EMC Technologies Pty. Ltd. ABN 82 057 105 549 Melbourne Sydney 176 Harrick Road Keilor Park, Vic 3042 Tel: +61 3 9365 1000

Unit 3/87 Station Road Seven Hills, NSW 2147 Tel: +61 2 9624 2777

Email: emc-general@emctech.com.au Web: www.emctech.com.au

RADIO REPORT FOR CERTIFICATION 47 CFR PART 15 SUBPART C (SECTION 15.247)

Client: Device Under Test / PMN:

> Model Number / HVIN: FCC ID:

IMAGINASTIX PTY LTD LONE WORKER 2.0 (ANTENNA MODULE) LW2 ANTENNA 2AOJ3-LW2ANT-AU-US

Report Number: Date of Issue:

M170836-1 28 May 2018

EMC Technologies Pty Ltd reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. EMC Technologies Pty Ltd shall have no liability for any deductions, inferences or generalisations drawn by the client or others from EMC Technologies Pty Ltd issued reports. This report shall not be used to claim, constitute or imply product endorsement by EMC Technologies Pty Ltd.

NATA ac-MR/ Accreditation No.5292

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

TABLE OF CONTENTS

- 1.0 INTRODUCTION
- 2.0 GENERAL INFORMATION
- 3.0 TEST RESULTS
- 3.1 §15.203 Antenna Requirement
- 3.2 §15.207 Conducted Limits
- 3.3 §15.247(a1) Channel Separation
- 3.4 §15.247(a1) Number of channels and time of occupancy
- 3.5 §15.247(b) Peak Output Power
- 3.6 §15.205 Restricted Bands of Operation
- 3.7 §15.209 Radiated Emission Limits; General Requirements
- 3.8 §15.247(d) Out of Band Emissions
- 3.9 §15.247(i) Radio Frequency Exposure (Hazard) Information
- 3.10 §2.1049 Occupied bandwidth 99% power
- 4.0 COMPLIANCE STATEMENT
- 5.0 MEASUREMENT UNCERTAINTY

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

Page 3 of 34

Report Number: M170836-1 FCC ID: 2AOJ3-LW2ANT-AU-US

RADIO REPORT CERTIFICATE OF COMPLIANCE

Device / PMN: Model Number / HVIN: Manufacturer:	Lone Worker 2.0 (Antenna Module) LW2 Antenna Wavetronics Pty Ltd
Tested for: Address: Phone: Contact: Email:	Imaginastix Pty Ltd 57 Crawshaw Crescent, Manning, WA 6152 0402 300 800 Steve Melitzky stevem@imaginastix.com
Standards:	47 CFR Part 15 – Radio Frequency Devices Subpart C – Intentional Radiators Section 15.247 – Operation within the bands 902-928 MHz, 2400- 2483.5 MHz, and 5725-5850 MHz
Result:	The Lone Worker 2.0 (Antenna Module) complied with the applicable requirements of 47 CFR Part 15 Subpart C for a Frequency Hopping Spread Spectrum transceiver.
Test Dates:	30 August 2017 to 30 January 2018
Issue Date:	28 May 2018
Issued by:	EMC TECHNOLOGIES PTY. LTD., 176 Harrick Road, Keilor Park, VIC 3042, Australia. Phone: +61 3 9365 1000, Web: www.emctech.com.au
Test Officer:	William Alam Ian Ng

Test Engineer

Test Engineer

. Compler

Authorised Signatory:

Chris Zombolas **Technical Director**

Attestation:

I hereby certify that the device(s) described herein were tested as described in this report and that the data included is that which was obtained during such testing.

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

RADIO REPORT FOR CERTIFICATION to 47 CFR Part 15 Subpart C (section 15.247) and

1.0 INTRODUCTION

Radio tests were performed on the Lone Worker 2.0 (Antenna Module) in accordance with the applicable requirements of 47 CFR, Part 15 Subpart C – Section 15.247 for a Frequency Hopping Spread Spectrum Transceiver (FHSS) operating within the band 902 to 928 MHz.

1.1 Test Procedure

Radio measurements were performed in accordance with the appropriate procedures of ANSI C63.10: 2013.

The measurement instrumentation conformed to the requirements of ANSI C63.2: 2009.

1.2 Summary of 47 CFR Part 15 Subpart C Results

FCC	Test Performed	Results	
15.203	Antenna requirement	Complied	
15.205	Restricted bands of operation	Complied	
15.207	Conducted limits	Not Applicable	
15.209	Radiated emissions limits; general requirements	Complied	
15.247 (a)	Channel Separation	Complied	
	Number of channels and time of occupancy	Complied	
15.247 (b)	Peak Output Power	Complied	
15.247 (c)	Antenna Gain > 6 dBi	Not Applicable	
15.247 (d)	Out of Band Emissions	Complied	
15.247 (e)	Peak Power Spectral Density	Not Applicable	
15.247 (f)	Hybrid Systems	Not Applicable	
15.247 (g)	FHS with continuous data streams and short bursts	Complied	
15.247 (h)	Adaptivity	•	
15.247 (i) Radio Frequency Hazard		Complied	
2.1049	Occupied Bandwidth	Complied	

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

2.0 GENERAL INFORMATION

(Information supplied by the Client)

2.1 EUT (Transmitter) Details

Radio: Frequency Band: Frequency Range:	Frequency Hopping Spread Spectrum (FHSS) 902 to 928 MHz 916 to 927 MHz Ch. Low: 916.175 MHz Ch. Mid: 921.480 MHz Ch. High: 926.780 MHz			
Modulation: Emission Designator: Antenna type and gain:	FHSS X1D PCB Spring Antenna, Antenna gain unknown, assume 0 dBi			

2.2 EUT (Host) Details

Device under Test / PMN:	Lone Worker 2.0 (Antenna Module)
Model Number / HVIN:	LW2 Antenna
Manufacturer:	Wavetronics Pty Ltd
Power Supply:	5 VDC external supply

Product is a man-down or lone worker system that primarily includes a Remote worn by a worker that communicates with an Antenna Module in the vehicle to ensure that the user is within range and if required can provide reliable duress scenarios from the worker to the vehicle including GPS position of the worker.

2.3 Test Configuration

The EUT was configured to transmit at lowest, middle, highest frequency and hopping mode.

2.4 Modifications by EMC Technologies

No modifications were performed.

2.5 Test Facility

2.5.1 General

EMC Technologies Pty Ltd has also been accredited as a Conformity Assessment Body (CAB) by Australian Communications and Media Authority (ACMA) under the APECTEL MRA and is designated to perform compliance testing on equipment subject to Declaration of Conformity (DoC) and Certification under Parts 15 and 18 of the FCC Commission's rules – **Registration Number 494713 & Designation number AU0001.**

EMC Technologies indoor open are test site (iOATS) have been accepted by Industry Canada for the performance of radiated measurements in accordance with RSS-Gen, Issue 8 - Industry Canada iOATS number - IC 3569B

Measurements in this report were performed at EMC Technologies' laboratory in Keilor Park, Victoria Australia.

2.5.2 NATA Accreditation

EMC Technologies is accredited in Australia by the National Association of Testing Authorities (NATA). All testing in this report has been conducted in accordance with EMC Technologies' scope of NATA accreditation.

NATA is the Australian National laboratory accreditation body and has accredited EMC Technologies to IEC/ISO17025. A major requirement for accreditation is the assessment of the company and its personnel as being technically competent in testing to the standards. This requires documented test procedures, continued calibration of measurement equipment, traceable to the National Standard at the National Measurements Institute (NMI) and an internal quality system to ISO 9002. NATA has mutual recognition agreements with the National Voluntary Laboratory Accreditation Program (NVLAP) and the American Association for Laboratory Accreditation (A²LA).

The current full scope of accreditation can be found on the NATA website: www.nata.com.au

2.6 Test Equipment Calibration

Measurement instrumentation and transducers were calibrated in accordance with the applicable standards by an independent NATA registered laboratory such as Agilent Technologies (Australia) Pty Ltd or the National Measurement Institute (NMI) or in-house. All equipment calibration is traceable to Australian national standards at the National Measurements Institute.

