

FCC RF Test Report

APPLICANT	: Thundercomm Technology Co., Ltd
EQUIPMENT	: Cellular Module
BRAND NAME	: TurboX
MODEL NAME	: CM6125
FCC ID	: 2AOHHTURBOXCM6125
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DTS) Digital Transmission System
TEST DATE(S)	: Sep. 30, 2022 ~ Nov. 08, 2022

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (ShenZhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

RE\	/ISION	I HISTORY	.3
SUI	MMAR	Y OF TEST RESULT	.4
1	GENE	RAL DESCRIPTION	.5
	1.1	Applicant	.5
	1.2	Manufacturer	-
	1.3	Product Feature of Equipment Under Test	.5
	1.4	Product Specification of Equipment Under Test	.5
	1.5	Modification of EUT	.5
	1.6	Testing Location	.6
	1.7	Test Software	.6
	1.8	Applicable Standards	.6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.7
	2.1	Carrier Frequency Channel	.7
	2.2	Test Mode	.8
	2.3	Connection Diagram of Test System	.9
	2.4	Support Unit used in test configuration and system	.9
	2.5	EUT Operation Test Setup	.9
3	TEST	RESULT1	0
	3.1	Output Power Measurement	0
	3.2	Radiated Band Edges and Spurious Emission Measurement	2
	3.3	AC Conducted Emission Measurement	6
	3.4	Antenna Requirements1	8
4	LIST	OF MEASURING EQUIPMENT1	9
5	UNCE	RTAINTY OF EVALUATION	20
APF	PENDI	X A. AC CONDUCTED EMISSION TEST RESULT	
APF	PENDI	X B. RADIATED SPURIOUS EMISSION	
APF	PENDI	X C. DUTY CYCLE PLOTS	
APF	PENDI	X D. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR232517-01B	Rev. 01	Initial issue of report	Nov. 17, 2022

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.2	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 10.28 dB at 2499.48 MHz
3.3	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 9.40 dB at 0.51 MHz
3.4	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Note: This is a variant report. The change note could be referred to the Class II Permissive Change letter which is exhibit separately. The cellular module remains the same as the original module, only the antenna is different, so the conducted power is reused from the original report. Based on the similarity between current and previous project, only the related cases of two new antennas were tested and shown in this report, all the other test results are referred to the original report FR232517B.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

Thundercomm Technology Co., Ltd

No. 107, Middle Datagu Road, Xiantao Street, Yubei District, Chongqing, China, 401122

1.2 Manufacturer

Thundercomm Technology Co., Ltd

No. 107, Middle Datagu Road, Xiantao Street, Yubei District, Chongqing, China, 401122

1.3 Product Feature of Equipment Under Test

	Product Feature
Equipment	Cellular Module
Brand Name	TurboX
Model Name	CM6125
FCC ID	2AOHHTURBOXCM6125
	Conducted: 869835050001758/869835050002558
IMEI Code	Conduction: 869835050002210/869835050003010
	Radiation: 869835050002210/869835050003010
HW Version	V03
SW Version	Turbox-CM6125_xx.xx_la1.0.V.userdebug.20220509.0843
EUT Stage	Identical Prototype

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	7.76 dBm (0.0060 W)			
Antenna Type / Gain	<ant.1>: Dipole Antenna with gain 2.90 dBi</ant.1>			
	<ant.2>: PIFA Antenna with gain 3.50 dBi</ant.2>			
Type of Modulation	Bluetooth LE : GFSK			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (Shenzhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc.	Sporton International Inc. (Shenzhen)						
Test Site Location1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nansh Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595								
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.					
	CO01-SZ	CN1256	421272					
Test Firm	Sporton International Inc.	(Shenzhen)						
Test Site Location	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang Community, Fuyong Street, Baoan District, Shenzhen City Guangdong Province China 518103 TEL: +86-755-33202398							
	Sporton Site No.	FCC Designation No.	FCC Test Firm					
Test Site No.	Sporton Site No.	FCC Designation No.	Registration No.					
	03CH03-SZ	CN1256	421272					

1.7 Test Software

ltem	Site	Manufacturer	Name	Version
1.	03CH03-SZ	AUDIX	E3	6.2009-8-24
2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases
	Data Rate / Modulation
Test Item	Bluetooth – LE / GFSK
	Ant. 1/ Ant. 2
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
Radiated	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
	Co-location mode: BLE Tx CH39 + LTE Band 7 Tx
AC	Made 1 - MCDMA Dand Middle - Divetesth Link - Mid AN Link(2,40) - Adepter - Ant 1
Conducted	Mode 1 : WCDMA Band V Idle + Bluetooth Link + WLAN Link(2.4G) + Adapter + Ant. 1
Emission	Mode 2 : WCDMA Band V Idle + Bluetooth Link + WLAN Link(2.4G) + Adapter + Ant. 2

