: 13274888H-G-R1 : 145 of 209 : April 6, 2020 : 2AOJA-PTS Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1030_Mar19 Page 2 of 8 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN : 13274888H-G-R1 Test report No. Page : 146 of 209 Issued date FCC ID : April 6, 2020 : 2AOJA-PTS ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | ### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.1 ± 6 % | 2.01 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.8 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.8 ± 6 % | 2.17 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.7 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 54.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.06 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.1 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1030_Mar19 Page 3 of 8 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN : 13274888H-G-R1 : 147 of 209 : April 6, 2020 : 2AOJA-PTS ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.0 Ω - 5.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.1 dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.0 Ω - 4.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.4 dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.152 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | | | |-----------------------|-----------------|--| | Manufactured by SPEAG | Manufactured by | | Certificate No: D2600V2-1030_Mar19 Page 4 of 8 UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 13274888H-G-R1 Page : 148 of 209 Issued date : April 6, 2020 FCC ID : 2AOJA-PTS ### **DASY5 Validation Report for Head TSL** Date: 14.03.2019 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1030 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.01$ S/m; $\varepsilon_r = 37.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(7.74, 7.74, 7.74) @ 2600 MHz; Calibrated: 31.12.2018 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 04.10.2018 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.7 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.29 W/kgMaximum value of SAR (measured) = 24.0 W/kg 0 dB = 24.0 W/kg = 13.80 dBW/kg Certificate No: D2600V2-1030_Mar19 Page 5 of 8 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 13274888H-G-R1 Page : 149 of 209 Issued date : April 6, 2020 FCC ID : 2AOJA-PTS ### Impedance Measurement Plot for Head TSL Certificate No: D2600V2-1030_Mar19 Page 6 of 8 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 13274888H-G-R1 Page : 150 of 209 Issued date : April 6, 2020 FCC ID : 2AOJA-PTS ### **DASY5 Validation Report for Body TSL** Date: 14.03.2019 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1030 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.17$ S/m; $\varepsilon_r = 50.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(7.89, 7.89, 7.89) @ 2600 MHz; Calibrated: 31.12.2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 04.10.2018 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.7 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.06 W/kgMaximum value of SAR (measured) = 22.9 W/kg 0 dB = 22.9 W/kg = 13.60 dBW/kg Certificate No: D2600V2-1030_Mar19 Page 7 of 8 : 13274888H-G-R1 : 151 of 209 : April 6, 2020 : 2AOJA-PTS # Impedance Measurement Plot for Body TSL Certificate No: D2600V2-1030_Mar19 Page 8 of 8 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN : 13274888H-G-R1 : 152 of 209 April 6, 2020 2AOJA-PTS ### System Check Dipole SAR Calibration Certificate -DipoleD5GHz (D5GHzV2 S/N: 1020) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates UL Japan (KYCOM) Certificate No: D5GHzV2-1020_Nov19 #### **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1020 Calibration procedure(s) QA CAL-22.v4 Calibration Procedure for SAR Validation Sources between 3-6 GHz Calibration date: November 19, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration SN: 104778 Power meter NRP 03-Apr-19 (No. 217-02892/02893) Apr-20 Power sensor NRP-Z91 SN: 103244 03-Apr-19 (No. 217-02892) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-19 (No. 217-02894) Apr-20 SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) Type-N mismatch combination Apr-20 Reference Probe EX3DV4 SN: 3503 25-Mar-19 (No. EX3-3503_Mar19) Mar-20 DAE4 SN: 601 30-Apr-19 (No. DAE4-601_Apr19) Apr-20 Secondary Standards 1D# Check Date (in house) Scheduled Check SN: GB39512475 30-Oct-14 (in house check Feb-19) In house check: Oct-20 Power meter E4419B SN: US37292783 Power sensor HP 8481A 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20 SN: US41080477 Network Analyzer Agilent E8358A In house check: Oct-20 31-Mar-14 (in house check Oct-19) Name Function Calibrated by: Leif Klysner Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: November 20, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1020 Nov19 Page 1 of 13 : 13274888H-G-R1 : 153 of 209 : April 6, 2020 : 2AOJA-PTS Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1020_Nov19 Page 2 of 13 UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN : 13274888H-G-R1 : 154 of 209 : April 6, 2020 : 2AOJA-PTS ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.3 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5800 MHz ± 1 MHz | | ### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.49 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.3 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1020_Nov19 Page 3 of 13 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN : 13274888H-G-R1 : 155 of 209 : April 6, 2020 : 2AOJA-PTS # Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | To following parameters and | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 4.84 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.50 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 84.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.9 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.0 ± 6 % | 5.05 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1020_Nov19 Page 4 of 13 : 13274888H-G-R1 : 156 of 209 : April 6, 2020 : 2AOJA-PTS # Body TSL parameters at 5250 MHz The following parameters and calculations were applied. | The following parameters and earoanations were appropriate | Temperature | Permittivity | Conductivity | |------------------------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.0 ± 6 % | 5.51 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.67 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 76.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | To following particular to the | Temperature | Permittivity | Conductivity | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.4 ± 6 % | 5.99 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 80.