RF Test Report

EUT	:	Wireless Charging Battery
MODEL	:	A1610
BRAND NAME	:	anker
APPLICANT	:	Anker Innovations Limited
Classification Of Test	:	N/A

CVC Testing Technology Co., Ltd.

Test Report No.:FCC2022-0011-RF					Pa	ge 2 of 35		
	Name : Anker Innovations Limited							
Client Address : Room 1318-19, Hollywood Plaza, 610 Nathan Road,Mongkok, Kowloon, Hongkong Name : Shenzhen Joway Power Supply Co., Ltd								
Manufacturer		Address : 1-5/F of No.10 & No.11 Workshop of AnTuoShan High- Tech Industrial Park, Sha'Er Community, ShaJing Street, Bao'An District, Shenzhen, Guangdong, P. R. China.						
		Name : Wireless	s Ch	arging Batte	ry			
		Model/Type: A1	610					
Equipment Und	er Test	Trade mark : ank	er					
		SerialNO.:N/A						
		Sampe NO.:2-1						
Date of Receipt.	2022.02.		Da	ate of Testing		2022.02.22-2	022.03.08	
Test	Specifica	tion			Te	st Result		
FCC Part 15, Subpart C, Section 15.207, Sec 15.209			on	PASS				
Canada RSS-2 Canada RSS-Ger								
		The equipr	nent	under test v	was four	nd to comply	with the	
Evaluation of Test R	lesult	requirements of	the	standards ap	oplied.			
						Issue Date:	2022.03.11	
Tested by:		Reviewed by:			Арр	roved by:		
Xu Zhanfe	2j	L'in yonghnie Chartman					R	
Xu ZhenFei Name Signatu	ure					C hen H ua W Name Sigr	len nature	
Other Aspects: NON	NE.							
Abbreviations:OK, Pass= passed Fail = failed N/A= not applicable EUT= equipment, sample(s) under tested								
This test report relates only to the EUT, and shall not be reproduced except in full, without written approval of CVC.								

1

1.1 1.2

1.3

Test Report No.:FCC2022-0011-RF Page 3 of 35 **TABLE OF CONTENTS**

2	GENER	AL INFORMATION	7
	2.2 DES 2.3 GEN	NERAL PRODUCT INFORMATION SCRIPTION OF TEST MODE NERAL DESCRIPTION OF APPLIED STANDARDS SCRIPTION OF SUPPORT UNITS	9 11
3	TEST TY	YPES AND RESULTS	12
	3.1.1 3.1.2 3.1.3 3.1.4	NDUCTED EMISSION MEASUREMENT Limit Measurement procedure Test setup Test results DIATED EMISSIONS Limits Measurement procedure Test setup Test results	12 12 12 13 15 15 16 17
3		B BANDWIDTH MEASUREMENT	
	3.3.1 3.3.2 3.3.3 3.3.4	Limits of 20dB Bandwidth Measurement Measurement procedure Test setup Test results	28 28
3	3.4 Occ	CUPIED BANDWIDTH MEASUREMENT	30
	3.4.1 3.4.2 3.4.3 3.4.4	Limits of Occupied Bandwidth Measurement Measurement procedure Test setup Test results	30 30
4	HOTOG	RAPHS OF TEST SETUP	32
5	РНОТО	GRAPHS OF THE EUT	33
AP		۹	34

Page 4 of 35

RELEASE CONTROL RECORD

ISSUE NO.	IO. REASON FOR CHANGE	
FCC2022-0011-RF	Original release	2022.03.11

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C

Canada RSS-216 Issue 2: 2016-01

Canada RSS-Gen Issue 5+A1+A2(2021-02)

FCC STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK
15.203	Antenna Requirement	PASS	No antenna connector is used.
15.207 ,RSS-Gen 8.8	AC Power Conducted Emission	PASS	Power form adapter
15.209,15.205,RSS-216 Issue 2+A1(2020-09) 6.2.2.1	Radiated Emissions	PASS	Meet the requirement of limit.
15.215 (c)	20dB Bandwidth Measurement	PASS	Meet the requirement of limit.
RSS-Gen 6.7	Occupied Bandwidth Measurement	PASS	Meet the requirement of limit.

1.1 LIST OF TEST AND MEASUREMENT INSTRUMENTS

Refer to Appendix A.

1.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

No.	ITEM	FREQUENCY	UNCERTAINTY		
1	Conducted Emissions	9kHz~30MHz	±2.66dB		
		9KHz ~ 30MHz	±0.769dB		
2	Radiated Spurious	30MHz ~ 1GMHz	±0.877dB		
	Emissions	1GHz ~ 18GHz	±0.777dB		
		18GHz ~ 40GHz	±1.315dB		

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

1.3 TEST LOCATION

The tests and measurements refer to this report were performed by EMC testing Lab. of CVC Testing Technology Co., Ltd.