Equipment Type	Make/Model/Serial Number	Last Cal. dd/mm/yyyy	Due Date dd/mm/yyyy	Cal. Interval
Chamber	Frankonia SAC-10-2 (R-139)	22/03/2017	22/03/2018	1 Year, *1
EMI Receiver	R&S ESW26, 2 Hz – 26.5 GHz Sn: 101306 (R-143)	31/03/2017	31/03/2018	1 Year, *2
Antennas	EMCO 6502 Active Loop 9 kHz – 30 MHz Sn. 9311-2801 (A-231)	20/07/2015	20/07/2018	3 Year, *2
	SUNOL JB6 Biconilog 30 – 6000 MHz Sn. A012312 (A-363)	26/05/2016	26/05/2018	2 Year, *2
	EMCO 3115 Double Ridge Horn 1 – 18 GHz Sn: 8908-3282 (A-004)	15/07/2016	15/07/2019	3 Year, *1
Cables	Room 12 inbuilt cable Panel 1 to 10 m (C-422)	31/05/2017	31/05/2018	1 Year, *1
	Room 12 inbuilt cable Panel 1 to 3 m (C-421)	31/05/2017	31/05/2018	1 Year, *1
	Room 12 Antenna cable (C-437)	31/05/2017	31/05/2018	1 Year, *1
	Sucoflex 104 Huber & Suhner 18 GHz, 5 m cable (C-337)	03/01/2017	03/01/2018	1 Year, *1

Note *1. Internal NATA calibration. Note *2. External NATA / A2LA calibration

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

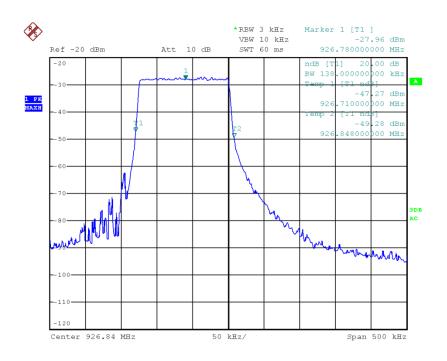
3.0 TEST RESULTS

3.1 §15.203 Antenna Requirement

The antenna was internal to the device ensuring that it could not be replaced.

3.2 §15.207 Conducted Limits

The device did not connect directly or indirectly to the AC mains network.

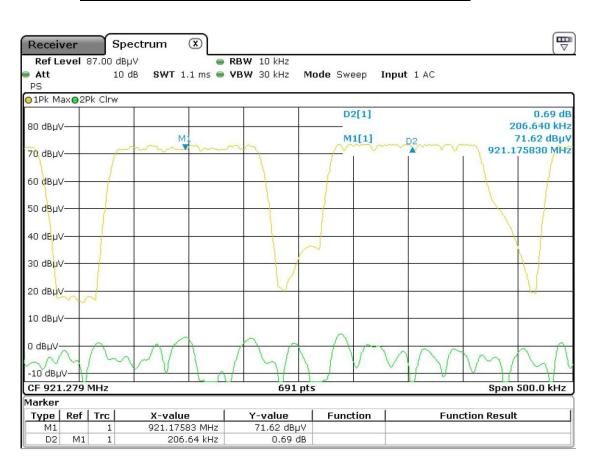

3.3 §15.247(a1) Channel Separation

In the band 902 – 928 MHz, the channel separation must be more than 25 kHz or the 20 dB bandwidth, whichever is greater.

20 dB Emission Bandwidth

Centre Frequency [MHz]	20 dB Bandwidth [kHz]
916.175	138.0
921.480	137.0
926.780	138.0

The largest 20 dB bandwidth was measured on highest channel:

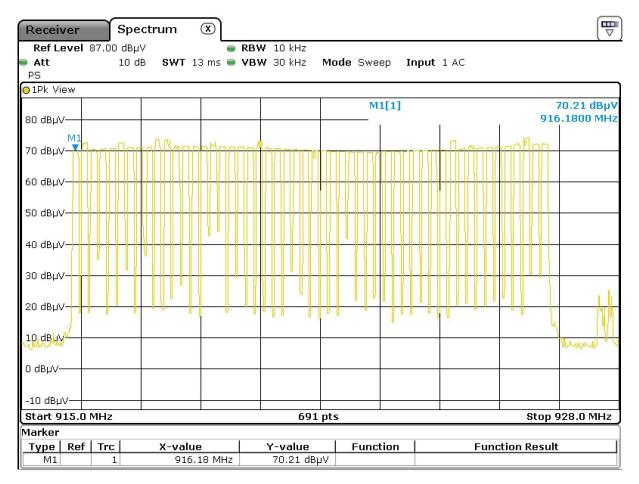


Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

Channel Separation

Channel Separation [kHz]	Limit [kHz]	Result
206.64	159.80	Complied

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to

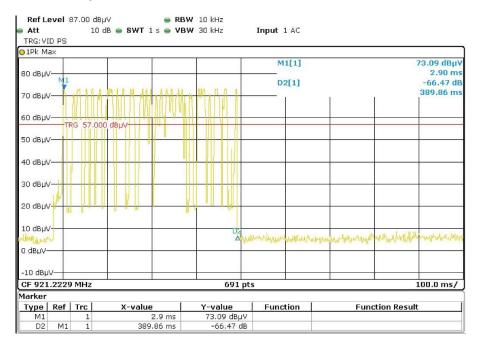

Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

3.4 §15.247(a1) Number of channels and time of occupancy

Number of Channels

There must be at least 50 hopping channels employed by devices operating in the band 902-928 MHz. The Lone Worker 2.0 (Antenna Module) utilised 52 channels:

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.


Time of Occupancy

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20 seconds period.

On time of one pulse = Number of pulses in 20 seconds = Total on time in 20 seconds =

= 389.86 ms = 1 pulse = **389.86 ms** (limit = 400 ms)

Duration of one pulse:

Pulses in 20 seconds:

)1Pk Max	S					
30 dBµV				M1[1]	т	72.31 dBµ 0.0000 :
7 <mark>0</mark> dBµV						
50 dBµV-TRG	57.000 dBµV					
5 <mark>0</mark> dBµV						
4 <mark>0</mark> dBµV						
30 dвµv						
20 dBµV	and marked and and and and and and and and and an	Anderen My Here A	henrichterheitenden	artificana the associated	Anon Jon Min ashindan	a her marked and the market and
10 dBµV						
) dвµV						
-10 dBµV						
CF 921.2229 N	1Hz		691 pt	s		2.0 s/

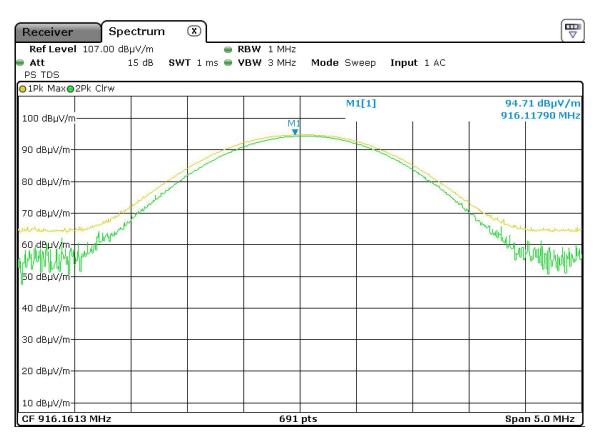
Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

3.5 §15.247(b3) Peak Output power

Testing was performed in a semi-anechoic chamber at a distance of 10 metres. Different configurations of EUT and antenna polarization were investigated to produce highest emission EIRP and the EUT was set to transmit in continuous transmission mode without modulation.

