

TEST REPORT

APPLICANT	: Thundercomm Technology Co., Ltd
PRODUCT NAME	: Thundersoft TurboX S626 SOM
MODEL NAME	: TurboX S626
BRAND NAME	: TurboX
FCC ID	: 2AOHHTURBOXSOMS626
STANDARD(S)	: 47 CFR Part 15 Subpart C
TEST DATE	: 2018-05-24 to 2018-05-31
ISSUE DATE	: 2018-06-12

Tested by:

Hang

Su Hang (Test Engineer)

Approved by:

Andy Yeh (Technical Director)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

DIRECTORY

1. T	Technical Information ······	4
1.1.	Applicant and Manufacturer Information	4
1.2.	Equipment Under Test (EUT) Description	4
1.3.	Test Standards and Results	5
1.4.	Environmental Conditions	5
2. 4	7 CFR Part 15C Requirements	6
2.1.	Antenna requirement	6
2.2.	Peak Output Power ······	6
2.3.	Bandwidth	9
2.4.	Conducted Spurious Emissions and Band Edge1	8
2.5.	Power spectral density (PSD)3	1
2.6.	Restricted Frequency Bands4	0
2.7.	Conducted Emission52	2
2.8.	Radiated Emission5	5
Ann	ex A Test Uncertainty7	1
Ann	ex B Testing Laboratory Information72	2

Change History					
Issue	Date	Reason for change			
1.0	2018-06-12	First edition			

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Thundercomm Technology Co., Ltd				
Applicant Address:	4 floor, Taixiang Building 1A# Longxiang Road Haidian District				
	Beijing, China,100191				
Manufacturer:	Thundercomm Technology Co., Ltd				
Manufacturer Address: 4 floor, Taixiang Building 1A# Longxiang Road Haidian Dis					
	Beijing, China,100191				

1.2. Equipment Under Test (EUT) Description

Product Name:	Thundersoft TurboX S626 SOM		
Serial No:	(N/A, marked #1 by test site)		
Hardware Version:	S625_SOM_V03		
Software Version:	N/A		
Modulation Type:	DSSS, OFDM		
	802.11b/g/n-20MHz: 2.412GHz - 2.462GHz		
Operating Frequency Range.	802.11n-40MHz: 2.422GHz - 2.452GHz		
Channel Number	802.11b/g/n-20MHz: 11		
Channel Number.	802.11n-40MHz: 7		
Antenna Type:	PCB Antenna Note2		
Antenna Gain:	4 dBi _{Note2}		

Note 1: The EUT is operating at 2.4GHz ISM; it supports 802.11b, 802.11g, 802.11n and they are all tested in this report.

For 802.11b/g/n-20MHz (2.4GHz band), the frequencies allocated is F (MHz) =2412+5*(n-1) (1<=n<=11). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 1 (2412MHz), 6 (2437MHz) and 11 (2462MHz).

For 802.11n-40MHz, the frequencies allocated is F (MHz) =2412+5*(n-1) (3<=n<=9). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 3 (2422MHz), 6 (2437MHz) and 9 (2452MHz).

Note 2: The product will not sell with antenna. The antennas we use for all radiated test were just for test, the antenna type is PCB antenna and the antenna gain is 4 dBi. For more detailed, please refer to the internal photos.

Note 3: The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT continuous transmission.

Note 4: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

No	Identity	Document Title
1	47 CFR Part 15 (10-1-15 Edition)	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Test Engineer	Result	
1	15.203	Antenna Requirement	N/A	N/A	PASS	
2	15.247(b)	Peak Output Power	May 23, 2018	Su Hang	PASS	
3	15.247(a)	Bandwidth	May 23, 2018	Su Hang	PASS	
4	15.247(d)	Conducted Spurious Emission and Band Edge	May 23, 2018	Su Hang	PASS	
5	15.247(e)	Power spectral density (PSD)	May 23, 2018	Su Hang	PASS	
6	15.247(d)	Restricted Frequency Bands	May 30, 2018	Peng Xuewei	PASS	
7	15.207	Conducted Emission	May 24, 2018	Peng Xuewei	PASS	
8	15.209, 15.247(d)	Radiated Emission	May 30, 2018	Peng Xuewei	PASS	
Note: The tests of Conducted Emission and Radiated Emission were performed according to						
the method of measurements prescribed in ANSI C63.10 2013 and KDB558074 D01 v04						
(04/0)5/2017).					

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Peak Output Power

2.2.1. Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed1 Watt.

2.2.2. Test Description

The measured output power was calculated by the reading of the USB Wideband Power Sensor and calibration.