Address: No.3, TiantaiyiRoad, KaitaiAvenue, ScienceCity, Guangzhou, ChinaPost Code: 510663Tel: 020-32293888FAX: 020-32293889E-mail: office@cvc.org.cnTest Firm Registration Number: 937273Wireless Test Site Registration Number: CN0103

2 GENERAL INFORMATION

2.1 GENERAL PRODUCT INFORMATION

PRODUCT	Wireless Charging Battery
BRAND	anker
MODEL	A1610
HVIN	A1610A
ADDITIONAL MODEL	N/A
FCC ID	2AOKB-A1610A
IC ID	23451-A1610A
POWER SUPPLY	DC 5V From USB Host Unit
MODULATION TYPE	ASK
OPERATING FREQUENCY	110KHz ~ 148KHz
NUMBER OF CHANNEL	N/A
PEAK OUTPUT POWER	N/A
ANTENNA TYPE	Coil Antenna
I/O PORTS	Refer to user's manual
CABLE SUPPLIED	N/A
HARDWARE VERSION	V2.1
SOFTWARE VERSION	V2.1

Remark:

- 1. For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 3. Please refer to the EUT photo document for detailed EUT photo.

Page 8 of 35

2.2 DESCRIPTION OF TEST MODE

The Eut was tested under the following modes and the final worst mode was marked in boldface and record in this report.

TEST ITEM	TEST MODE TAG	TEST MODE		
	٨	wireless charging(7.5W) + chargir		
CONDUCTED EMISSION	A	from Adapter		
	P	wireless charging(5W) + charging		
	В	from Adapter		

TEST ITEM	TEST MODE TAG	TEST MODE
RADIATED EMISSION(9KHz ~ 30MHz)	A	wireless charging(7.5W) + charging from Adapter
	В	wireless charging(5W) + charging from Adapter
	С	wireless charging(7.5W)
	D	wireless charging(5W)
	Е	Standby

TEST ITEM	TEST MODE TAG	TEST MODE		
RADIATED EMISSION(30MHz ~ 1GHz)	A	wireless charging(7.5W) + charging from Adapter		
	В	wireless charging(5W) + charging from Adapter		
	С	wireless charging(7.5W)		
	D	wireless charging(5W)		
	E	Standby		

Test Report No.:FCC2022-001	Page 10 of 35					
TEST ITEM	TEST ITEM TEST MODE TAG					
	Α	wireless charging(7.5W) + charging from Adapter				
20dB Bandwidth	В	wireless charging(5W) + charging from Adapter				
Measurement	С	wireless charging(7.5W)				
	D	wireless charging(5W)				
	E	Standby				
TEST ITEM	TEST MODE TAG	TEST MODE				
	Α	wireless charging(7.5W) + charging from Adapter				
Occupied Bandwidth	В	wireless charging(5W) + charging from Adapter				
Measurement	С	wireless charging(7.5W)				
	C					
	D	wireless charging(7.5W)				

2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product, according to the specifications of the manufacturers. It must comply with the requirements of the following standards:

FCC PART 15, Subpart C. Section 15.209 ANSI C63.10-2020 Canada RSS-216 Issue 2+A1: 2020-09 Canada RSS-Gen Issue 5+A1+A2(2021-02)

All test items have been performed and recorded as per the above standards

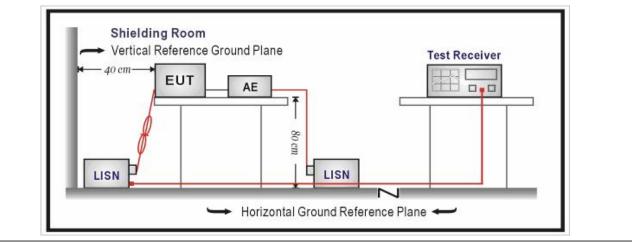
2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	Support Equipment										
NO	Descriptior	1	Brand		Model No. Serial I		Serial Nu	Number		Supplied by	
1	1 Wireless charging load			/	15W		1		Lab		
				S	upport Cable						
NO	Description		uantity umber)	Length (m)	Detachable (Yes/ No)		Shielded (Yes/ No)			Supplied by	
1	N/A		N/A	N/A	N/A		N/A	N/A		N/A	

Page 12 of 35

3 TEST TYPES AND RESULTS


3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 Limit

Frequency	Conducted L	.imits(dBµV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 to 56 *	56 to 46*
0.5 - 5	56	46
5 - 30	60	50
	II apply at the transition frequencies. s in line with the logarithm of the frequen	icy in the range of 0.15 to 0.50MHz.