Remark:

- 1. BLE support data rate 1Mbps only.
- 2. For Radiated Test Cases, The tests were performed with Adapter.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8m
2.	WLAN AP	Dlink	DIR-820L	KA2IR820LA1	N/A	Unshielded, 1.8m
3.	Notebook	Lenovo	E540	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Bluetooth Earphone	Samsung	EO-MG900	PYAHS-107W	N/A	N/A
5.	Test Jig	N/A	N/A	N/A	N/A	N/A
6.	Antenna 1	N/A	N/A	N/A	N/A	N/A
7.	Antenna 2	N/A	N/A	N/A	N/A	N/A
8.	WWAN Antenna	N/A	N/A	N/A	N/A	N/A
9.	Adapter	N/A	N/A	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For BLE function, the engineering test program was provided and enabled to make EUT continuous transmit.

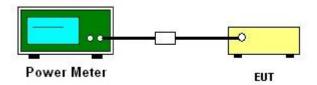
For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.1.3 PKPM1 Peak power meter or ANSI C63.10-2013 clause 11.9.2.3.1 Method AVGPM method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Test Mode	Antenna	Freq	Conducted Peak	Conducted	EIRP	EIRP Limit	Verdiet
		(MHz)	Powert [dBm]	Limit [dBm]	[dBm]	[dBm]	Verdict
		2402	6.36	≤30.00	9.26	≤36.00	PASS
BLE_1M	Ant.1	2440	7.76	≤30.00	10.66	≤36.00	PASS
		2480	6.25	≤30.00	9.15	≤36.00	PASS
		2402	6.36	≤30.00	9.86	≤36.00	PASS
BLE_1M	Ant.2	2440	7.76	≤30.00	11.26	≤36.00	PASS
		2480	6.25	≤30.00	9.75	≤36.00	PASS

3.2 Radiated Band Edges and Spurious Emission Measurement

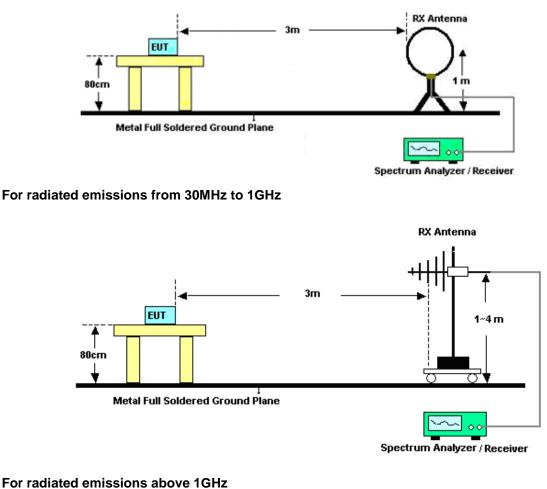
3.2.1 Limit of Radiated Band Edges and Spurious Emission

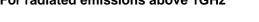
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

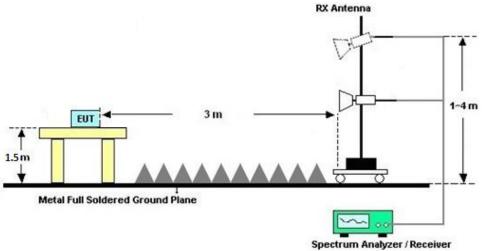
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.


3.2.3 Test Procedures


- 1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



3.2.4 Test Setup

For radiated emissions below 30MHz

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: 2AOHHTURBOXCM6125

3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.2.7 Duty Cycle

Please refer to Appendix C.

3.2.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix B.

3.3 AC Conducted Emission Measurement

3.3.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.3.2 Measuring Instruments