A. Test Setup:

The EUT (Equipment under the test) which is coupled to the USB Wideband Power Sensor; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

B. Equipments List:

Please refer ANNEX A(1.5).

2.2.3. Test Result

Channel		Measured Output Peak Power		Limit		\/o nol: of	
Channel		dBm	W	dBm	W	verdict	
1	2412	14.88	0.0308			PASS	
6	2437	14.52	0.0283	30	1	PASS	
11	2462	14.41	0.0276			PASS	

2.2.3.1 802.11b Test Mode

Channel	Frequency (MHz)	Measured Output Average Power		Limit		Verdict
		dBm	W	dBm	W	
1	2412	11.98	0.0158			PASS
6	2437	11.65	0.0146	30	1	PASS
11	2462	11.61	0.0145			PASS

2.2.3.2 802.11g Test mode

Channel		Measured Output Peak Power		Limit		Vardiat
Channel		dBm	W	dBm	W	verdict
1	2412	19.79	0.0953			PASS
6	2437	19.61	0.0914	30	1	PASS
11	2462	19.98	0.0995			PASS

Channel	Frequency (MHz)	Measured Output Average Power		Limit		Verdict
		dBm	W	dBm	W	
1	2412	9.98	0.0100			PASS
6	2437	9.88	0.0097	30	1	PASS
11	2462	10.14	0.0103			PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.2.3.3 802.11n-20MHz Test mode

		Measured Output Peak Power		Limit		Vordict
Channel	Frequency (MHZ)	dBm	W	dBm	W	veruici
1	2412	19.67	0.0927			PASS
6	2437	19.42	0.0875	30	1	PASS
11	2462	19.64	0.0920			PASS

Channel	Frequency (MHz)	Measured	Measured Output Average Power		Limit	
		dBm	W	dBm	W	
1	2412	10.01	0.0100			PASS
6	2437	9.87	0.0097	30	1	PASS
11	2462	10.20	0.0105			PASS

2.2.3.4 802.11n-40MHz Test mode

		Measured Output Peak Power		Limit		Vardiat
Channel		dBm	W	dBm	W	verdict
3	2422	19.19	0.0830			PASS
6	2437	18.79	0.0757	30	1	PASS
9	2452	19.47	0.0885			PASS

Channel	Frequency (MHz)	Measured Output Average Power		Limit		Verdict
		dBm	W	dBm	W	
3	2422	9.20	0.0083			PASS
6	2437	9.27	0.0085	30	1	PASS
9	2452	9.19	0.0083			PASS

2.3.1. Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

2.3.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 8.1 Option 1 was used in order to prove compliance.

B. Equipments List:

Please refer ANNEX A(1.5).

2.3.3. Test Result

2.3.3.1 802.11b Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits(kHz)	Result
1	2412	8.088	≥500	PASS
6	2437	8.545	≥500	PASS
11	2462	8.543	≥500	PASS

B. Test Plots

(Channel 1, 2412MHz, 802.11b)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 6, 2437 MHz, 802.11b)

(Channel 11, 2462MHz, 802.11b)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.3.3.2 802.11g Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
1	2412	16.37	≥500	PASS
6	2437	16.47	≥500	PASS
11	2462	16.39	≥500	PASS

B. Test Plots:

(Channel 1, 2412MHz, 802.11g)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 6, 2437MHz, 802.11g)

(Channel 11, 2462MHz, 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.3.3.3 802.11n-20 Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
1	2412	17.59	≥500	PASS
6	2437	17.61	≥500	PASS
11	2462	17.59	≥500	PASS

B. Test Plots:

(Channel 1, 2412MHz, 802.11n-20)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 6, 2437MHz, 802.11n-20)

(Channel 11, 2462MHz, 802.11n-20)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.3.3.4 802.11n-40 Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
3	2422	35.37	≥500	PASS
6	2437	35.77	≥500	PASS
9	2452	35.33	≥500	PASS

B. Test Plots:

(Channel 3, 2422Mz, 802.11n-40)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 6, 2437MHz, 802.11n-40)

(Channel 9, 2452MHz, 802.11n-40)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.4. Conducted Spurious Emissions and Band Edge

2.4.1. Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.4.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 11.0 was used in order to prove compliance.

B. Equipments List:

Please refer ANNEX A(1.5).

2.4.3. Test Result

2.4.3.1 802.11b Test mode

A. Test Verdict:

		Measured Max. Out	Limi		
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
1	2412	-42.60	-1.76	-21.76	PASS
6	2437	-43.04	-1.25	-21.25	PASS
11	2462	-43.03	-0.81	-20.81	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.