3.1.2 Measurement procedure

- a. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the Test photographs) Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. The equipment under test shall be placed on a support of non-metallic material, the height of which shall be1.5m above the ground,
- b. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- c. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

3.1.3 Test setup

Test Report No.:FCC2022-0011-RF Page 13 of 35 3.1.4 Test results CONDUCTED WORST-CASE DATA: **Test Mode** Wireless charging(7.5W)+charging from Adapter Line (L) 150KHz ~ 30MHz PHASE **Frequency Range** 80 60 Level in dBuV 50 a la cha bhlial bhliabh 0 150k 300 400 500 800 1M 2M 3M 4M 5M 6 8 10M 20M 30M Frequency in Hz Frequency Corr. NO. Result (dBuV) Limit (dBuV) Margin (dB) Remark (dB) (MHz) 1 0.152 28.5 55.9 27.4 19.5 AVG 2 0.155 42.9 65.8 22.8 19.5 QP 3 0.335 22.9 49.3 26.4 19.5 AVG 4 0.335 30.7 59.3 28.6 19.5 QP 5 1.662 27.0 56.0 29.0 19.6 QP 1.687 46.0 AVG 6 22.4 23.6 19.6 Remark: The emission levels of other frequencies were very low against the limit.

CVC Testing Technology Co., Ltd.

Test I	Mode	Wireless cha	arging(7.5W)+ch	arging from Adapte	er	
Frequ	uency Range	150KHz ~ 3	30MHz F	PHASE	Line (N)
	20 0 150k	300 400 500 8	300 1M 2N Freque	A 3M 4M 5M 6 ency in Hz	8 10M	
NO.		300 400 500 E			Corr. (dB)	20M 30M Remark
NO.	20 0 150k Frequency		Freque	ency in Hz	Corr.	
	20 0 150k Frequency (MHz)	Result (dBuV)	Freque	Margin (dB)	Corr. (dB)	Remark
1	20 0 150k Frequency (MHz) 0.683	Result (dBuV) 30.2	Freque	Margin (dB) 25.8	Corr. (dB) 19.5	Remark QP
1 2	20 0 150k Frequency (MHz) 0.683 0.683	Result (dBuV) 30.2 22.1	Freque Limit (dBuV) 56.0 46.0	Margin (dB) 25.8 23.9	Corr. (dB) 19.5 19.5	Remark QP AVG
1 2 3	20 0 150k Frequency (MHz) 0.683 0.683 1.662	Result (dBuV) 30.2 22.1 25.8	Freque Limit (dBuV) 56.0 46.0 46.0	Margin (dB) 25.8 23.9 20.2	Corr. (dB) 19.5 19.5 19.6	Remark QP AVG AVG

Page 15 of 35

3.2 RADIATED EMISSIONS

3.2.1 Limits

Test Standard: Part 15C

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Other emissions shall be at least 20dB below the highest level of the desired power.

FREQUENCIES (MHz)	FIELD STRENGTH (Microvolts/Meter)	MEASUREMENT DISTANCE (Meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE: 1. The lower limit shall apply at the transition frequencies.

NOTE: 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

NOTE: 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Test Standard:RSS-216

Frequency Range (MHz)	Limits in dB(µA/m) at 3 m distance Quasi-peak
0.009 - 0.070	69
0.070 – 0.1485	69 Decreasing linearly with logarithm of frequency to 39
0.1485 – 4	39 Decreasing linearly with logarithm of frequency to 3
4 - 30	3

Note:

- 1. The preferred test method for WPT devices that may be used in residential environments and that have a maximum dimension of less than or equal to 1.6 m is the test method using the van Veen loop antenna system, as per the CISPR 11 standard referenced in ICES-001. However, it is acceptable to use the alternate 60 cm loop test method and corresponding limit for these small residential WPT devices (the same as for commercial / industrial and large residential devices).
- 2. Measurements are performed at 3 m distance with a 0,6 m loop antenna as described in 5.5.2.1 of CISPR 16-1.
- 3. The antenna shall be vertically installed, with the lower edge of the loop at 1 m height above the floor.

Page 16 of 35

Frequency Range	Electric field Measurement distance @ 10 m					
(MHz)	Quasi–peak (dBuV/m)	Average (dBuV/m)				
30 - 80.872	30	25				
80.872 - 81.848	50	45				
81.848 – 134.786	30	25				
134.786 – 136.414	50	45				
136.414 – 230	30	25				
230 – 1000	37	32				

Note:

The average limits apply to magnetron driven equipment only. If magnetron driven equipment exceeds the quasi–peak limit at certain frequencies, then the measurement shall be repeated at these frequencies with the average detector and the average limits specified in this table apply.