The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.3.4 Test Setup

3.3.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.4 Antenna Requirements

3.4.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.4.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.4.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark	
EMI Test Receiver&SA	KEYSIGHT	N9038A	MY544500 83	20Hz~8.4GHz	Apr. 06, 2022	Oct. 14, 2022~ Nov. 08, 2022	Apr. 05, 2023	Radiation (03CH03-SZ)	
EXA Spectrum Anaiyzer	KEYSIGHT	N9010A	MY551502 46	10Hz~44GHz;	Apr. 06, 2022	Oct. 14, 2022~ Nov. 08, 2022	Apr. 05, 2023	Radiation (03CH03-SZ)	
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jul. 28, 2022	Oct. 14, 2022~ Nov. 08, 2022	Jul. 27, 2024	Radiation (03CH03-SZ)	
Bilog Antenna	TeseQ	CBL6112D	35408	30MHz-2GHz	Aug. 09, 2022	Oct. 14, 2022~ Nov. 08, 2022	Aug. 08, 2023	Radiation (03CH03-SZ)	
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA9120D	9120D-135 5	1GHz~18GHz	Apr. 08, 2022	Oct. 14, 2022~ Nov. 08, 2022	Apr. 07, 2023	Radiation (03CH03-SZ)	
HF Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz	Oct. 22, 2021	Oct. 14, 2022~	Oct. 21, 2022	Radiation (03CH03-SZ)	
HF Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz	Oct. 21, 2022	Nov. 08, 2022	Oct. 20, 2023	Radiation (03CH03-SZ)	
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Apr. 10, 2022	Oct. 14, 2022~ Nov. 08, 2022	Apr. 09, 2023	Radiation (03CH03-SZ)	
Amplifier	Burgeon	BPA-530	102211	0.01Hz ~3000MHz	Oct. 22, 2021	Oct. 14, 2022~	Oct. 21, 2022	Radiation (03CH03-SZ)	
Amplifier	Burgeon	BPA-530	102211	0.01Hz ~3000MHz	Oct. 21, 2022	Nov. 08, 2022	Oct. 20, 2023	Radiation (03CH03-SZ)	
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 22, 2021	Oct. 14, 2022~	Oct. 21, 2022	Radiation (03CH03-SZ)	
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 21, 2022	Nov. 08, 2022	Oct. 20, 2023	Radiation (03CH03-SZ)	
Amplifier	Agilent Technologies	83017A	MY395013 02	500MHz~26.5G Hz	Dec. 27, 2021	Oct. 14, 2022~ Nov. 08, 2022	Dec. 26, 2022	Radiation (03CH03-SZ)	
AC Power Source	Chroma	61601	616010001 985	N/A	NCR	Oct. 14, 2022~ Nov. 08, 2022	NCR	Radiation (03CH03-SZ)	
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Oct. 14, 2022~ Nov. 08, 2022	NCR	Radiation (03CH03-SZ)	
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Oct. 14, 2022~ Nov. 08, 2022	NCR	Radiation (03CH03-SZ)	
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jul. 07, 2022	Sep. 30, 2022	Jul. 06, 2023	Conduction (CO01-SZ)	
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Sep. 15, 2022	Sep. 30, 2022	Sep. 14, 2023	Conduction (CO01-SZ)	
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 29, 2021	Sep. 30, 2022	Oct. 28, 2022	Conduction (CO01-SZ)	
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Jul. 07, 2022	Sep. 30, 2022	Jul. 06, 2023	Conduction (CO01-SZ)	

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.2dB
of 95% (U = 2Uc(y))	2.200

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

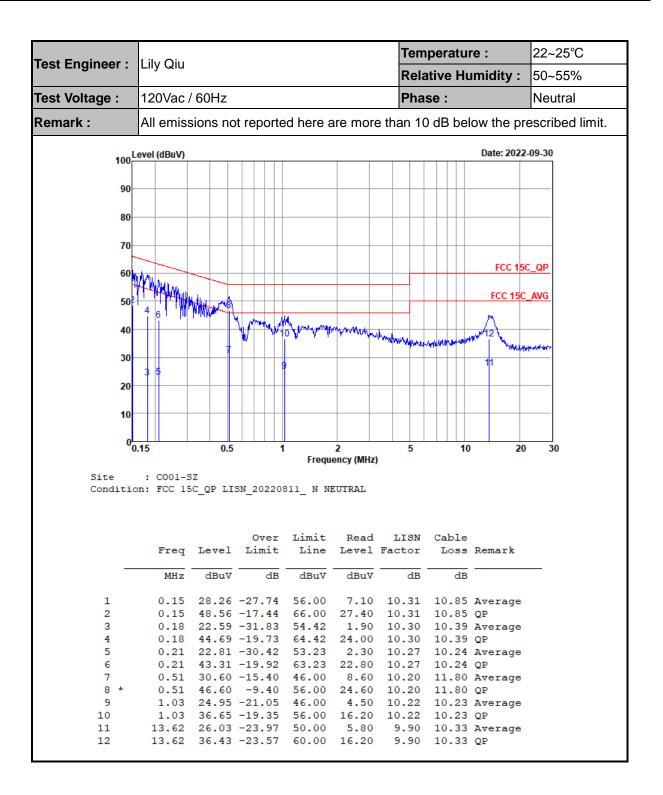
Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4 0 J P
of 95% (U = 2Uc(y))	4.9dB