Results:

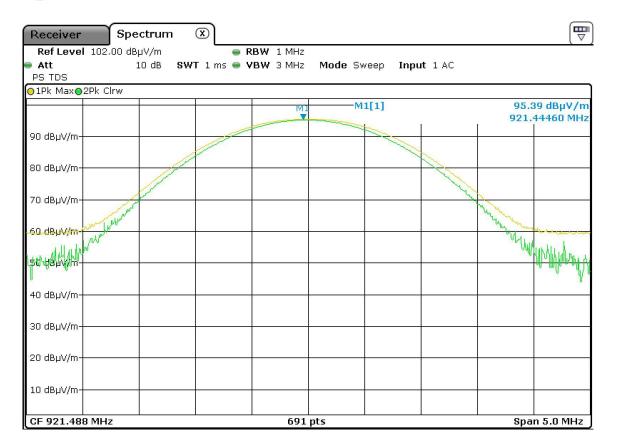
Freq.	q. 10 m Field EIRP		Limit	Ant. Gain	Conduct	ed power	Limit	Margin	
(MHz)	(dBµV/m)	(dBm)	(W)	(W)	(dBi)	(dBm)	(W)	(W)	(W)
916.175	94.71	9.94	0.010	4	0	9.94	0.010	1	-0.999
921.480	95.39	10.62	0.012	4	0	10.62	0.012	1	-0.988
926.780	96.18	11.41	0.014	4	0	11.41	0.014	1	-0.986

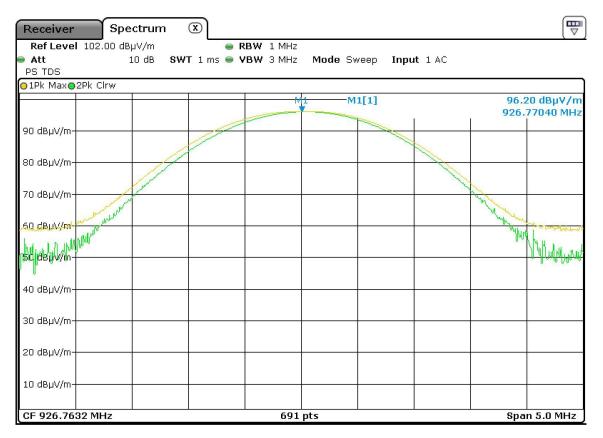

dBµV/m to dBm conversion:

$$E = 20.\log\left(\frac{\sqrt{30.P}}{d}\right) + 120$$

Where: $E = \text{electric field strength } (dB\mu V/m)$

P = EIRP in Watts


d = measurement distance in metres


Channel 916.175 MHz

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

Channel 921.480 MHz

Channel 926.780 MHz

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

3.6 §15.205 Restricted Bands of Operation

The restricted band limits were applied.

3.7 §15.209 Radiated emission limits; general requirements

The limits given in §15.247 applied, however attenuation below the general levels was not required.

3.8 §15.247(d) Out of Band Emissions

3.8.1 Radiated Spurious Measurements

Radiated spurious emission measurements were performed in a semi-anechoic chamber compliant with ANSI C63.4: 2014.

The test frequency range was sub-divided into smaller bands with sufficient frequency resolution to permit reliable display and identification of emissions.

Frequency range [MHz]	Measurement Bandwidth [kHz]	Measurement Distance [m]	Antenna
0.009 to 0.150	0.2	10	0.6 motro loop
0.150 to 30	9	10	0.6 metre loop
30 to 1000	120	10	Biconilog hybrid
1000 to 18 000	1000	3	Standard gain or broad
18 000 to 40 000	1000	1	band horns

The sample was slowly rotated with the spectrum analyser set to Max-Hold. This was performed for at least two antenna heights. When an emission was located, it was positively identified and its maximum level found by rotating the automated turntable and by varying the antenna height. Devices design for a fixed position were tested in that position, portable devices were tested in three orthogonal orientations.

The measurement data for each frequency range was corrected for cable losses, antenna factors and preamplifier gain. This process was performed for both horizontal and vertical antenna polarisations.

Calculation of field strength

The field strength was calculated automatically by the software using the pre-stored calibration data. The method of calculation is shown below:

E = V + AF - G + L

Where: E = Radiated Field Strength in dBµV/m.

V = EMI Receiver Voltage in $dB\mu V/m$.

AF = Antenna Factor in dB. (stored as a data array)

G = Preamplifier Gain in dB. (stored as a data array)

L = Cable loss in dB. (stored as a data array of Insertion Loss versus frequency)

Field strength conversion over distance

To convert a limit given at a certain distance to a limit at the measurement distance or vice-versa the following equation was applied:

$$E_x = 20 \times \log\left(\frac{d_y \times 10^{E_y/20}}{d_x}\right)$$

Where: $E_x = Electric field at x metres (dB\mu V/m)$

 $E_y = Electric field at y metres (dB\mu V/m)$

d_x = Measurement distance of x metres

dy = Measurement distance of y metres

3.8.2 Spurious Emission Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

Channel	100 kHz BW		Limit	
[MHz]	Power at 10 m	10 m	3 m	1 m
[]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dBµV/m]
926.780	96.1	76.1	86.6	96.1

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

3.8.3 Radiated Spurious Emission Tabulated Results

Frequency Band: 9 kHz - 30 MHz

Limit 15.209 was applied over the full range, 9 kHz to 30 MHz.

Channel	Polarity	Frequency	Quasi-Peak	[dBµV/m]	Limit	Morgin
[MHz]		[MHz]	10 m (Meas.)	0 m (Meas.) 30 m (Calc.)		Margin [dB]
916.175	G-Para.	16.656	22.7	13.2	30	-16.8

Frequency Band: 30 - 1000 MHz

Limit 15.209 was applied over the full range, 30 MHz to 1000 MHz.

Channel	Polarity	Eroguopov	Quasi-Peak	[dBµV/m]	Limit	Morgin
[MHz]		Frequency [MHz]	10 m (Meas.)	3 m (Calc.)	[dBµV/m]	Margin [dB]
926.780	Vertical	929.00	40.5	51.0	92.2	41.2
920.760	Vertical	211.29	26.0	36.5	92.2	55.7

Frequency Band: 1 000 – 10 000 MHz

Average Detector Results:

Average measurements were determined according to ANSI C63.10:2013 clause 7.5. Duty cycle correction factor was applied to peak values to determine average values.

$$\delta(dB) = 20 \log(\Delta)$$


Where: $\delta(dB)$ = -31.14 Δ = 3.11%

Channel [MHz]	Polarity	Frequency [GHz]	3 m Average [dBµV/m]	Limit [dBµV/m]	Margin [dB]
916.175	Vertical	7.320	31.1	54.0	-22.9
921.480	Vertical	7.372	30.6	54.0	-23.4
921.480	Horizontal	2.764	29.2	54.0	-24.8
926.780	Horizontal	2.780	29.0	54.0	-25.0
916.175	Horizontal	2.478	28.6	54.0	-25.4
926.780	Vertical	7.414	28.3	54.0	-25.7
921.480	Vertical	2.764	27.9	54.0	-26.1
916.175	Vertical	2.740	27.9	54.0	-26.1
916.175	Horizontal	8.245	27.4	54.0	-26.6
916.175	Vertical	3.664	27.2	54.0	-26.8
921.480	Vertical	3.686	27.2	54.0	-26.8
921.480	Horizontal	8.294	26.7	54.0	-27.3
916.175	Vertical	9.162	26.7	54.0	-27.3
916.175	Horizontal	7.330	26.5	54.0	-27.5
926.780	Horizontal	7.414	26.2	54.0	-27.8
916.175	Horizontal	3.664	25.6	54.0	-28.4
926.780	Vertical	3.707	24.0	54.0	-30.0
926.780	Horizontal	8.341	23.8	54.0	-30.2
921.480	Horizontal	3.685	23.4	54.0	-30.6
916.175	Horizontal	9.162	23.2	54.0	-30.8
916.175	Vertical	8.246	23.0	54.0	-31.0
926.780	Vertical	8.341	22.7	54.0	-31.3
921.480	Horizontal	4.607	22.6	54.0	-31.4
921.480	Vertical	8.294	21.8	54.0	-32.2
916.175	Vertical	7.320	31.1	54.0	-22.9
921.480	Vertical	7.372	30.6	54.0	-23.4
921.480	Horizontal	2.764	29.2	54.0	-24.8

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

Peak Detector Results:

Channel [MHz]	Polarity	Frequency [GHz]	3 m Peak [dBµV/m]	Limit [dBµV/m]	Margin [dB]
916.175	Vertical	7.320	61.2	74.0	-12.8
921,480	Vertical	7.372	60.7	74.0	-13.3
926.780	Vertical	7.414	59.3	74.0	-14.7
916.175	Horizontal	8.245	59.1	74.0	-14.9
916.175	Vertical	9.162	58.7	74.0	-15.3
921.480	Horizontal	8.293	58.4	74.0	-15.6
916.175	Horizontal	9.162	58.0	74.0	-16.0
926.780	Horizontal	8.340	58.0	74.0	-16.0
916.175	Vertical	8.246	57.5	74.0	-16.5
921.480	Vertical	8.294	57.3	74.0	-16.7
926.780	Vertical	8.340	57.3	74.0	-16.7
916.175	Horizontal	7.330	56.8	74.0	-17.2
921.480	Horizontal	2.764	56.8	74.0	-17.2
926.780	Horizontal	2.780	56.6	74.0	-17.4
916.175	Horizontal	2.748	56.3	74.0	-17.7
926.780	Horizontal	7.414	55.7	74.0	-18.3
916.175	Vertical	3.664	54.1	74.0	-19.9
921.480	Vertical	3.686	53.9	74.0	-20.1
921.480	Vertical	2.764	53.5	74.0	-20.5
916.175	Vertical	2.740	53.3	74.0	-20.7
916.175	Horizontal	3.664	53.1	74.0	-20.9
921.480	Horizontal	3.685	52.8	74.0	-21.2
926.780	Vertical	3.707	52.7	74.0	-21.3
921.480	Horizontal	4.607	51.9	74.0	-22.1
916.175	Vertical	7.320	61.2	74.0	-12.8
921.480	Vertical	7.372	60.7	74.0	-13.3
926.780	Vertical	7.414	59.3	74.0	-14.7

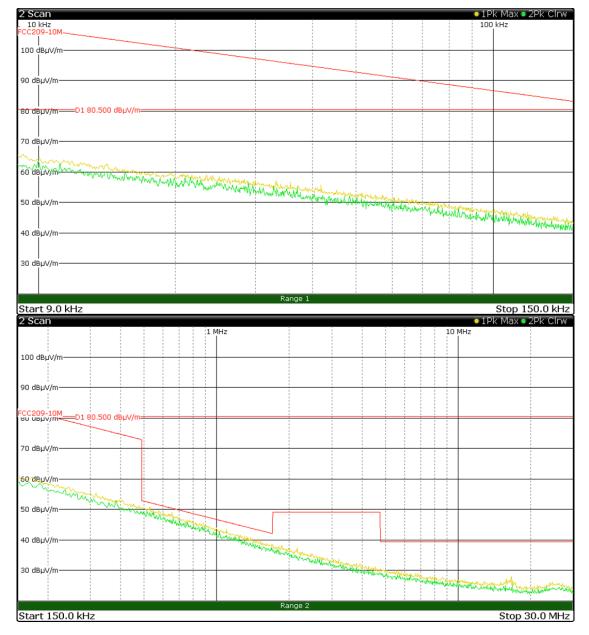
Band-edge measurement results:

Channel [MHz]	Frequency [GHz]	10 m Peak [dBµV/m]	Limit [dBµV/m]	Margin [dB]
916.175	902.000	29.93	76.1	-46.17
926.780	928.000	29.17	76.1	-46.93
926.780	928.000	33.04	76.1	-43.06

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

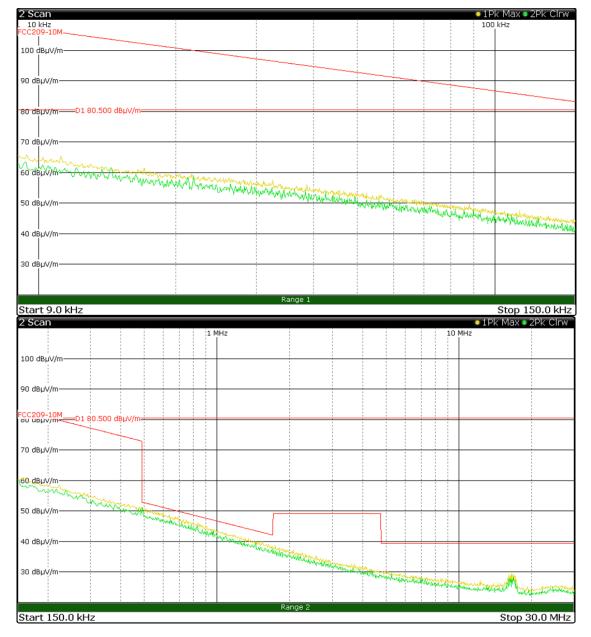
3.8.4 Frequency Band: 9 kHz - 30 MHz

Measurements were made at a distance of 10 metres. The measurement of emissions between 9 kHz – 150 kHz were made with a resolution bandwidth (RBW) of 200 Hz and the video bandwidth (VBW) of 3 kHz, 150 kHz – 30 MHz were measured with the resolution bandwidth (RBW) of 9 kHz and the video bandwidth (VBW) of 30 kHz. Measurements were made with the loop antenna oriented perpendicular, parallel and ground-parallel with respect to the sample. The emissions with the sample transmitting on the lowest, middle and highest channels were measured. Only the graphs of maximum emissions have been reported.



Channel 916.175 MHz - Parallel

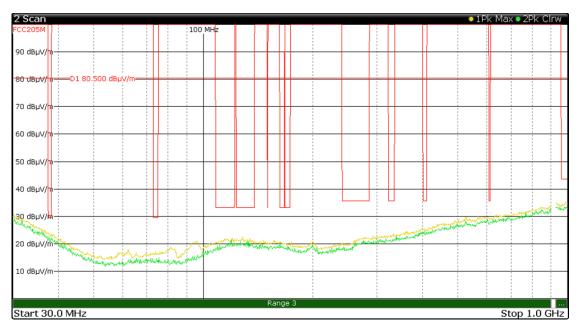
Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.



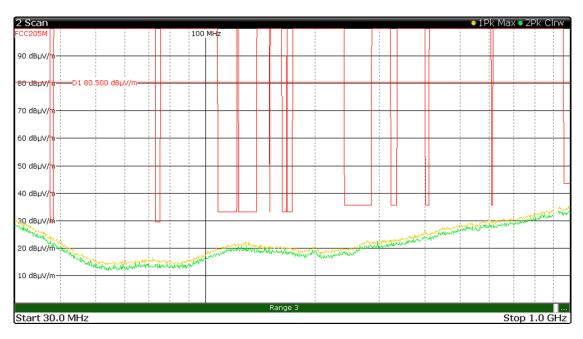
Channel 916.175 MHz - Perpendicular

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

Channel 916.175 MHz – Ground Parallel



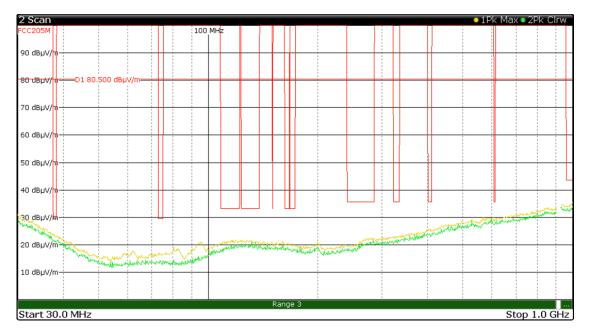
Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.



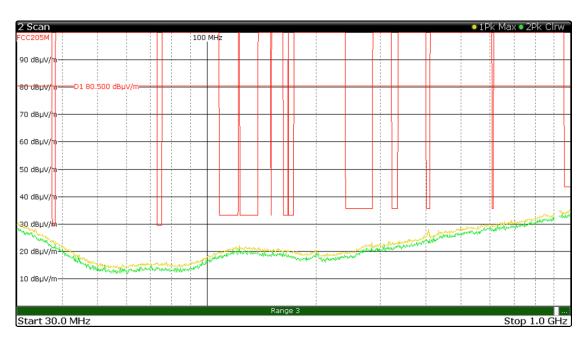
3.8.5 Frequency Band: 30 - 1000 MHz

Measurements were made at a distance of 10 metres. The measurement of emissions between 30 - 1000 MHz were made with a resolution bandwidth (RBW) of 120 kHz and the video bandwidth (VBW) of 300 kHz.