3.2.2 Measurement procedure

Test Standard: Part 15C

- a. The EUT was placed on the top of a rotating table 1.5 meters(above 1GHz) and 0.8 meters(below 1GHz) above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. For below 1GHz was used bilog antenna, and above 1GHz was used horn antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1m above the ground.
- g. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTE:

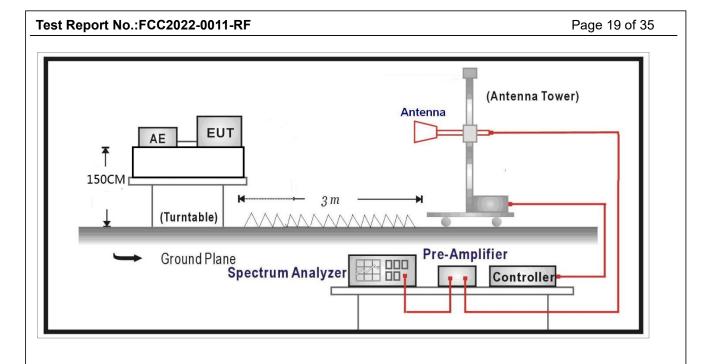
- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.
- 5. The testing of the EUT was performed on all 3 orthogonal axes; the worst-case test configuration was reported on the file test setup photo.

Test Standard:RSS-216

- a. The EUT was placed on the top of a rotating table 1.5 meters(above 1GHz) and 0.8 meters(below 1GHz) above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. For below 1GHz was used bilog antenna, and above 1GHz was used horn antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1m above the ground.
- g. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.
- 5. The testing of the EUT was performed on all 3 orthogonal axes; the worst-case test configuration was reported on the file test setup photo.


3.2.3 Test setup

Below 30MHz Test Setup:

Test Report No.:FCC2022-0011-RF	Page 18 of 35
FRP Dome	
Below 1GHz Test Setup:	
FRP Dome	Antenna 3m Test Receiver
Above 1GHz Test Setup:	

3.2.4 Test results

Results under test standard PART 15C:

9KHz ~ 30MHz WORST-CASE DATA:

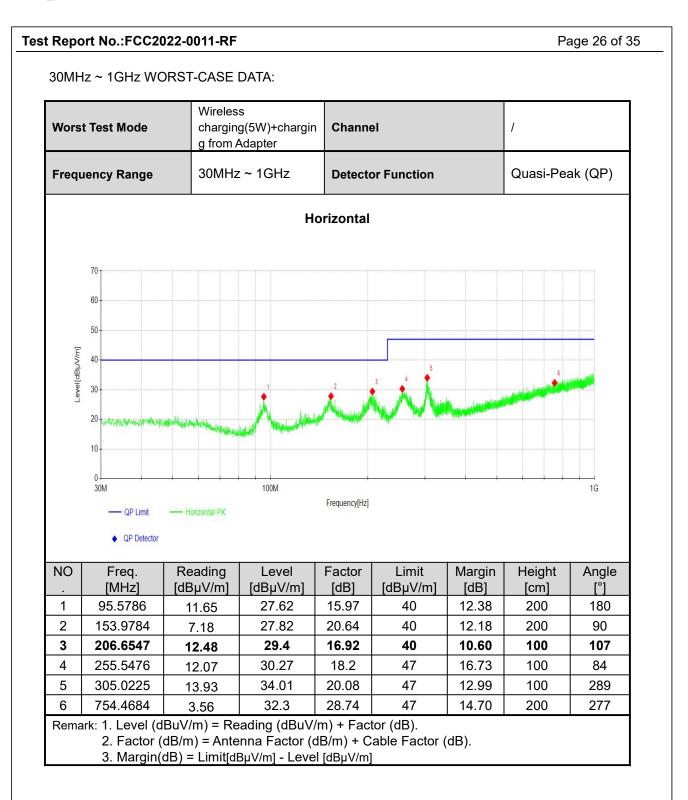
Wors	t Test Mode	wireless	s charging(5W)	Channe	el		1	
Frequ	uency Range	9KHz ~	- 30MHz	Detecto	or Function		Quasi-Pea	ak (QP)
			Но	rizationa	I			
Level[dBµV/m]	100 - 90 - 80 + 70 + 60 + 50 + 40 + 30 + 20 + 10 + 0 + 10 + 0 + 10 + 20 + 10 + 0 + 10 + 20 + 10 + 0 + 20 + 10 + 0 + 20 + 10 + 0 + 20 + 10 + 0 + 20 + 20 + 20 + 20 + 20 + 20 + 20	Horizontal PK	00k		4 		10M	
NO	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]
1	0.027	28.94	-30.28	-59.22	78.98	109.26	100	320
2	0.108	41.51	-17.69	-59.20	66.94	84.63	100	360
3	0.255	22.40	-36.96	-59.36	59.47	96.43	100	2
4	0.7349	11.01	-7.94	-18.95	30.27	38.21	100	308
5	2.4865	6.67	-12.38	-19.05	29.57	41.95	100	111
6	13.3593	5.31	-14.62	-19.93	29.55	44.17	100	88
Rema		dB/m) = Ante	ading (dBuV/ nna Factor (d 3µV/m] - Level	B/m) + C	able Factor (dB).		