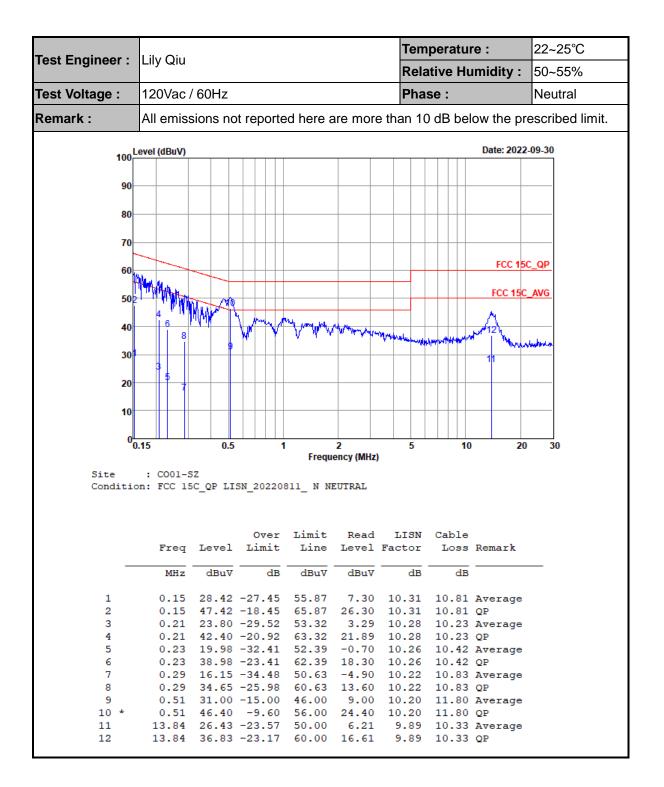
Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B


----- THE END ------

Appendix A. AC Conducted Emission Test Results

.						Tem	peratur	e:	22~25°	
Test Engineer :	Lily Qiu				Rela	ative Hu	midity :	50~55%		
Fest Voltage :	120Vac	/ 60Hz				Pha	se ·		Line	
J		All emissions not reported here are more than 10 dB below the pr								
Remark :	All emiss	sions no	t reporte	ed here a	are more	e than 10) dB bel	ow the pre	escribed	
14								Date: 2022-	00 30	
100	evel (dBuV)							Dutc. EVEL		
90—										
90										
80										
70—										
								FCC 150	OP	
60	M								<u></u>	
CO 2	A ALA							FCC 15C	AVG	
5012		Nin Alt						Δ		
40	4	8	A water of	An Alexander				12		
	6	1	WT TVI	. What what have	MV MANA	Min Mart Manakan	A Margaret Margaret	Thur.	round	
30						LONDAR I MANNAY	////		M M M M M M M M M M M M M M M M M M M	
		1								
20	3									
	5									
10										
°0.4	15	0.5	1		2	5	10	20	30	
				riequ	ency (MHz)	,				
Site Condition	: CO01-S n: FCC 15		SN 202208	B11 L L	INE					
			Over	Limit	Read	LISN	Cable			
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark		
	MHz		dB	dBuV	dBuV	dB	dB		_	
		00.00	-28.63	55.56	6.00	10.20	10.73	Average		
1	0.16	26.93						OP		
1 2 *	0.16 0.16	26.93 48.43	-17.13	65.56	27.50	10.20	10.73	¥1		
2 * 3	0.16 0.22	48.43 18.91	-17.13 -34.01	52.92	-1.60	10.19	10.32	Average		
2 * 3 4	0.16 0.22 0.22	48.43 18.91 41.91	-17.13 -34.01 -21.01	52.92 62.92	-1.60 21.40	10.19 10.19	10.32 10.32	Average QP		
2 * 3 4 5	0.16 0.22 0.22 0.29	48.43 18.91 41.91 13.41	-17.13 -34.01 -21.01 -37.13	52.92 62.92 50.54	-1.60 21.40 -7.60	10.19 10.19 10.16	10.32 10.32 10.85	Average QP Average		
2 * 3 4 5 6	0.16 0.22 0.22 0.29 0.29	48.43 18.91 41.91 13.41 35.71	-17.13 -34.01 -21.01 -37.13 -24.83	52.92 62.92 50.54 60.54	-1.60 21.40 -7.60 14.70	10.19 10.19 10.16 10.16	10.32 10.32 10.85 10.85	Average QP Average QP		
2 * 3 4 5	0.16 0.22 0.22 0.29	48.43 18.91 41.91 13.41 35.71 23.98	-17.13 -34.01 -21.01 -37.13	52.92 62.92 50.54 60.54 46.45	-1.60 21.40 -7.60 14.70 2.09	10.19 10.19 10.16 10.16 10.12	10.32 10.32 10.85 10.85 11.77	Average QP Average QP Average		
2 * 3 4 5 6 7 8 9	0.16 0.22 0.29 0.29 0.29 0.47 0.47 0.56	48.43 18.91 41.91 13.41 35.71 23.98 39.28 18.60	-17.13 -34.01 -21.01 -37.13 -24.83 -22.47 -17.17 -27.40	52.92 62.92 50.54 60.54 46.45 56.45 46.00	-1.60 21.40 -7.60 14.70 2.09 17.39 -3.10	10.19 10.19 10.16 10.16 10.12 10.12 10.11	10.32 10.32 10.85 10.85 11.77 11.77 11.59	Average QP Average QP Average QP Average		
2 * 3 4 5 6 7 8	0.16 0.22 0.29 0.29 0.47 0.47 0.56 0.56	48.43 18.91 41.91 13.41 35.71 23.98 39.28 18.60 33.00	-17.13 -34.01 -21.01 -37.13 -24.83 -22.47 -17.17	52.92 62.92 50.54 60.54 46.45 56.45 46.00 56.00	-1.60 21.40 -7.60 14.70 2.09 17.39 -3.10	10.19 10.19 10.16 10.16 10.12 10.12 10.11	10.32 10.32 10.85 10.85 11.77 11.77 11.59 11.59	Average QP Average QP Average QP Average		