Channel 916.175 MHz - Vertical

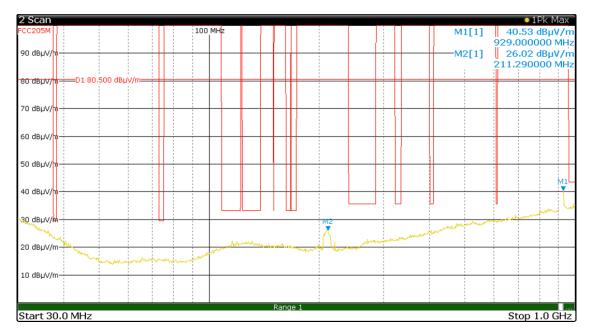


Channel 916.175 MHz - Horizontal

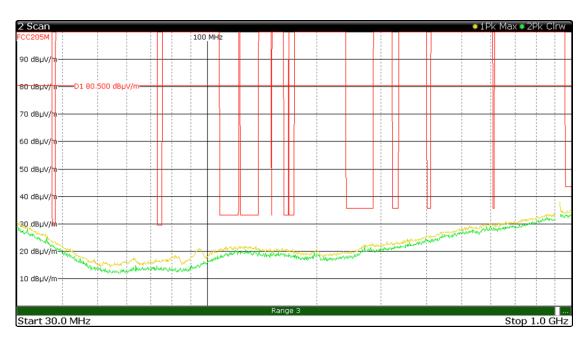


Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

Channel 921.480 MHz - Vertical



Channel 921.480 MHz - Horizontal



Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

Channel 926.780 MHz - Vertical

Channel 926.780 MHz - Horizontal

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

3.8.6 Frequency Band: 1 000 – 10 000 MHz

Measurements to 10 GHz were made at a distance of 3 metres. The measurements were made with a resolution bandwidth (RBW) of 1000 kHz and the video bandwidth (VBW) of 1000 kHz.

2 Scan												M1	[1]	60	ax • 2A 0.90 dE	Βμν/
90 dBµV/m														7.329	25000	JU GI
10 dBµV/m																
C205G-PK					╇┩╽	-							Ц			-
СС205G-PK 'U авµv/m																
										- (]						M1
i0 dBµV/m												1		-		-
								I L								
CC205G-AV											- Andrew	mar and a start way an	had	and and set the	maker	
							myanna	ورغابه ورمرساراي	Internet	NUMP						
o do. 47(moun	heperson	howards	reading and a second							1			
Ю dBµV/m— ՆՆԴՆՆՆՆՆՆ	mann	Allera Bleed								www.	In mar	5	Jon		m	
									Inner	all designed and all all all all all all all all all al						
10 dBµV/m				hermon	~******	and the second						-				_
30 dBµV/m	www.	han														
0 dBµV/m												-		_		
0 dBµV/m				1												
																TF
						Ranç	ie 3									
						Ranç	e 3								top 8.	
Start 1.0 GHz						Rang	e 3				_			.Pk Ma	ax 🔍 2A'	v Ma
Scan						Rang	e 3			-		M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
Scan C205G-AV				•		Ranç	e3					M1	[2]	Pk Ma. 49	ax 🔍 2A'	v Ma BµV/
Scan CC205G-AV						Rang	e 3					M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
Scan CC205G-AV 0 dBµV/m						Ranç	e 3					M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
						Ranç	e 3					M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
Scan C205G-AV 0 dBµV/m						Ranç	e 3					M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
2 Scan C205G-AV 0 dBµV/m						Ranç	e 3					M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
Scan CC205G-AV 0 dBµV/m						Rang	e 3					M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
Scan cc2056-AV 0 dBµV/m 0 dBµV/m						Ranç	e 3					M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
Scan C2205G-AV 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m						Rane						M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
Scan C2205G-AV 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m												M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
2 Scan CC205G-AV 0 dBµV/m 0 dBµV/m 0 dBµV/m				- 		Rang						M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
Scan C2205G-AV 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m				·		Rang						M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
Scan C2205G-AV 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m												M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma B <mark>µV</mark> /
Scan C2205G-AV 0 dBµV/m	, , , , , , , , , , , , , , , , , , ,											M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
Scan C2205G-AV 0 dBµV/m						Rane						M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
Scan C2056-AV 0 dBµV/m						Ranc						M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
Scan C2205G-AV 0 dBµV/m						Ranc						M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
Scan C2205G-AV 0 dBµV/m												M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
Scan C2205G-AV 0 dBµV/m 0 dBµV/m						Ranc						M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
Scan C2205G-AV 0 dBµV/m 0 dBµV/m						Ranc						M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/
Scan C2205G-AV 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m						Ranc						M1	[2]	Pk Ma. 49	ax • 2A 9 .73 d	v Ma BµV/

Channel 916.175 - Vertical

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

2 Scan										N	11[1]		2Av i 4 dBµ	V/r
90 dBµV/m	-				+							э.	00430		
30 dBµV/m															
СС205G-PK U авру/m															
i0 dBµV/m															
C205G-AV U dBµV/m		┛╽			IL		11 4	1			Ľ		wan m	vernet	~~~
U dBµV/m						mungman	notewnoother	-and the for the share by the s	and and a second se			, A.M.C.			
0 dBµV/m	Murray Martin	mangar ch	mahren	mande	Maket And										
0 dBµV/m ••• ••• •••									mm	m		have	$\neg \psi$		
0 dBµV/m	1	mun	mann		and a state of the second										
o abpv/m															
0 dBµV/m															
													 TF		
										1			15		
					Ra	inge 3							01	0.0	
Start 1.0 GHz					Ra	inge 3						• 1 Pk		o 8.0 2Av 1	
2 Scan					Ra	inge 3				N	41[:	2]	(Max (47.7) 2Av (6 dBµ	vla: V/I
2 Scan cc205G-AV					R	inge 3				N	И1[: -	2]	(Max 🤇) 2Av (6 dBµ	vla: V/I
2 Scan CC205G-AV			:		R	inge 3				N	и1[: 	2]	(Max (47.7) 2Av (6 dBµ	vla: V/
Start 1.0 GHz 2 Scan СС205G-AV 0 dBµV/m					Ra	inge 3				N	и1[: 	2]	(Max (47.7) 2Av (6 dBµ	vla» V/i
2 Scan CC205G-AV 0 dBµV/m					R	inge 3				N	M1[:	2]	(Max (47.7) 2Av (6 dBµ	vla: V/I
2 Scan CC205G-AV 20 dBµV/m					R	Inge 3				N	и1[: 	2]	(Max (47.7) 2Av (6 dBµ	vla» V/i
2 Scan cc2056-AV 0 dBµV/m			i an Mar		Re						M1[:	2]	(Max (47.7) 2Av (6 dBµ	vla: V/I
2 Scan CC205G-AV 0 dBµV/m			; 		R		MI				И1[:	2]	(Max (47.7) 2Av (6 dBµ	vla: V/
Scan CC2056-AV 0 dBµV/m			; 		Ra Wintelayung							2]	(Max (47.7) 2Av (6 dBµ	vla: V/
Scan CC2056-AV 0 dBµV/m			;		R:						и1[:	2]	(Max (47.7) 2Av (6 dBµ	vla V/
Scan CC2056-AV 0 dBµV/m					R:						M1[:	2]	(Max (47.7) 2Av (6 <mark>d</mark> Bµ	vla: V/
Scan CC2056-AV 0 dBµV/m					R:							2]	(Max (47.7) 2Av (6 <mark>d</mark> Bµ	vla: V/
C2205G-AV 0 dBµV/m			: 		P.							2]	(Max (47.7) 2Av (6 <mark>d</mark> Bµ	vla: V/
Scan C22056-AV 0 dBµV/m 0 dBµV/m			; ,		R:							2]	(Max (47.7) 2Av (6 <mark>d</mark> Bµ	vla: V/
Scan C22056-AV 0 dBµV/m					R:							2]	(Max (47.7) 2Av (6 <mark>d</mark> Bµ	vla: V/I