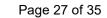
Page 21 of 35

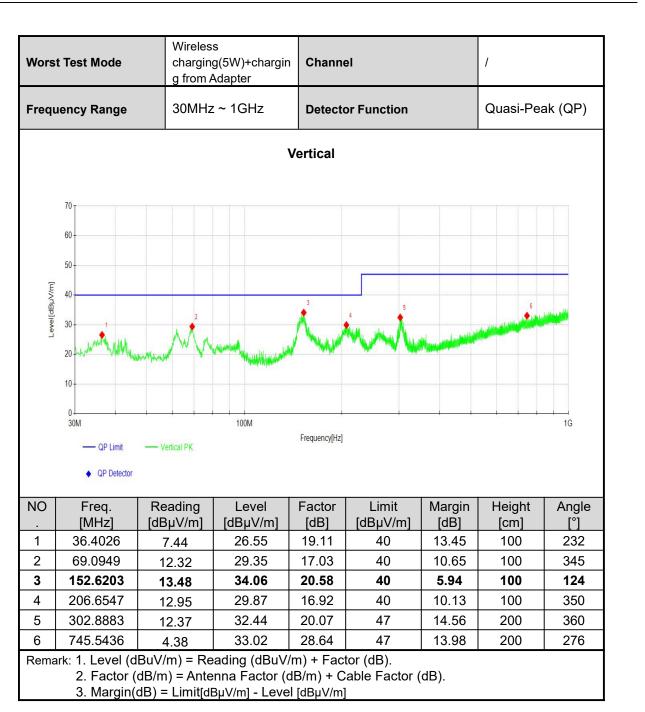
Wors	t Test Mode	wireless	s charging(5W)	Channe	el		/		
Frequ	uency Range	9KHz ~	~ 30MHz	Detecte	Detector Function			Quasi-Peak (QP)	
			Ň	/ertical					
Level[dBµV/m]	100 90 80 70 60 50 40 30 20 10 0 - 20 - - 0 - - - - - - - - - - - - -	- Vertical PK	100k	Frequency[Hz]	1M		10M	30M	
NO	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	
1	0.111	46.88	-12.31	-59.19	66.7	79.01	100	73	
2	0.219	25.42	-34.04	-59.46	60.8	94.84	100	0	
3	0.3569	23.99	-35.11	-59.1	56.55	91.66	100	90	
4	0.5969	16.00	-2.81	-18.81	32.08	34.89	100	90	
	5.3839	5.49	-13.76	-19.25	29.56	43.32	100	107	
5		4.59	-15.39	-19.98	29.54	44.93	100	17	

		Wireles	۹					
Wors	t Test Mode	chargin	charging(5W)+chargin g from Adapter		Channel			
Frequ	ency Range	30MHz	z ~ 1GHz	Detecto	or Function		Quasi-Pea	ak (QP)
		i	Но	orizontal				
	60 T					1		
								-
	50-							
	40							
[m//					5		6	
Level[dBµV/m]	30-		1 •	2				
Lev	20	2 7	A barata	Muund	$W \otimes W$	Manager Manager and Manager		
	20 water production of the second	and the stand of t	Ichall Marymonth Maria					
	10							
	0		100M	i				 1G
	QP Limit	- Horizontal PK		Frequency[Hz]				
	 QP Detector 							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle
	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]
1	95.5786	11.65	27.62	15.97	43.5	15.88	200	180
2	153.9784	7.18	27.82	20.64	43.5	15.68	200	90
	206.6547	12.48	29.4	16.92	43.5	14.10	100	107
3	255.5476	12.07	30.27	18.2	46	15.73	100	84
4				20.08	46	11.99	100	289
	305.0225 754.4684	13.93 3.56	34.01 32.3	20.00 28.74	40 46	13.70	200	277