Mode	2(Ant.	2):

leat Engineers						Tem	peratu	re :	22~25°C	
fest Engineer :	Lily Qiu	_IIY QIU					ative Hu	imidity :	50~55%	
Fest Voltage :	120Vac	/ 60Hz			Pha	se :		Line		
Remark :	All emiss	sions no	ot reporte	ed here a	are more	e than 10) dB bel	ow the pr	escribed li	
100	Level (dBuV)							Date: 2022	-09-30	
100										
90										
80										
00										
70										
								FCC 150	OP	
60								10010	<u>- ui</u>	
50								FCC 15C	AVG	
	2									
40	4	ull ulla	Mrs and	N				12		
	6	aalimida. 🛛 a	Mr. work 1	mal and a man	4 Augurn	Manhana	WWW.WWWW	11 Wester	acardus	
30		1								
20			9							
20	3 5									
10										
0										
	0.15	0.5	1		2	5	10	20	30	
'	0.15	0.5	1		2 ency (MHz)	-	10	20	30	
Site	: CO01-5	SZ		Frequ	ency (MHz)	-	10	20	30	
Site		SZ		Frequ	ency (MHz)	-	10	20	30	
Site	: CO01-5	SZ		Frequ	ency (MHz)	-	10	20	30	
Site	: CO01-5	SZ	SN_20220	Frequ	ency (MHz)			20	30	
Site	: CO01-5 on: FCC 15	SZ SC_QP LI	SN_20220	Frequ 811_ L L Limit	ency (MHz) INE Read		Cable	20 Remark	30	
Site	: COOL-S on: FCC 15 Freq	GZ GC_QP LI Level	SN_20220 Over Limit	Frequ B11_ L L Limit Line	Read Level	LISN Factor	Cable Loss		30	
Site	: CO01-5 on: FCC 15	SZ SC_QP LI	SN_20220 Over	Frequ 811_ L L Limit	ency (MHz) INE Read	LISN	Cable		30	
Site	: CO01-5 on: FCC 15 Freq MHz 0.16	SZ GC_QP LI Level dBuV 26.27	Over Limit dB -29.42	Frequ Bll_ L L Limit Line dBuV 55.69	Read Level dBuV 5.30	LISN Factor dB 10.20	Cable Loss dB 10.77		30	
Site Conditio — 1 2	: CO01-5 on: FCC 15 Freq MHz 0.16 0.16	52 5C_QP LI Level dBuV 26.27 43.87	Over Limit -29.42 -21.82	Frequ 811_ L L Limit Line dBuV 55.69 65.69	Read Level dBuV 5.30 22.90	LISN Factor dB 10.20 10.20	Cable Loss dB 10.77 10.77	Remark Average QP	30	
Site Conditio — 1 2 3	: CO01-5 on: FCC 15 Freq MHz 0.16 0.16 0.19	52 5C_QP LI Level dBuV 26.27 43.87 16.55	Over Limit -29.42 -21.82 -37.43	Frequ 811_ L L Limit Line dBuV 55.69 65.69 53.98	Read Level dBuV 5.30 22.90 -3.90	LISN Factor dB 10.20 10.20 10.20	Cable Loss dB 10.77 10.77 10.25	Remark Average QP Average	30	
Site Conditio — 1 2	: CO01-5 on: FCC 15 Freq MHz 0.16 0.16 0.19 0.19	52 5C_QP LI Level dBuV 26.27 43.87 16.55 39.45	Over Limit -29.42 -21.82 -37.43 -24.53	Frequ 811_ L L Limit Line dBuV 55.69 65.69 53.98 63.98	Read Level dBuV 5.30 22.90 -3.90 19.00	LISN Factor dB 10.20 10.20 10.20 10.20	Cable Loss dB 10.77 10.77 10.25 10.25	Remark Average QP Average QP	30	