Agilent Spectrum Analyzer - Swept SA				
Marker 2 24.013685000000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	07:17:32 PM May 23, 2018 TRACE 1 2 3 4 5 6	Marker
PNO: Fa IFGain:L	ast 😱 Trig: Free Run ow Atten: 20 dB	Avg Hold:>10/10	TYPE MWWWWW DET PNNNNN	Select Marker
Ref Offset 11.5 dB 10 dB/div Ref 20.00 dBm		M	kr2 24.014 GHz -42.602 dBm	2
10.0 0.00				Normal
-10.0				
-30.0			2	Delta
-50.0 -60.0		and the second second second		Fixed⊳
Start 30 MHz #Res BW 100 kHz #	∜VBW 300 kHz	Sweep	Stop 25.00 GHz 2.386 s (2001 pts)	Off
MKR MODE TRC SCL X	Y FUNC z -1.762 dBm	TION FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 24.014 GH 3 4 5 5 6	z 42.602 dBm			Properties►
7 8 9 10				More 1 of 2
MSG		STATUS		

(Channel = 1, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge @ Channel = 1)

(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

Agilent Spectrum Analyzer - Swept SA				
Marker 2 24.063625000000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	07:20:27 PM May 23, 2018 TRACE 1 2 3 4 5 6	Marker
PNO: Fast IFGain:Lov	Atten: 20 dB	Avg Hold>10/10	DET P N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N	Select Marker
Ref Offset 11.5 dB 10 dB/div Ref 20.00 dBm		М	kr2 24.064 GHz -43.025 dBm	2
100 0.00 -10.0				Normal
-20.0 -30.0 -40.0 -40.0			2	Delta
-50.0 -60.0	an and a state of the state of	a hay have a large the second s		Fixed⊳
Start 30 MHz #Res BW 100 kHz #V	BW 300 kHz		Stop 25.00 GHz 2.386 s (2001 pts)	Off
1 N 1 f 2.465 GHz 2 N 1 f 24.064 GHz 3 4 5 6 6	-0.809 dBm -43.025 dBm			Properties▶
7			~	More 1 of 2
MSG		STATU	s	

(Channel = 11, 30MHz to 25GHz)

(Band Edge @ Channel = 11)

MORLAB

2.4.3.2 802.11g Test mode

A. Test Verdict:

		Measured Max. Out	Limi		
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
1	2412	-41.67	-4.78	-24.78	PASS
6	2437	-42.83	-5.18	-25.18	PASS
11	2462	-41.93	-6.30	-26.30	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.

(Channel = 1, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge @ Channel = 1)

(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

Agilent Spectrum Analyzer -	Swept SA					
Warker 2 24.03865	5000000 GHz	SENSE:IN	IT Avg Ty	ALIGNAUTO	07:24:47 PM May 23, 2018 TRACE 1 2 3 4 5	Marker
	PNO: Fast IFGain:Low	, Trig: Free Run Atten: 20 dB	n Avg Ho	ld:>10/10	DET P NNNN	Select Marker
Ref Offset 10 dB/div Ref 20.0	11.5 dB 0 dBm			М	kr2 24.039 GHz -41.932 dBm	2
10.0 0.00 -10.0						Normal
-20.0 -30.0 -40.0					2	Delta
-50.0 -60.0	age and a stand of the stand of	and a feature and a state of the	anter a standard and			Fixed⊳
Start 30 MHz #Res BW 100 kHz	#V	BW 300 kHz	FUNCTION		Stop 25.00 GHz 2.386 s (2001 pts	Off
1 N 1 f 2 N 1 f 3 4 5 5 6	2.465 GHz 24.039 GHz	-6.300 dBm -41.932 dBm			=	Properties►
7 8 9 10 11 4					×	More 1 of 2
MSG				STATUS	3	

(Channel = 11, 30MHz to 25GHz)

(Band Edge @ Channel = 11)

MORLAB

2.4.3.3 802.11n -20MHz Test mode

A. Test Verdict:

		Measured Max. Out	Limi		
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
1	2412	-42.62	-5.97	-25.97	PASS
6	2437	-43.34	-6.62	-26.62	PASS
11	2462	-42.47	-6.22	-26.22	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.