Wors	t Test Mode	Wireles chargin g from A	g(5W)+chargin	Channe	Channel			
Frequ	uency Range	30MHz	30MHz ~ 1GHz		Detector Function			ak (QP)
			V	/ertical				
Level[dBµV/m]		2		Å.	5		e A direction of the second s	
	10- 0- 30M QP Limit • QP Detector	- Vertical PK	100M	Frequency[Hz]				1G
NO	0 30M — QP Limit • QP Detector Freq.	Reading	Level	Factor	Limit [dBuV/m]	Margin	Height	1G Angle
NO 1	0 30M —_ QP Limit	Reading [dBµV/m]			Limit [dBµV/m] 40	Margin [dB] 13.45	Height [cm] 100	
NO 1 2	0 30M → QP Limit ◆ QP Detector Freq. [MHz]	Reading [dBμV/m] 7.44	Level [dBµV/m]	Factor [dB]	[dBµV/m]	[dB]	[cm]	Angle [°]
1	0 30M — QP Limit • QP Detector Freq. [MHz] 36.4026	Reading [dBµV/m] 7.44 12.32	Level [dBµV/m] 26.55	Factor [dB] 19.11	[dBµV/m] 40	[dB] 13.45	[cm] 100	Angle [°] 232
1 2	0 30M → QP Limit ◆ QP Detector Freq. [MHz] 36.4026 69.0949 152.6203	Reading [dBμV/m] 7.44 12.32 13.48	Level [dBµV/m] 26.55 29.35 34.06	Factor [dB] 19.11 17.03 20.58	[dBµV/m] 40 40	[dB] 13.45 10.65 9.44	[cm] 100 100 100	Angle [°] 232 345
1 2 3	0 30M → QP Limit ◆ QP Detector Freq. [MHz] 36.4026 69.0949	Reading [dBµV/m] 7.44 12.32 13.48 12.95	Level [dBµV/m] 26.55 29.35	Factor [dB] 19.11 17.03	[dBµV/m] 40 40 43.5	[dB] 13.45 10.65	[cm] 100 100	Angle [°] 232 345 124
1 2 3 4	0 30M → QP Limit ◆ QP Detector Freq. [MHz] 36.4026 69.0949 152.6203 206.6547	Reading [dBμV/m] 7.44 12.32 13.48	Level [dBµV/m] 26.55 29.35 34.06 29.87	Factor [dB] 19.11 17.03 20.58 16.92	[dBµV/m] 40 40 43.5 43.5	[dB] 13.45 10.65 9.44 13.63	[cm] 100 100 100 100	Angle [°] 232 345 124 350

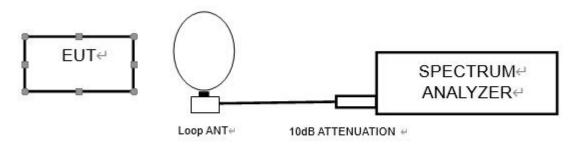

	-	Channe	əl		/	
9KHz -	9KHz ~ 30MHz		or Function		Quasi-Peak (QP)	
	Н	orizontal				
+1 — Horizontal PK	22 22 100k	Frequency[Hz]	ининин (пр. 1997) 11		All Inc. 1914	30M
Reading	Level [dBuV/m]	Factor [dB]	Limit [dBuV/m]	Margin [dB]	Height [cm]	Angle [°]
30.32	-0.45	-30.77	69.00	69.45	100	179
42.80	12.01	-30.79	54.19	42.18	100	128
21.12	-9.89	-31.01	37.14	47.03	100	94
15.05	-15.68	-30.73	34.70	50.38	100	353
8.91	-21.76	-30.67	25.85	47.61	100	179
	-24.01	-30.52	20.40	44.41	100	167
	 chargin 9KHz - 9KHz -	На	Channel Channel 9KHz ~ 30MHz Detector Horizontal Horizontal Image: space sp	Channel Channel 9KHz ~ 30MHz Detector Function Horizontal Horizontal 0 <td>Channel Channel 9KHz ~ 30MHz Detector Function Horizontal Horizontal Image: Channel Horizontal Image: Channel Image: Channe</td> <td>Channel // 9KHz ~ 30MHz Detector Function Quasi-Per Horizontal Horizontal</td>	Channel Channel 9KHz ~ 30MHz Detector Function Horizontal Horizontal Image: Channel Horizontal Image: Channel Image: Channe	Channel // 9KHz ~ 30MHz Detector Function Quasi-Per Horizontal Horizontal


