

