(Channel = 1, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge @ Channel = 1)

(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Agilent Spectrum Analyzer - Swept SA				
Marker 2 24 051140000000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	07:32:19 PM May 23, 2018 TRACE 1 2 3 4 5 6	Marker
PNO: Fast IFGain:Lon	Trig: Free Run Atten: 20 dB	Avg Hold:>10/10	TYPE MWWWWW DET PNNNN	Select Marker
Ref Offset 11.5 dB 10 dB/div Ref 20.00 dBm		M	kr2 24.051 GHz -42.467 dBm	2
10.0 0.00 -10.0				Normal
-20.0			2	Delta
-50.0 -60.0	n y hay be going a property for the second	and the second		Fixed⊳
Start 30 MHz #Res BW 100 kHz #\\ MKR MODE TRC SCL ×	/BW 300 kHz Y FUNC	Sweep	Stop 25.00 GHz 2.386 s (2001 pts) FUNCTION VALUE	Off
1 N 1 f 2.465 GHz 2 N 1 f 24.051 GHz 3 4 - - 5 - - - 6 - - -	-6.219 dBm -42.467 dBm			Properties▶
8 9 9 10 11 11			~	More 1 of 2
MSG		STATUS	5	

(Channel = 11, 30MHz to 25GHz)

(Band Edge @ Channel = 11)

MORLAB

2.4.3.4 802.11n -40MHz Test mode

A. Test Verdict:

		Measured Max. Out	Limi		
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
3	2422	-42.50	-7.18	-27.18	PASS
6	2437	-43.26	-7.43	-27.43	PASS
9	2452	-41.86	-8.82	-28.82	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.

(Channel = 3, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge @ Channel = 3)

(Channel = 6, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Agilent Spectrum Analyzer - Swept SA				
X RF 50 Ω AC Marker 2 24 662905000000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	07:12:39 PM May 23, 2018 TRACE 1 2 3 4 5 6	Marker
PNO: Fast IFGain:Low	Trig: Free Run Atten: 20 dB	Avg Hoid>10/10	TYPE MWWWWW DET PNNNNN	Select Marker
Ref Offset 11.5 dB 10 dB/div Ref 20.00 dBm		М	kr2 24.663 GHz -41.859 dBm	2
100 0.00 -100				Normal
-20.0				Delta
-50.0 -60.0	Wayde salaryn allan yw ar an ar	an manageral da parte a construction and a construction of the con		Fixed⊳
Start 30 MHz #Res BW 100 kHz #V MKR MODE TRC SCL ×	BW 300 kHz Y FUN	Sweep	Stop 25.00 GHz 2.386 s (2001 pts)	Off
1 N 1 f 2.440 GHz 2 N 1 f 24.663 GHz 3 4 5 5 6 7	-8.819 dBm -41.859 dBm			Properties►
9 9 10 11			~	More 1 of 2
MSG		STATUS	3	

(Channel = 9, 30MHz to 25GHz)

(Band Edge @ Channel = 9)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5. Power spectral density (PSD)

2.5.1. Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

2.5.2. Test Description

A. Test procedure

The measured power spectral density was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for PSD test:

- a) Set analyzer center frequency to channel center frequency.
- b) Set the span to 1.5 times DTS
- c) Set the RBW to 3 kHz
- d) Set the VBW to 10 kHz
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

B. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

KDB 558074 Section 10.2 was used in order to prove compliance.

C. Equipments List:

Please refer ANNEX A(1.5).

2.5.3. Test Result

2.5.3.1 802.11b Test mode

A. Test Verdict:

Spectral power density (dBm/3kHz)						
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict		
1	2412	-12.42	8	PASS		
6	2437	-12.62	8	PASS		
11	2462	-12.37	8	PASS		

B. Test Plots:

(Channel = 1, 802.11b)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11b)

(Channel = 11, 802.11b)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5.3.2 802.11g Test mode

A. Test Verdict:

Spectral power density (dBm/3kHz)						
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict		
1	2412	-16.18	8	PASS		
6	2437	-15.49	8	PASS		
11	2462	-17.85	8	PASS		

B. Test Plots:

(Channel = 1, 802.11g)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11g)

(Channel = 11, 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

2.5.3.3 802.11n-20MHz Test mode

A. Test Verdict:

Spectral power density (dBm/3kHz)						
Channel	Frequency	Macourod BSD (dBm/2kHz)	Limit	Verdict		
	(MHz)	Measured FSD (UBII/SKHZ)	(dBm/3kHz)			
1	2412	-16.59	8	PASS		
6	2437	-18.65	8	PASS		
11	2462	-18.36	8	PASS		

B. Test Plots:

(Channel = 1, 802.11n-20MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11n-20MHz)

(Channel = 11, 802.11n-20MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5.3.4 802.11n-40MHz Test mode