Page 25 of 35


	Test Mode	Wireles chargin		Channe)		/		
Freque	ency Range	9KHz ~	- 30MHz	Detecto	Detector Function			Quasi-Peak (QP)	
			١	/ertical					
Level[dBµA/m]	80 70 60 50 40 30 20 10 0 10 0 10 20 30 40 9k — QP Limit ◆ QP Detector	- Vertical PK	2 3 100k	Frequency[Hz]	1M		10M	30M	
				Factor	Limit	Margin	Height	Angle	
NO	Freq.	Reading	Level [dBuA/m]						
NO 1	[MHz]	[dBµA/m]	[dBµA/m]	[dB]	[dBµA/m]	[dB]	[cm]	[°]	
		-							
. 1	[MHz] 0.0150	[dBµA/m] 34.43	[dBµA/m] 3.54	[dB] -30.89	[dBµA/m] 69.00	[dB] 65.46	[cm] 100	[°] 196	
1 2	[MHz] 0.0150 0.1080	[dBµA/m] 34.43 46.94	[dBµA/m] 3.54 16.24	[dB] -30.89 -30.70	[dBµA/m] 69.00 51.94	[dB] 65.46 35.70	[cm] 100 100	[°] 196 72	
1 2 3	[MHz] 0.0150 0.1080 0.1470	[dBµA/m] 34.43 46.94 40.11	[dBµA/m] 3.54 16.24 8.96	[dB] -30.89 -30.70 - 31.15	[dBµA/m] 69.00 51.94 39.80	[dB] 65.46 35.70 30.84	[cm] 100 100 100	[°] 196 72 83	

3.3 20dB Bandwidth Measurement

3.3.1 Limits of 20dB Bandwidth Measurement

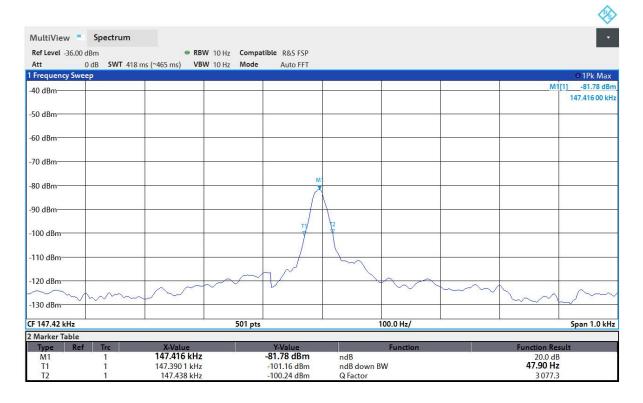

The field strength of any emissions appearing between the band edges and out of band shall be attenuated at least 20 dB below the level of the unmodulated carrier or to the general limits in Section 15.209.

3.3.2 Measurement procedure

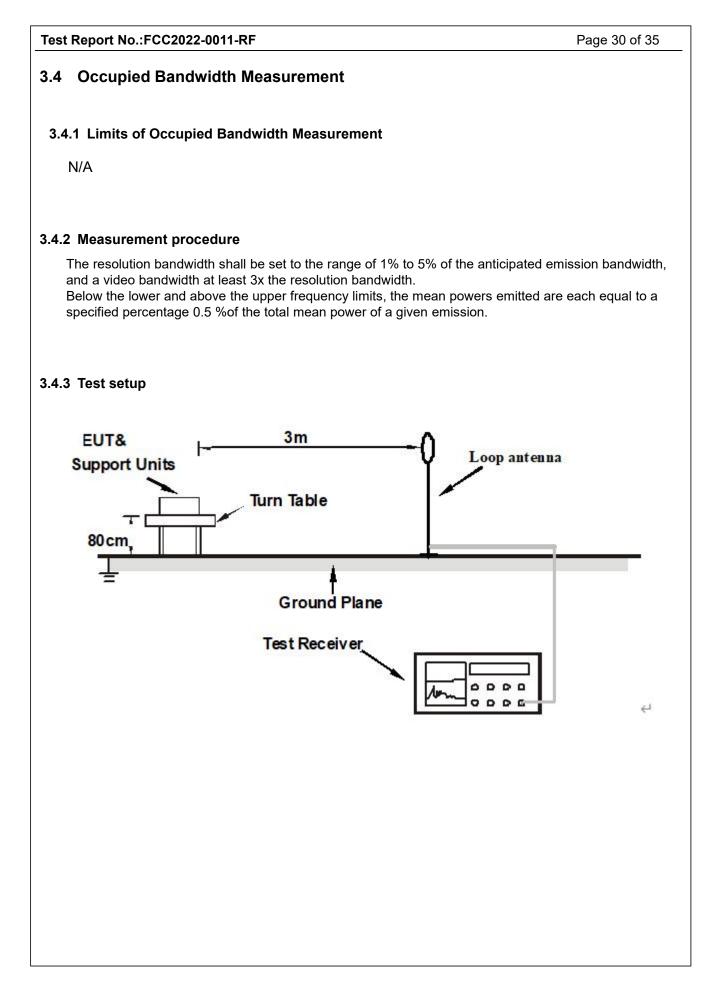
- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT, then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