Channel 916.175 - Horizontal

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

															<u> </u>	′к іма	x 🔍 2A'	v ivia:
													N	11[1] 3		.04 dE 00000	
90 dBµV/m										_						-	-	
30 dBµV/m			╉╢─															
CC205G-PK			\mathbf{H}		_	╉┥												
СС205G-РК ′U авµv/m																		
i0 dBµV/m				1						М1								
СС205G-AV 50 dBµV/m							U		1.11	· •			when	ГЦ М.	فريسايا	hur	mapan	┉┞╋┯┯┷
о иврулі								. And the	pageround the set	werdenter		w		- Che				
Ю dBµV/m				mound	www.	and a	hanna	V										
፥ዐ dBµV/m ኣ.ኢ.ላሌት _ህ ላበአቀላሳ	www.	July and the second second									mon	mul	m	~~~~	Jan	+	m	
				-				munt	and a second second									
30 dBµV/m	m	mm	mm	NHAMMAN														
О dBµV/m																-		
.0 dBµV/m																		
								Range 3					1			1		TF
Start 1.0 Gł	Ηz															St	op 8.0	0 GH
2 Scan		_						_		_							x 🔍 2A'	
CC205G-AV													N	/1[2] 8		.15 dE 00000	
90 dBµV/m			_					_		I				1				
30 dBµV/m			_					_										
30 dBµV/m			-							_								
70 dBµV/m										_			-					
70 dBµV/m				4 4 4 4														~
70 dBµV/m	wheekerwowch			artur gerflerrik van	mujunk		Antrophysics	where an annual		- -		www.	gnan	-		pt. Human	a marine a	~.~~
0 dBµV/m				adve section de con	mugund	a free free free free free free free fre	hadrogons	ry algorithm of the second sec					gnar		hy	ht. Hanne		~^^~
0 dBµV/m 0 dBµV/m иссологосос 0 dBµV/m	M1	www.would.			myunda		hadrogram							•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(+\.)44m4		~~~~
0 dBµV/m 0 dBµV/m иссологосос 0 dBµV/m				atructerion			hadraghanga						gnan			(ntr.) (frynraddy		~.~~
0 dBµV/m 0 dBµV/m 10 dBµV/m 10 dBµV/m				afe perferience	muyu da					l-					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(~). (by ~ 4y		~
0 dBµV/m					nergiAc					l-			g nank			/st./kgr.ukg		
0 dBµV/m					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							·····						
D dBµV/m D dBµV/m O dBµV/m O dBµV/m O dBµV/m 0 dBµV/m					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								~~~~~	(~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
D dBµV/m D dBµV/m D dBµV/m D dBµV/m D dBµV/m 20 dBµV/m 20 dBµV/m					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·····									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14. Burney		~~~^^
80 dBµV/m 70 dBµV/m 50 dBµV/m 50 dBµV/m 40 dBµV/m 30 dBµV/m 20 dBµV/m 10 dBµV/m					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·····									~~~~~			

Channel 921.480 MHz - Vertical

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

										1[1]		ix • 2Av 5.40 dB	Ma
												50000	
0 dBµV/m													
0 dBµV/m													
СС205G-РК /U авру/m										Н			
о аврулі													
50 dBµV/m				M1 ▼									
]					Ц			J.
СС205G-AV bU dBµV/m							anather	wwwww	Marma	مەر <mark>بىرى</mark>	monor	provide the second	-
		6		Same and	and worked work	and		1					
10 dBµV/m-	Riter and the second second	hundrenne	happy										
10 dBµV/m-							_ www.	much	m	m	\rightarrow	1 m	
30 dBuV/m				- In the second	- Marine and a second								
io appoynt	mmm	Humann											
30 dBµV/m													
20 dBµV/m													
LO dBµV/m													
				Rang	- 2				1			1	
Start 1.0 GHz				Kang	83						S	top 8.0	GF
2 Scan										0	IPk Ma	x • 2Av	Ma
CC205G-AV													
CC2030-AV									M	1[2]	- 48	3.03 dB	цу/
									м	1[2]	48 8.341	8.03 dB 000000) GI
									м	1[2]	48 8.341	00000) GI
90 dBµV/m									м	1[2]	48 8.341	000000) Gł
90 dBµV/m									м	1[2]	48 8,341	000000) GI
									м	1[2]	48 8.341	000000) Gł
0 dBµV/m									M	1[2]	48 8.341	000000) GI
90 dBµV/m									M	1[2]	48 8.341	000000) GI
90 dBµV/m										1[2]	48 8.341) GI
0 dBµV/m										1[2]	48 8.341) GI
90 dBµV/m 90 dBµV/m 70 dBµV/m 50 dBµV/m		an the contract of the sec		mandran	and a state of the					1[2]	48.341		
0 dBµV/m 0 dBµV/m 70 dBµV/m 50 dBµV/m		ler hallender etter han an		mandra	and hy many strong strong				, М 	1[2]	48 8.341	5.03 dB 000000) GI
0 dBµV/m 0 dBµV/m 70 dBµV/m 50 dBµV/m		en for for the forest		mandra	umphry-tysey styles					1[2]	48		
0 dBµV/m 0 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						1[2]	48 8.341	.03 dB 000000	
90 dBµV/m 90 dBµV/m 70 dBµV/m 50 dBµV/m				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						1[2]	48 8.341	.03 dB 000000	
90 dBµV/m 90 dBµV/m 70 dBµV/m 50 dBµV/m 50 dBµV/m 40 dBµV/m				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						1[2]	48		
90 dBµV/m 90 dBµV/m 70 dBµV/m 50 dBµV/m 50 dBµV/m 50 dBµV/m											48 8.341		
0 dBµV/m 0 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m				~~~~~~						1[2]	48 8.341		
0 dBµV/m 0 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m				~~~~~			· · · · · · · · · · · · · · · · · · ·			1[2]	48 8.341		
0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 20 dBµV/m				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			· · · · · · · · · · · · · · · · · · ·		M		48 8.341		
0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 20 dBµV/m				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					M		48 8.341		
90 dBµV/m 90 dBµV/m 70 dBµV/m 50 dBµV/m 50 dBµV/m 40 dBµV/m				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			· · · · · · · · · · · · · · · · · · ·				48 8.341		