A. Test Verdict:

	Spec	ctral power density (dBm/3kHz)		
Channel	Frequency	Macourod DSD (dBm/2kHz)	Limit	Vardiat
Channel	(MHz)	Measured FSD (dBIII/SKHZ)	(dBm/3kHz)	verdict
3	2422	-19.31	8	PASS
6	2437	-18.44	8	PASS
9	2452	-19.63	8	PASS

B. Test Plots:

(Channel = 3, 802.11n-40MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11n-40MHz)

(Channel = 9, 802.11n-40MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.6. Restricted Frequency Bands

2.6.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.6.2. Test Description

A. Test Setup

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

KDB 558074 Section 12.1 was used in order to prove compliance.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Equipments List:

Please refer ANNEX A(1.5).

2.6.3. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below: E $[dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$ A_T : Total correction Factor except Antenna U_R : Receiver Reading G_{preamp} : Preamplifier Gain A_{Factor} : Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

2.6.3.1 802.11b Test mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	Α _τ	A _{Factor}	Max. Emission	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	Vordiet
1	2373.92	PK	45.37	-33.63	32.56	44.30	74	Pass
1	2387.14	AV	32.18	-33.63	32.56	31.11	54	Pass
11	2485.86	PK	43.91	-33.18	32.50	43.23	74	Pass
11	2484.88	AV	32.00	-33.18	32.50	31.32	54	Pass

B. Test Plots:

随 Keysight Spectrum Analyzer - Swept SA Avg Type: Voltage Avg|Hold:>100/100 08:09:33 AM May 30, 2018 TRACE 12345 (TYPE MWWWWW DET P P N N N D Marker Marker 1 2.373920000000 GHz Trig: Free Run Atten: 6 dB PNO: Fast IFGain:Low Select Marker Mkr1 2.373 92 GHz 45.365 dBµV Ref 100.00 dBµV 0 dB/div Normal <u>1</u> <u>^2</u> Delta **Fixed** Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.41200 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz Off 2.373 92 GHz 2.390 00 GHz 45.365 dBµV 44.291 dBµV 1 f 1 f Ň **Properties**► More 1 of 2

(Channel = 1 PEAK, 802.11b)

(Channel = 1 AVG, 802.11b)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

⊢ ট Marker	1 May 30, 2018	08:44:18 A	ALIGN OFF	Ανα Τν	INT	SEN	6 ∐7	- Swept SA 50 Ω DC	m Analyze	pht Spectr	Keysi RL
Select Marke		TYF DE	:>100/100	Avg Hol	tun 3	Trig: Free Atten: 6 d	PNO: Fast C IFGain:Low	4000000	40000	<i></i>	
:	64 GHz 1 dBµV	2.485 8 43.91	Mkr2					.00 dBµV	Ref 10	div) dBi
Norm									-		
Norm								broad a second s	- Andread		0.0
											0.0 -
Del	ata a data			_ ♦ ²		lath a subscription	-	- John Start			0.0
											0.0 - n n L
Fixed											0.0
											0.0
c	000 GHz 1001 pts)	Stop 2.50 000 ms (Sweep 1			3.0 MHz	#VB	MHz	0 GHz SPR) 1	2.462 W (CI	tart es E
	N VALUE	FUNCTION	NCTION WIDTH	TION F	FUNC	Y 42,200 dB	500 CH-	X 2.492	SCL	DE TRC	KR MO
Droportio					/	43.911 dB	864 GHz	2.485	f	1	2 3
Properues	=										4 5
											6
1 o											9
	-										1

(Channel = 11 PEAK, 802.11b)

(Channel = 11 AVG, 802.11b)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.6.3.2 802.11g Test mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Vordiot
Channel	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	verdici
1	2369.44	PK	45.28	-33.63	32.56	44.21	74	Pass
1	2374.26	AV	32.37	-33.63	32.56	31.30	54	Pass
11	2484.27	PK	53.03	-33.18	32.50	52.35	74	Pass
11	2483.70	AV	30.31	-33.18	32.50	29.63	54	Pass