3.3.3 Test setup

4


Page 29 of 35

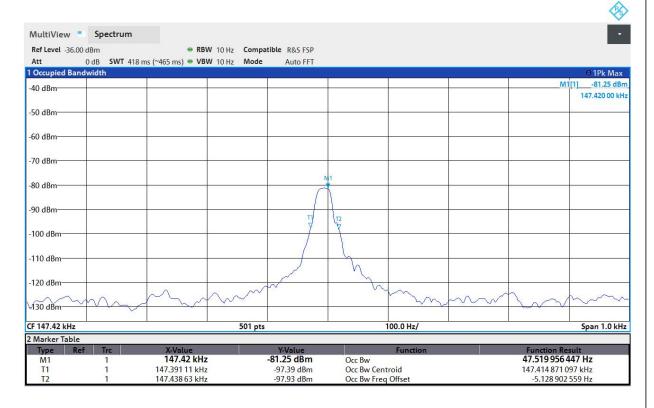
3.3.4 Test results


TEST MODE	CHANNEL FREQUENCY (KHz)	20dB BANDWIDTH (Hz)
Wireless Charging(7.5W) + Charging from Adapter	147.41	47.90

Lower & Upper Test Frequency Point (MHz)	Test Frequency (KHz)	P/F
Lower	147.390	PASS
Upper	147.438	PASS

Test Graph:

Test Report No.:FCC2022-0011-RF	Pa
	1 4


Page 31 of 35

3.4.4 Test results

TEST MODE	CHANNEL FREQUENCY (KHz)	20dB BANDWIDTH (Hz)
Wireless Charging(7.5W) + Charging from Adapter	147.42	47.51

Lower & Upper Test Frequency Point (MHz)	Test Frequency (KHz)	P/F
Lower	147.391	PASS
Upper	147.438	PASS

Test Graph:

Page 32 of 35

4 HOTOGRAPHS OF TEST SETUP

Please refer to the attached file (Test Photos).

5 PHOTOGRAPHS OF THE EUT

Please refer to the attached file (External Photos report and Internal Photos).

Page 34 of 35

Appendix A

Antenna Port Conducted Test				
Equipment	Model No.	Serial Number	Manufacturer	Cal. Due
Communication Shielded Room 2	4m*3m*3m	CRTDSWKSR44301	CRT	2023/04/25
Spectrum Analyzer	FSV40	101580	R&S	2022/06/30
Comprehensive Test Instrument	CMW270	100304	R&S	2022/12/09
Analog Signal Generator	SMB100A	181858	R&S	2022/06/30
Vector Signal Generator	SGT100A	111661	R&S	2022/06/30
RF Radio Frequency Switch	JS0806-2	19H9080187	Tonscend	2022/06/30
Programmable DC Power Supply	E3644A	MY58036222	KEYSIGHT	2022/04/22

Chamber Radiated Emission Test - 3M Chamber				
Equipment	Model No.	Serial Number	Manufacturer	Cal. Due
EMI Test Receiver	N9038A-508	MY532290079	Agilent	2023/3/3
EMI Test Receiver	ESR7	102235	R&S	2023/3/3
EMI Test Receiver	N9038A-508	MY53290078	Agilent	2023/3/3
Spectrum Analyzer	N9010B	MY57470323	KEYSIGHT	2023/3/3
Radio Communication Test	CMW500	156686	R&S	2022/12/8
Broadband Antenna(3m)	VULB 9163	9163-530	SCHWARZBECK	2022/6/26
Loop Antenna	HLA 6121	540046	TESEQ	2022/6/5
Loop Antenna	FMZB1513	1513-170	SCHWARZBECK	2023/3/4
Monopole antenna	HFH2-Z6E	101317	R&S	2023/3/4
Waveguide Horn Antenna	BBHA9120B	602	SCHWARZBECK	2023/2/20
Waveguide Horn Antenna	HF906	360306/008	R&S	2023/3/4
Semi-Anechoic Chamber(3m)	FACT-4	ST08035	ETS	2024/12/12

Important

(1) The test report is valid with the official seal of the laboratory and the signatures of Test engineer, Author and Reviewer simultaneously.

(2) The test report is invalid if altered.

(3) Any photocopies or part photocopies in the test report are forbidden without the written permission from the laboratory.

(4) Objections to the test report must be submitted to the laboratory within 15 days.

(5) Generally, commission test is responsible for the tested samples only.

Address of the laboratory: CVC Testing Technology Co., Ltd. Address: No.3, TiantaiyiRoad, KaitaiAvenue, ScienceCity, Guangzhou, China Post Code: 510663 Tel: 020-32293888 FAX: 020-32293889 E-mail: office@cvc.org.cn