Site Conditio 	: CO01-5 on: FCC 15 Freq MHz 0.16 0.16 0.19 0.19 0.25 0.25	5Z C_QP LI Level dBuV 26.27 43.87 16.55 39.45 14.15 32.25	Over Limit 	Frequ B11_ L L Limit Line dBuV 55.69 65.69 53.98 63.98 51.73 61.73	Read Level dBuV 5.30 22.90 -3.90 19.00 -6.60 11.50	LISN Factor dB 10.20 10.20 10.20 10.20 10.18 10.18	Cable Loss dB 10.77 10.77 10.25 10.25 10.57 10.57	Average QP Average QP Average QP	30	
Site Conditio 	: CO01-5 on: FCC 15 Freq MHz 0.16 0.16 0.19 0.19 0.25 0.25 0.25 0.49	5Z Level dBuV 26.27 43.87 16.55 39.45 14.15 32.25 25.93	Over Limit dB -29.42 -21.82 -37.43 -24.53 -37.58 -29.48 -20.26	Frequ 811_ L L Limit Line dBuV 55.69 65.69 53.98 63.98 51.73 61.73 46.19	Read Level dBuV 5.30 22.90 -3.90 19.00 -6.60 11.50 4.00	LISN Factor dB 10.20 10.20 10.20 10.20 10.18 10.18 10.12	Cable Loss dB 10.77 10.77 10.25 10.25 10.57 10.57 11.81	Average QP Average QP Average QP Average	30	
Site Condition 1 2 3 4 5 6 7 8 *	: CO01-5 on: FCC 15 Freq MHz 0.16 0.19 0.19 0.25 0.25 0.25 0.49 0.49	5Z C_QP LI Level dBuV 26.27 43.87 16.55 39.45 14.15 32.25 25.93 40.43	Over Limit 	Frequ Bll_ L L Limit Line dBuV 55.69 65.69 53.98 63.98 51.73 61.73 46.19 56.19	Read Level dBuV 5.30 22.90 -3.90 19.00 -6.60 11.50 4.00 18.50	LISN Factor dB 10.20 10.20 10.20 10.20 10.18 10.18 10.12 10.12	Cable Loss dB 10.77 10.77 10.25 10.25 10.57 10.57 11.81 11.81	Average QP Average QP Average QP Average QP	30	
Site Condition 1 2 3 4 5 6 7 8 * 9	: CO01-5 on: FCC 15 Freq MHz 0.16 0.19 0.19 0.25 0.25 0.25 0.49 0.49 0.98	Eevel dBuV 26.27 43.87 16.55 39.45 14.15 32.25 25.93 40.43 19.89	Over Limit dB -29.42 -21.82 -37.43 -24.53 -37.58 -29.48 -20.26 -15.76 -26.11	Frequ Bll_ L L Limit Line dBuV 55.69 65.69 53.98 63.98 51.73 61.73 46.19 56.19 46.00	Read Level dBuV 5.30 22.90 -3.90 19.00 -6.60 11.50 4.00 18.50 -0.50	LISN Factor dB 10.20 10.20 10.20 10.20 10.18 10.18 10.18 10.12 10.12	Cable Loss dB 10.77 10.77 10.25 10.25 10.57 10.57 11.81 11.81 10.27	Average QP Average QP Average QP Average QP Average QP Average	30	
Site Condition 1 2 3 4 5 6 7 8 *	: CO01-5 on: FCC 15 Freq MHz 0.16 0.19 0.19 0.25 0.25 0.25 0.49 0.49 0.98 0.98	Eevel dBuV 26.27 43.87 16.55 39.45 14.15 32.25 25.93 40.43 19.89 31.89	Over Limit -29.42 -21.82 -37.43 -24.53 -37.58 -29.48 -20.26 -15.76 -26.11 -24.11	Frequ 811_ L L Limit Line dBuV 55.69 65.69 53.98 63.98 51.73 61.73 46.19 56.19 46.00 56.00	Read Level dBuV 5.30 22.90 -3.90 19.00 -6.60 11.50 4.00 18.50 -0.50 11.50	LISN Factor dB 10.20 10.20 10.20 10.20 10.18 10.18 10.12 10.12 10.12 10.12	Cable Loss dB 10.77 10.77 10.25 10.25 10.57 10.57 11.81 11.81 10.27 10.27	Average QP Average QP Average QP Average QP Average QP Average	30	

Note:

- 1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dBµV) Limit Line(dBµV)

Appendix B. Radiated Spurious Emission

For Ant. 1:

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2376.99	50.89	-23.11	74	47.52	32.18	4.87	33.68	341	348	Р	Н
		2381.19	42.03	-11.97	54	38.65	32.19	4.87	33.68	341	348	А	Н
BLE	*	2402	102.33	-	-	98.84	32.25	4.9	33.66	341	348	Р	Н
CH 00	*	2402	101.73	-	-	98.24	32.25	4.9	33.66	341	348	А	Н
2402MHz		2353.575	51.42	-22.58	74	48.12	32.12	4.87	33.69	350	78	Р	V
240211112		2342.34	42.04	-11.96	54	38.81	32.09	4.83	33.69	350	78	А	V
	*	2402	99.5	-	-	96.01	32.25	4.9	33.66	350	78	Р	V
	*	2402	98.82	-	-	95.33	32.25	4.9	33.66	350	78	А	V
	*	2480	102.18	-	-	98.4	32.45	4.95	33.62	364	348	Р	Н
	*	2480	101.49	-	-	97.71	32.45	4.95	33.62	364	348	А	Н
		2483.64	55.67	-18.33	74	51.88	32.46	4.95	33.62	364	348	Р	Н
BLE CH 39		2484.28	43.35	-10.65	54	39.56	32.46	4.95	33.62	364	348	А	Н
2480MHz	*	2480	100.41	-	-	96.63	32.45	4.95	33.62	228	173	Р	V
24000012	*	2480	99.58	-	-	95.8	32.45	4.95	33.62	228	173	А	V
		2483.92	53.72	-20.28	74	49.93	32.46	4.95	33.62	228	173	Р	V
		2484.6	42.69	-11.31	54	38.9	32.46	4.95	33.62	228	173	А	V
Remark		o other spurio I results are F		st Peak	and Averag	e limit lin	е.						

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
BLE		4804	43.34	-30.66	74	53.61	34.68	7.98	52.93	-	-	Р	н
CH 00 2402MHz		4804	44.58	-29.42	74	54.85	34.68	7.98	52.93	-	-	Р	V
515		4880	44.2	-29.8	74	54.4	34.65	7.99	52.84	-	-	Р	н
BLE		7320	45.98	-28.02	74	54.31	36.42	9.36	54.11	-	-	Р	н
CH 19 2440MHz		4880	44.3	-29.7	74	54.5	34.65	7.99	52.84	-	-	Р	V
2440101112		7320	45.56	-28.44	74	53.89	36.42	9.36	54.11	-	-	Р	V
		4960	43.85	-30.15	74	53.95	34.62	8.02	52.74	-	-	Р	Н
BLE		7440	46.5	-27.5	74	54.49	36.54	9.51	54.04	-	-	Р	н
CH 39 2480MHz		4960	43.57	-30.43	74	53.67	34.62	8.02	52.74	-	-	Р	V
240011112		7440	46.82	-27.18	74	54.81	36.54	9.51	54.04	-	-	Р	V
Remark		o other spurio I results are P		st Peak	and Averag	je limit lin	е.						

2.4GHz 2400~2483.5MHz BLE (Harmonic @ 3m)

_					BLE (LI	F @ 3m)							_
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	(H/V)
		30	24.36	-15.64	40	30.37	25.86	0.53	32.4	-	-	P	Η
		154.16	17.24	-26.26	43.5	31.26	16.9	1.27	32.19	-	-	Р	Н
		288.02	23.35	-22.65	46	33.68	19.63	1.76	31.72	-	-	Р	Н
		600.36	29.38	-16.62	46	31.14	26.38	2.56	30.7	-	-	Р	н
		866.14	32.05	-13.95	46	31.43	28.97	3.09	31.44	-	-	Р	Н
BLE		966.05	33.78	-20.22	54	31.05	30.82	3.26	31.35	-	-	Р	н
CH 00 2402MHz		30	27.09	-12.91	40	33.1	25.86	0.53	32.4	-	-	Р	V
240211112		63.95	21.43	-18.57	40	40.79	12.24	0.8	32.4	-	-	Р	V
		115.36	19.17	-24.33	43.5	32.87	17.4	1.1	32.2	-	-	Р	V
		622.67	28.4	-17.6	46	30.12	26.43	2.6	30.75	-	-	Р	V
		800.18	31.62	-14.38	46	31.09	28.89	2.94	31.3	-	-	Р	V
		985.45	33.43	-20.57	54	30.88	30.41	3.29	31.15	-	-	Р	V
Remark		o other spurio		st Peak	and Averag	e limit lin	e.						

2.4GHz 2400~2483.5MHz

_			2.4G	Hz 2400~2	483.5MHz (I	Band Ed	lge @ 3n	ו)					_
BLE Ant.	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		Avg. (P/A)	
	*	2480	102.88	-	-	99.13	32.45	4.92	33.62	167	303	Ρ	Н
	*	2480	101.82	-	-	98.07	32.45	4.92	33.62	167	303	А	Н
		2483.68	55.38	-18.62	74	51.62	32.46	4.92	33.62	167	303	Ρ	Н
BLE CH39		2483.76	42.71	-11.29	54	38.95	32.46	4.92	33.62	167	303	А	Н
& LTE B7	*	2480	102.5	-	-	98.75	32.45	4.92	33.62	110	348	Ρ	V
	*	2480	101.82	-	-	98.07	32.45	4.92	33.62	110	348	А	V
		2483.64	54.97	-19.03	74	51.21	32.46	4.92	33.62	110	348	Ρ	V
		2485.52	42.44	-11.56	54	38.68	32.46	4.92	33.62	110	348	А	V
Remark		o other spuri Il results are		st Peak and	Average limit	line.							