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.24 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.2 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1020_Nov19 Page 5 of 13 : 13274888H-G-R1 : 157 of 209 : April 6, 2020 : 2AOJA-PTS # Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | the following parameters and salogizations were upp | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.0 ± 6 % | 6.26 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.65 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 75.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.11 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.9 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1020_Nov19 Page 6 of 13 Test report No. : 13274888H-G-R1 Page : 158 of 209 Issued date : April 6, 2020 FCC ID : 2AOJA-PTS # Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 50.9 Ω - 8.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.9 dB | # Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 54.7 Ω - 3.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.5 dB | # Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 57.2 Ω + 1.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.3 dB | # Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 51.0 Ω - 6.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.3 dB | # Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 54.8 Ω - 2.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.9 dB | # Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 57.7 Ω + 2.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.6 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.199 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D5GHzV2-1020_Nov19 Page 7 of 13 : 13274888H-G-R1 : 159 of 209 : April 6, 2020 : 2AOJA-PTS ### **DASY5 Validation Report for Head TSL** Date: 18.11.2019 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1020 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f=5250 MHz; $\sigma=4.49$ S/m; $\epsilon_r=34.8;$ $\rho=1000$ kg/m³ , Medium parameters used: f=5600 MHz; $\sigma=4.84$ S/m; $\epsilon_r=34.3;$ $\rho=1000$ kg/m³ , Medium parameters used: f = 5600 MHz; σ = 4.84 S/m; ϵ_r = 34.3; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.05 S/m; ϵ_r = 34; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.4, 5.4, 5.4) @ 5250 MHz, ConvF(4.95, 4.95, 4.95) @ 5600 MHz, ConvF(4.96, 4.96, 4.96) @ 5800 MHz; Calibrated: 25.03.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.04.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.97 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 28.4 W/kg SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.35 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.3% Maximum value of SAR (measured) = 18.8 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.98 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 8.50 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 67.6% Maximum value of SAR (measured) = 20.1 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.30 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 32.6 W/kg SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.3 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65.3% Maximum value of SAR (measured) = 19.8 W/kg Certificate No: D5GHzV2-1020_Nov19 Page 8 of 13 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 13274888H-G-R1 Page : 160 of 209 Issued date : April 6, 2020 FCC ID : 2AOJA-PTS 0 dB = 19.8 W/kg = 12.97 dBW/kg Certificate No: D5GHzV2-1020_Nov19 Page 9 of 13 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 13274888H-G-R1 Page : 161 of 209 Issued date : April 6, 2020 FCC ID : 2AOJA-PTS ### Impedance Measurement Plot for Head TSL Certificate No: D5GHzV2-1020_Nov19 Page 10 of 13 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 13274888H-G-R1 Page : 162 of 209 Issued date : April 6, 2020 FCC ID : 2AOJA-PTS ### **DASY5 Validation Report for Body TSL** Date: 19.11.2019 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1020 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5250 MHz; σ = 5.51 S/m; ϵ_r = 47; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.99 S/m; ϵ_r = 46.4; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.26 S/m; ϵ_r = 46; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.74, 4.74, 4.74) @ 5600 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 25.03.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.04.2019 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.82 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.7 W/kg SAR(1 g) = 7.67 W/kg; SAR(10 g) = 2.14 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.8% Maximum value of SAR (measured) = 18.0 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.78 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 34.8 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.24 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.5% Maximum value of SAR (measured) = 19.8 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.62 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 33.7 W/kg SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.11 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62.9% Maximum value of SAR (measured) = 19.0 W/kg Certificate No: D5GHzV2-1020_Nov19 Page 11 of 13 UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 13274888H-G-R1 Page : 163 of 209 Issued date : April 6, 2020 FCC ID : 2AOJA-PTS 0 dB = 18.0 W/kg = 12.56 dBW/kg Certificate No: D5GHzV2-1020_Nov19 Page 12 of 13 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN : 13274888H-G-R1 : 164 of 209 : April 6, 2020 : 2AOJA-PTS # Impedance Measurement Plot for Body TSL Certificate No: D5GHzV2-1020_Nov19 Page 13 of 13 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN : 13274888H-G-R1 : 165 of 209 : April 6, 2020 : 2AOJA-PTS ### Dosimetric E-Field Probe Calibration Certificate (EX3DV4, S/N: 3917) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL Japan (KYCOM)** Certificate No: EX3-3917_May19 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3917 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: May 15, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-19 (No. 217-02894) | Apr-20 | | DAE4 | SN: 660 | 19-Dec-18 (No. DAE4-660_Dec18) | Dec-19 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-18 (No. ES3-3013_Dec18) | Dec-19 | | | | | | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | Name | Function | Signature | |----------------|-----------------------|--------------------------------------| | Jeton Kastrati | Laboratory Technician | Jelle 1 | | Katja Pokovic | Technical Manager | sells | | | | Issued: May 16, 2019 | | | Jeton Kastrati | Jeton Kastrati Laboratory Technician | Certificate No: EX3-3917 May19 Page 1 of 20