B. Test Plots:

(Channel = 1 PEAK, 802.11g)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

	2010	AM May 20. 2	00.00.00			T.INT.			wept SA	n Analyzer - S	Spectro	(eysight
Marker	4 5 6	CE 1234	109:00:00 / TRA	e: Voltage	Avg T	Dum	Tries From	GHz		874256	1 2.	rker
Select Marke	INNN	P P N N	D	. 100/100	Avgine	B	Atten: 6	PNO: Fast (IFGain:Low				
	SHz 3μV	26 GI 73 dBj	1 2.374 32.37	Mkr					0 dBµV	ef 100.0	,	dB/di
Norm												•
												•
Do	~~~~	~~~~										
De		+	. 2									
			¢²		•						_	
Fixe												
												₀
	GH7	1200 G	Stop 2.4) GHz	3000	Lart 2
c	pts)	(1001 p	12.84 s	Sweep			10 Hz	#VB	Hz	PR) 1 M	I (CI	s BV
	E 🔺	ION VALUE	FUNCT	ICTION WIDTH	TION	FU	Y		X 0.27	CL	TRC	MOD
						IV	32.373 dB 32.184 dB	00 GHz	2.37		1	N
Properties												
Mo												
1 0												
	+											

(Channel = 1 AVG, 802.11g)

(Channel = 11 PEAK, 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

	(May 30, 2018	08:47:14 0			ISE·INT	SEN		wept SA	rum Analyzer - S	Keysight Spec
Marker Select Marker	E 123456 MWWWWW T P P N N N N	TRAC TYF DE	ype: Voltage bld: 100/100	Av Avş	Run	Trig: Free Atten: 6 d	CHZ PNO: Fast G IFGain:Low	000000 NFE	.4836980	Marker 2
2	98 GHz 2 dBµV	2.483 6 30.31	Mkr2					0 dBµV	Ref 100.0	10 dB/div
Norma										90.0 90.0 80.0
Delta										70.0 60.0 50.0
Fixed				2	^2		<u></u>			40.0
Fixea		Stop 2 50							00 CH2	10.0
Of	1000 GH2 1001 pts)	4.357 s (Sweep		FUN	10 Hz	#VBV	Hz	SPR) 1 M	Res BW (C
Properties≯	E	TUNCTIO			μV μV	30.308 dB 30.312 dB	500 GHz 598 GHz	2.483 2.483		1 N 1 2 N 1 3 4 5 5
More 1 of 2										7 8 9 10
						III				<

(Channel = 11 AVG, 802.11g)

2.6.3.3 802.11n-20MHz Test mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
		PK/ AV	0 _R (dBuV)	(ub)	(ub@sili)	∟ (dBµV/m)	(ασμν/Π)	
1	2389.26	PK	48.76	-33.63	32.56	47.69	74	Pass
1	2374.26	AV	32.58	-33.63	32.56	31.51	54	Pass
11	2484.15	PK	49.26	-33.18	32.50	48.58	74	Pass
11	2483.89	AV	30.30	-33.18	32.50	29.62	54	Pass

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86

 Http://www.morlab.cn
 E-mail:
 s

B. Test Plots:

(Channel = 1 PEAK, 802.11n-20)

(Channel = 1 AVG, 802.11n-20)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

RL RFPRESEL 50.0. AC SENSE:INT [08:57:59.4M May30,2018] M Marker 2 2.484154000000 GHz Trig: Free Run Avg]Ype: Voltage Trig: Tree Run Avg]Hold:>100/100 Trig: Tree Run Trig: Tree Run <th>nrker t Marker 2 Norma</th>	nrker t Marker 2 Norma
IFGain:Low Atten: 6 dB Det IPLANNA Mkr2 2.484 154 GHz 49.263 dBµV 49.263 dBµV 0 dB/div Ref 100.00 dBµV 49.263 dBµV 0 dB/d	t Marker 2 Norm
Mkr2 2.484 154 GHz 49.263 dBµV	2 Norm
000 000 000 000 000 000 000 000	Norm
tart 2.46200 GHz es BW (CISPR) 1 MHz #VBW 3.0 MHz EINCTION EINCTION MDTH EINCTION VALUE	Norm
tart 2.46200 GHz es BW (CISPR) 1 MHz #VBW 3.0 MHz EINCTION EINCTION WITH EINCTION VALUE ENCION VALUE EINCTION VALUE	
art 2.46200 GHz s BW (CISPR) 1 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)	
REMODELTECLISCI	
tart 2.46200 GHz es BW (CISPR) 1 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)	De
tart 2.46200 GHz es BW (CISPR) 1 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)	
Stop Stop 2.50000 GHz es BW (CISPR) 1 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)	
Image: Non-Amplitude Stop Stop<	Fixe
tart 2.46200 GHz tes BW (CISPR) 1 MHz #VBW 3.0 MHz EUNCTION EUNCTION WIDTH EUNCTION VALUE	
tart 2.45200 GH2 Stop 2.50000 GH2 es BW (CISPR) 1 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)	
KRI MODELTRCL SCILL X Y EUNCTION VIDTHI FUNCTION VALUE	C
1 N 1 f 2.483 500 GHz 48.021 dBµV 2 N 1 f 2.484 154 GHz 49.263 dBµV	
	opertie
	opertie
	opertie
	opertie Mo