Channel 921.480 MHz - Horizontal

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

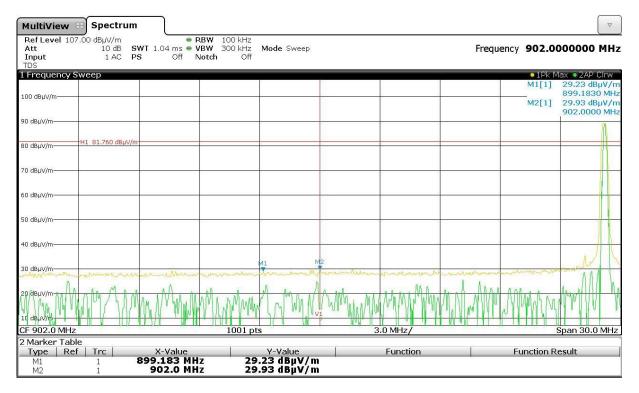
2 Scan										1Pk M	lax 🔍 2/	Av N	lax
								M	1[1]		52.84 (15000	dBu	V/m
90 dBµV/m													
80 dBµV/m					_		+		╢				_
FCC205G-PK /// авµv/m-													
60 dBµV/m													_
						_		_	Ц		. Into	, <u>M</u>	and a second
FCC205G-AV 50 dBµV/m					tur	man	www.www	m m	Hankad.	and the second	AN CAN	1	
		manhowen	where have been all and	hours when when when when when when when when	Manager 1								
40 dBµV/m-		White Stream and	the location of the location o						-	_	m		~
40 dBµV/m— Vyyddiadaethar wyddiadaethar daethar yw daeth					سليهر	monor	mouton	m n	م البرية	~	Salk 1		
30 dBµV/m		mannen	and a state of the second second		· · · · ·			_					
30 dBµV/m	man												
20 dBµV/m						_							
10 dBµV/m													
								TF					
			Rai	nge 3							a. a		
Start 1.0 GHz											Stop 8	5.U L	3HZ
2 Scan									6			Δ.v. N	
2 Scan FCC205G-AV								M		1Pk M	lax 🖲 2/		/lax
2 Scan FCC205G-AV								M	1[2]	1Pk M	lax • 2, 14.97 (dΒμ۱	lax <mark>V/m</mark>
								M		1Pk M	lax 🖲 2/	dΒμ۱	lax <mark>V/m</mark>
FCC205G-AV								M		1Pk M	lax • 2, 14.97 (dΒμ۱	lax <mark>V/m</mark>
FCC205G-AV 90 dBµV/m								M		1Pk M	lax • 2, 14.97 (dΒμ۱	lax <mark>V/m</mark>
FCC205G-AV 90 dBµV/m 80 dBµV/m 70 dBµV/m								M		1Pk M	lax • 2, 14.97 (dΒμ۱	lax <mark>V/m</mark>
FCC205G-AV 90 dBµV/m								M.		1Pk M	lax • 2, 14.97 (dΒμ۱	lax <mark>V/m</mark>
FCC205G-AV 90 dBµV/m 80 dBµV/m 70 dBµV/m 60 dBµV/m				Au normal day and a state of the state of th				M		1Pk M	lax • 2, 14.97 (dΒμ۱	lax <mark>V/m</mark>
FCC205G-AV 90 dBµV/m 70 dBµV/m 60 dBµV/m 50 dBµV/m 1		and the former of the start						M		1Pk M	lax • 2, 14.97 (dΒμ۱	lax <mark>V/m</mark>
FCC205G-AV 90 dBµV/m 80 dBµV/m 70 dBµV/m 60 dBµV/m	Articles		or on the second					M.		1Pk M	lax • 2, 14.97 (dΒμ۱	lax <mark>V/m</mark>
FCC205G-AV 90 dBµV/m 70 dBµV/m 60 dBµV/m 50 dBµV/m 1								M		1Pk M	lax • 2, 14.97 (dΒμ۱	lax <mark>V/m</mark>
FCC205G-AV 90 dBµV/m 80 dBµV/m 70 dBµV/m 60 dBµV/m 50 dBµV/m 40 dBµV/m	5.40 Acres().200							M		1Pk M	lax • 2, 14.97 (dΒμ۱	lax <mark>√/m</mark>
FCC205G-AV 90 dBµV/m 70 dBµV/m 60 dBµV/m 50 dBµV/m 40 dBµV/m 30 dBµV/m								M		1Pk M	lax • 2, 14.97 (dΒμ۱	lax <mark>√/m</mark>
FCC205G-AV 90 dBµV/m 80 dBµV/m 70 dBµV/m 60 dBµV/m 50 dBµV/m 40 dBµV/m 30 dBµV/m 10 dBµV/m								M		1Pk M	lax • 2, 14.97 (dΒμ۱	lax <mark>√/m</mark>
FCC205G-AV 90 dBµV/m 70 dBµV/m 60 dBµV/m 50 dBµV/m 40 dBµV/m 30 dBµV/m				Auron Marcallon Auron Au				M		1Pk M 2 8.34	lax • 2, 14.97 (dBµ۱)00 	

Channel 926.780 MHz - Vertical

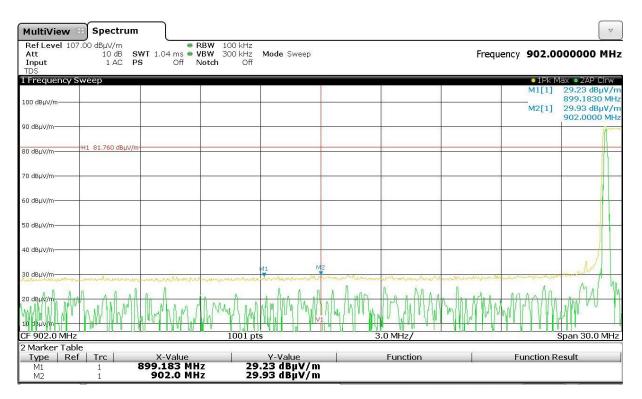
Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

2 Scan																	<u> </u>		x 🔍 2A		
																M1[1]	55 414	.16 d		
ю dBµV/m																		414	2300		G
Ю dBµV/m											11										
			111																		
СС205G-РК U авµv/m																					
0 00001,111																					
i0 dBµV/m																					
0 00001,111																				MI	1
СС205G-AV Ю dBµV/m								•	\square						تمسلعهم	may -	-	Maria	More	1.4	~**
										and particular	en men	متلهمهم	maker	ind and draw		- Norm	· ·				
u dBuV/m				James	monthe	version	and the second	norder													
ͱῦ dBμV/m ኣሊላኣላላላላላላላላ	nmm	Mushama		* I									more	mon	men	~	سسل	the	m		
									,	-											
0 dBµV/m		mund		Jun	www		~~~~~	~~~~													
տեստում։ 0 dBµV/m	www.																				
о ивру/ш——																					
o do avia																					
0 dBµV/m																					
																				TF	
									-	-								· ·			
									Range	3											
Start 1.0 G	Hz		_						Range	3				_	_		- 4 5		op 8		
2 Scan	Hz				_		_		Kange	3					_	MIF		^p k Ma	x 🔍 2A	w M	la:
Scan	Hz					_			Kange	3						M1[2]	9k Ma 46	x ● 24 • .78 d	λν Μ Ι <mark>Βμν</mark>	(a) //
Scan C205G-AV	Hz								Range	3						M1[2]	^p k Ma	x ● 24 • .78 d	λν Μ Ι <mark>Βμν</mark>	1a //
Scan C205G-AV	Hz								Kange	3						M1[2]	9k Ma 46	x ● 24 • .78 d	λν Μ Ι <mark>Βμν</mark>	1a //
Scan CC205G-AV 0 dBµV/m	Hz								Kange	3						м1[2]	9k Ma 46	x ● 24 • .78 d	λν Μ Ι <mark>Βμν</mark>	1a //
Scan CC205G-AV 0 dBµV/m	Hz								Range	3						M1[2]	9k Ma 46	x ● 24 • .78 d	λν Μ Ι <mark>Βμν</mark>	(a) //
: Scan CC205G-AV 0 dBµV/m 0 dBµV/m	Hz								Range	3						M1[2]	9k Ma 46	x ● 24 • .78 d	λν Μ Ι <mark>Βμν</mark>	(a) //
	Hz								Range	3						M1[2]	9k Ma 46	x ● 24 • .78 d	λν Μ Ι <mark>Βμν</mark>	(a) //
Scan C2056-AV 0 dBµV/m 0 dBµV/m 0 dBµV/m	Hz								Range	3						M1[2]	9k Ma 46	x ● 24 • .78 d	λν Μ Ι <mark>Βμν</mark>	1a //
Scan C2056-AV 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m												unth				M1[2]	9k Ma 46	x ● 24 • .78 d	\∨ М IВµV 00 ((a) //
CC2056-AV 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m		Monte and a			ustrage	n mar		Manaphan				unorthe				M1[2]	9k Ma 46	x • 24 78 d 5000	\∨ М IВµV 00 ((a) //
Scan C2056-AV 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m												unth				M1[2]	9k Ma 46	x • 24 78 d 5000	\∨ М IВµV 00 ((a) //
Scan C2056-AV 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m								·····								M1[2]	9k Ma 46	x • 24 78 d 5000	\∨ М IВµV 00 (1a //
Scan C2056-AV 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m		1 1				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		·····				error de				M1[2]	9k Ma 46	x • 24 78 d 5000	\∨ М IВµV 00 (1a //
Scan CC2056-AV 0 dBµV/m		1 1				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		······				were the				M1[2]	9k Ma 46	x • 24 78 d 5000	\∨ М IВµV 00 ((a) //
Scan C2056-AV 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m						1. A A A A A A A A A A A A A A A A A A A		·····				mm				M1[2]	9k Ma 46	x • 24 78 d 5000	\∨ М IВµV 00 ((a) //
Scan C2056-AV 0 dBµV/m						1, Addab (1)		·····				erne la				M1[2]	9k Ma 46	x • 24 78 d 5000	\∨ М IВµV 00 ((a) //
Scan C2056-AV 0 dBµV/m						1						l				M1[2]	9k Ma 46	x • 24 78 d 5000	\∨ М IВµV 00 (1a //
Scan C22056-AV 0 dBµV/m 0 dBµV/m																M1[2]	9k Ma 46	x • 24 78 d 5000	\∨ М IВµV 00 (1a //
Scan C2056-AV 0 dBµV/m								·····								M1[2]	9k Ma 46	x • 24 78 d 5000	\∨ М IВµV 00 ((a) //
Scan C22056-AV 0 dBµV/m 0 dBµV/m								·····								M1[2]	9k Ma 46	x • 24 78 d 5000	\∨ М IВµV 00 ((a) //