(Channel = 11 PEAK, 802.11n-20)

(Channel = 11 AVG, 802.11n-20)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.6.3.4 802.11n-40MHz Test mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
	(10112)	PK/ AV	(dBuV)	(UD)	(ub@3ili)	∟ (dBµV/m)	(ασμν/Π)	
3	2388.26	PK	57.80	-33.63	32.56	56.73	74	Pass
3	2388.26	AV	33.82	-33.63	32.56	32.75	54	Pass
9	2485.75	PK	45.10	-33.18	32.50	44.42	74	Pass
9	2483.96	AV	32.63	-33.18	32.50	31.95	54	Pass

B. Test Plots:

(Channel = 3 PEAK, 802.11n-40)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

									vept SA	nalyzer - Sw	ectrum A	sight Sp	Key
Marker Select Marke	, 2018 4 5 6 WWW N N N	M May 30, 2 CE 1234 PE MWWW ET P P N N	09:07:25 A TRA TY D	e: Voltage 100/100	Avg Ty Avg Hol	:INT un	Trig: Free R Atten: 6 dB	GHz PNO: Fast IFGain:Low	2 AC 00000 NFE	82560	RF PRE	ker 2	Mar
2	iHz βµV	26 G 2 dB	2 2.388 33.82	Mkr					dBμV	100.00	Ref	3/div	10 dI
Norm													90.0 80.0
Del	~~~												70.0 60.0 50.0
Fixed			2 I X										
	GHz	1200 G	Stop 2.4							GHz	0000	t 2.3	10.0 Star
c	pts) ^	(1001 p	12.84 s	Sweep	ON FL	FUNG	0 Hz Y	#VBW	Hz X	R) 1 MI			
Properties							3.724 dBµ\ 3.822 dBµ\	0 00 GHZ 8 26 GHZ	2.3			N	1 3 4 5 6
Мо 1 о													7 8 9
	-												10

(Channel = 3 AVG, 802.11n-40)

(Channel = 9 PEAK, 802.11n-40)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

00.00 dBµV	GHZ PNO: Fast O IFGain:Low	Trig: Free Atten: 6	sse:int] e Run dB	Avg Tyj Avg Hol	ALIGN OFF pe: Voltage pe: Voltage d: 100/100	10:41:29 A TRAC TYI DI 2.483 9 32.63	Мму30,2018 № 12345 № Мууууну ТРРИМИМ 164 GHz 4 dBµV	Marker Select Marke Norm
00.00 dBµV					Mkr2	2.483 9 32.63	64 GHz 4 dBµV	Norm
								Norm
			12					Do
	_		<u> </u>					De
								Fixe
iz						Stop 2.5	0000 GHz	_
1 MHz ×	#VB	SW 10 Hz	FUNC	TION F	Sweep	4.357 s (1001 pts)	
2.483 2.483	500 GHz 964 GHz	32.631 dB 32.634 dB	μV μV				=	Propertie
								M (
	Z 1 MHz 2.483 2.483	Z 1 MHz #VE 2.483 500 GHz 2.483 964 GHz	Z 1 MHz #VBW 10 Hz X Y 2.483 500 GHz 32.631 dB 2.483 964 GHz 32.634 dB	Z 1 MHz #VBW 10 Hz 2.483 500 GHz 32.631 dBuV 2.483 964 GHz 32.634 dBuV 	Z 1 MHz #VBW 10 Hz X Y FUNCTION F 2.483 500 GHz 32.631 dBuV 2.483 964 GHz 32.634 dBuV 	Z 1 MHz #VBW 10 Hz Sweep X Y FUNCTION FUNCTION WIDTH 2.483 500 GHz 32.631 dBµV 2.483 964 GHz 32.634 dBµV 	z Stop 2.50 1 MHz #VBW 10 Hz Sweep 4.357 s (X Y FUNCTION FUNCTION WIDTH FUNCTION 2.483 964 GHz 32.631 dBµV 2.483 964 GHz 32.634 dBµV 	z Stop 2.50000 GHz 1 MHz #VBW 10 Hz Sweep 4.357 s (1001 pts) X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 2.483 964 GHz 32.631 dBµV 2.483 964 GHz 32.634 dBµV

(Channel = 9 AVG, 802.11n-40)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.7. Conducted Emission

2.7.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency range	Conducted	Limit (dBµV)		
(MHz)	Quai-peak	Average		
0.15 - 0.50	66 to 56	56 to 46		
0.50 - 5	56	46		
5 - 30	60	50		

NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.7.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10 2013.

MORLAB

B. Equipments List:

Please refer ANNEX A(1.5).

2.7.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hz were considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.

A. Test setup:

The EUT configuration of the emission tests is EUT + Link.

Note: The test voltage is AC 120V/60Hz.

B. Test Plots:

NO.	Fre. (MHz)	Emission Level (dBµV)		Limit (dBµV)		Power-line	Verdict
		Quai-peak	Average	Quai-peak	Average		
1	0.16	36.38	30.61	65.73	55.73		PASS
2	0.21	33.54	27.80	63.21	53.21	Line	PASS
3	0.25	32.28	26.42	61.92	51.92		PASS
4	0.58	26.04	20.09	56.00	46.00		PASS
5	0.90	23.70	17.77	56.00	46.00		PASS
6	3.55	19.26	12.21	56.00	46.00		PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot B: N Phase)

NO.	Fre. (MHz)	Emission Level (dBµV)		Limit (dBµV)		Power-line	Verdict
		Quai-peak	Average	Quai-peak	Average		
1	0.15	36.31	30.47	65.74	55.74		PASS
2	0.20	33.75	27.95	63.42	53.42	Neutral	PASS
3	0.33	29.85	24.03	59.58	49.58		PASS
4	0.61	25.66	19.75	56.00	46.00		PASS
5	0.91	23.64	17.60	56.00	46.00		PASS
6	3.44	19.30	12.19	56.00	46.00		PASS

2.8. Radiated Emission

2.8.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

2.8.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of

the site as factors are calculated to correct the reading

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

A. Equipments List:

Please refere ANNEX A(1.5).

2.8.3. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

E $[dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$ A_T: Total correction Factor except Antenna U_R: Receiver Reading G_{preamp}: Preamplifier Gain A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

Note1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Note2: For the frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

Note3: For the frequency, which started from 25GHz to 40GHz, was pre-scanned and the result which was 10dB lower than the limit was not recorded.

2.8.3.1 802.11b Test mode

Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax Http://www.morlab.cn E-n

2.8.3.2 802.11g Test mode

Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: Http://www.morlab.cn E-m

Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: Http://www.morlab.cn E-m

2.8.3.3 802.11n-20MHz Test mode

Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 4 Http://www.morlab.cn E-ma

Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: Http://www.morlab.cn E-m

2.8.3.4 802.11n-40MHz Test mode

Plots for Channel = 3

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Plots for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa Http://www.morlab.cn E

Plots for Channel = 9

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax Http://www.morlab.cn E-m

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Peak Output Power	±2.22dB
Power spectral density (PSD)	±2.22dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77 dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
Department:	Morlab Laboratory		
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		
Responsible Test Lab	Mr. Su Feng		
Manager:			
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Namai	Shenzhen Morlab Communications Technology Co., Ltd.
Name.	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Power Splitter	NW521	1506A	Weinschel	2018.04.17	2019.04.16
Attenuator 1	(N/A.)	10dB	Resnet	2018.04.17	2019.04.16
Attenuator 2	(N/A.)	3dB	Resnet	2018.04.17	2019.04.16
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2017.12.03	2018.12.02
USB Wideband Power Sensor	MY54210011	U2021XA	Agilent	2018.04.17	2019.04.16
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY56400093	N9038A	KEYSIGHT	2017.07.13	2018.07.12
LISN	812744	NSLK 8127	Schwarzbeck	2018.05.08	2019.05.07
Pulse Limiter (20dB)	9391	VTSD 9561-D	Schwarzbeck	2018.05.08	2019.05.07
Coaxial cable(BNC) (30MHz-26GHz)	CB01	EMC01	Morlab	N/A	N/A

4.3Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal.Due Date
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.4 List of Software Used

Description	Manufacturer	Software Version
Test system	Tonscend	V2.6
Power Panel	Agilent	V3.8
MORLAB EMCR V1.2	MORLAB	V 1.0

REPORT No.: SZ18050094W03

4.5 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal.Due Date
Receiver	MY54130016	N9038A	Agilent	2018.05.08	2019.05.07
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2018.05.08	2019.05.07
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2017.09.13	2018.09.12
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2018.03.03	2019.03.02
Test Antenna - Horn	01774	BBHA 9120D	Schwarzbeck	2017.09.13	2018.09.12
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable(N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2018.05.08	2019.05.07
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2018.05.08	2019.05.07
Anechoic Chamber	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18

_____ END OF REPORT _____