Channel 926.780 MHz - Horizontal



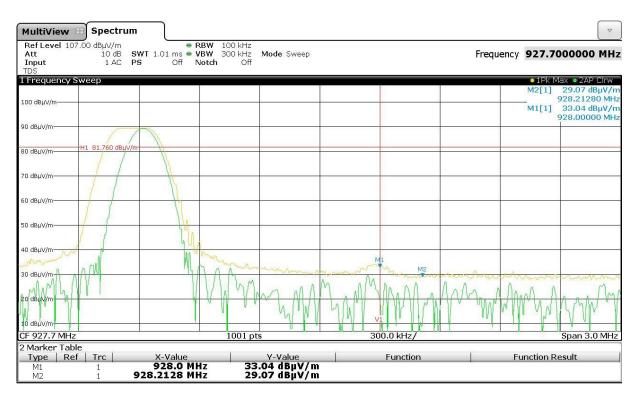
Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

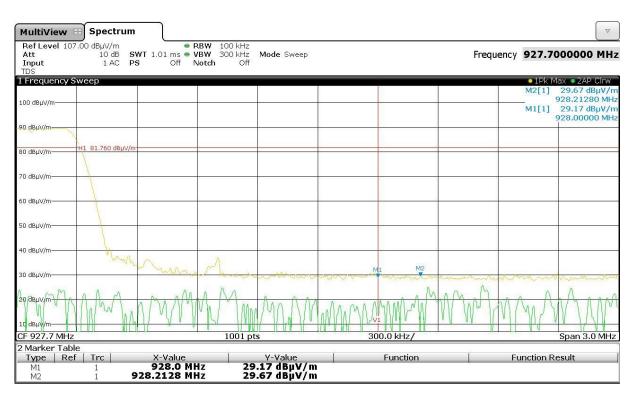


3.8.7 Band-Edge Emission Measurements

Emissions within 0.5 MHz of an authorised band edge were measured. The measurements were made with the sample and antenna orientated for maximum power level.

Channel 916.175 MHz, Hopping Off


Channel 916.175 MHz, Hopping On


Accredited for compliance with ISO/IEC 17025 - Testing.

The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

Channel 926.780 MHz, Hopping On

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

3.9 §15.247(i) Maximum Permissible Exposure

The Lone Worker 2.0 (Antenna Module) was considered a portable device and could be operated within 50 mm of the body of a user or nearby person. SAR measurement exclusion requirements of KDB 447498 D01 General RF Exposure Guidance v06 were applied. The following equation was applicable:

1-g Head and Body SAR:

 $\left(\frac{max. channel power, mW}{min. separation distance, mm}\right) \times \sqrt{f(GHz)} \le 3.0$

Maximum measured power, E.I.R.P.= 51 mWTime-averaged power= E.I.R.P. + 10log(duty cycle)= 17.1 dBm + 10log(1.4/45)= 2.03dBm = 1.59 mWMinimum separation distanceHighest frequency= 0.928 GHz

 $(1.59 \ mW/_{5 \ mm}) \times \sqrt{0.928 \ GHz} = 0.31$

Co-location consideration:

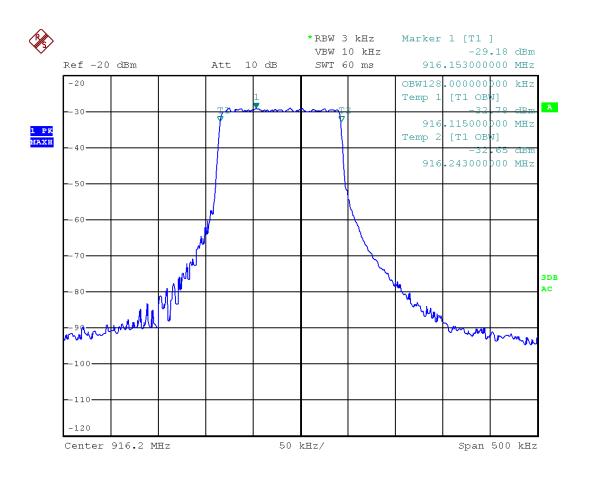
A Bluetooth Low Energy (BLE) transmitter having FCC ID: WAP2005 was incorporated within the device and could transmit simultaneously with the 902-928 MHz transmitter. The BLE details were taken from the module exposure report QuieTek 16A2076C-RF-US-P20V02 downloaded from the FCC website.

SAR test exclusion applies when the sum of the 1g SAR ratios for all simultaneously transmitting antennas incorporated in a host device is ≤ 3.0 :

$$\left[\left(\frac{1.59 \ mW}{_{5 \ mm}} \right) \times \sqrt{0.928 \ GHz} \right] + \left[\left(\frac{0.76 \ mW}{_{5 \ mm}} \right) \times \sqrt{2.48 \ GHz} \right] = 0.55$$

Conclusion:

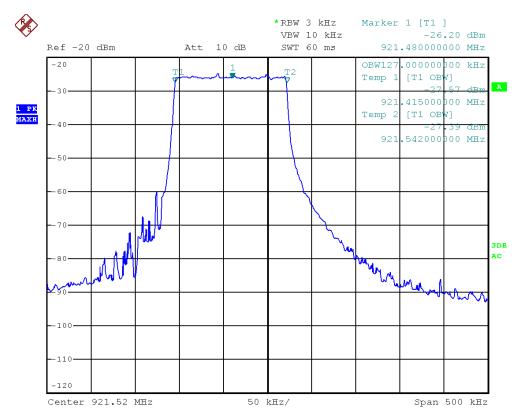
The Lone Worker 2.0 (Antenna Module) FHSS transceiver complied with the RF exposure requirements of FCC 1.1307.


The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

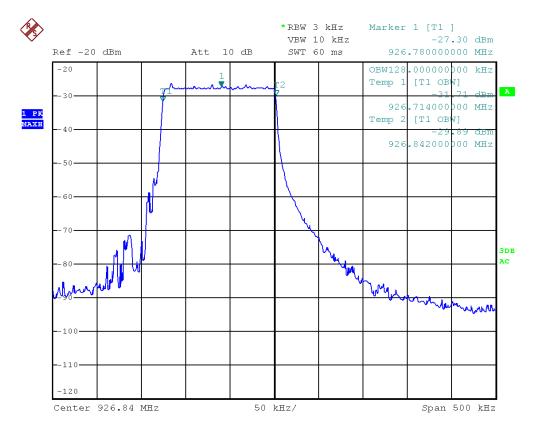
3.10 §2.1049 Occupied bandwidth – 99% power

The bandwidth containing 99% power of the transmitted signal was measured using the procedure from ANSI C63.10 section 6.9.

Channel [MHz]	99% Bandwidth [kHz]	Low Frequency [MHz]	High Frequency [MHz]
916.175	128.0	916.115	916.243
921.480	127.0	921.415	921.542
926.780	128.0	926.714	926.842



Channel 916.175 MHz



Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

Channel 921.480 MHz

Channel 926.780 MHz

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

4.0 **COMPLIANCE STATEMENT**

The Lone Worker 2.0 (Antenna Module) tested on behalf of Imaginastix Pty. Ltd. complied with the requirements of 47 CFR, Part 15 Subpart C - Rules for Radio Frequency Devices (intentional radiators) for a Frequency Hopping Spread Spectrum Transceiver (FHSS) operating within the band: 902 MHz to 928 MHz.

5.0 **MEASUREMENT UNCERTAINTY**

EMC Technologies has evaluated the equipment and the methods used to perform the emissions testing. The estimated measurement uncertainties for emissions tests shown within this report are as follows:

Conducted Emissions:	9 kHz to 30 MHz	±3.2 dB
Radiated Emissions:	9 kHz to 30 MHz 30 MHz to 300 MHz 300 MHz to 1000 MHz 1 GHz to 18 GHz	±4.1 dB ±5.1 dB ±4.7 dB ±4.6 dB

The above expanded uncertainties are based on standard uncertainties multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.