Co-location mode: BLE CH39 + LTE Band 7

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	(H/V)
		4960	42.36	-31.64	74	52.67	34.62	7.81	52.74	-	-	Р	Н
		5052.18	50.23	-23.77	74	60.48	34.58	7.86	52.69	-	-	Р	Н
		7440	45.12	-28.88	74	53.43	36.54	9.19	54.04	-	-	Р	Н
		7578.27	45.93	-28.07	74	54.15	36.58	9.15	53.95	-	-	Р	Н
		10104.36	46.65	-27.35	74	49.42	39.56	10.52	52.85	-	-	Р	Н
BLE CH39		4960	43.03	-30.97	74	53.34	34.62	7.81	52.74	-	-	Р	V
& LTE B7		5052.18	50.2	-23.8	74	60.45	34.58	7.86	52.69	-	-	Р	V
		7440	45.28	-28.72	74	53.59	36.54	9.19	54.04	-	-	Р	V
		7578.27	49.6	-24.4	74	57.82	36.58	9.15	53.95	-	-	Р	V
		10104.36	50	-24	74	52.77	39.56	10.52	52.85	-	-	Р	V
		4960	43.03	-30.97	74	53.34	34.62	7.81	52.74	-	-	Р	V
Remark		other spurious		Peak a	nd Average	limit line							

2.4GHz 2400~2483.5MHz (Harmonic @ 3m)

For Ant. 2:

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2376.57	51.21	-22.79	74	47.94	32.18	4.77	33.68	350	219	Р	Н
		2373.735	41.47	-12.53	54	38.21	32.17	4.77	33.68	350	219	А	Н
51.5	*	2402	90.22	-	-	86.82	32.25	4.81	33.66	350	219	Р	Н
BLE	*	2402	89.61	-	-	86.21	32.25	4.81	33.66	350	219	А	Н
CH 00 2402MHz		2366.595	51.13	-22.87	74	47.89	32.15	4.77	33.68	400	120	Р	V
240210112		2385.18	41.44	-12.56	54	38.09	32.2	4.81	33.66	400	120	А	V
	*	2402	92.68	-	-	89.28	32.25	4.81	33.66	400	120	Р	V
	*	2402	91.9	-	-	88.5	32.25	4.81	33.66	400	120	А	V
		4960	44.1	-29.9	74	54.41	34.62	7.81	52.74	-	-	Р	Н
BLE CH 39		7440	46.57	-27.43	74	54.88	36.54	9.19	54.04	-	-	Р	Н
2480MHz		4960	43.6	-30.4	74	53.91	34.62	7.81	52.74	-	-	Р	V
240011112		7440	46.23	-27.77	74	54.54	36.54	9.19	54.04	-	-	Ρ	V
Remark		o other spurio I results are P		st Peak	and Averag	je limit lin	e.						

				В	LE (Harm	onic @	3m)						_
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
515		4880	44.49	-29.51	74	54.92	34.65	7.76	52.84	-	-	Ρ	н
BLE		7320	46.45	-27.55	74	55.19	36.42	8.95	54.11	-	-	Ρ	Н
CH 00 2402MHz		4880	44.37	-29.63	74	54.8	34.65	7.76	52.84	-	-	Ρ	V
240211112		7320	45.65	-28.35	74	54.39	36.42	8.95	54.11	-	-	Ρ	V
		4880	44.49	-29.51	74	54.92	34.65	7.76	52.84	-	-	Р	Н
BLE		7320	46.45	-27.55	74	55.19	36.42	8.95	54.11	-	-	Р	Н
CH 19 2440MHz		4880	44.37	-29.63	74	54.8	34.65	7.76	52.84	-	-	Р	V
2440101112		7320	45.65	-28.35	74	54.39	36.42	8.95	54.11	-	-	Р	V
		4960	44.1	-29.9	74	54.41	34.62	7.81	52.74	-	-	Ρ	н
BLE		7440	46.57	-27.43	74	54.88	36.54	9.19	54.04	-	-	Р	Н
CH 39 2480MHz		4960	43.6	-30.4	74	53.91	34.62	7.81	52.74	-	-	Ρ	V
2400101712		7440	46.23	-27.77	74	54.54	36.54	9.19	54.04	-	-	Ρ	V
Remark		o other spurio I results are P		st Peak	and Averag	e limit lin	е.						

2.4GHz 2400~2483.5MHz

Emission below 1GHz

2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	24.36	-15.64	40	30.37	25.86	0.53	32.4	-	-	Р	Н
		154.16	17.24	-26.26	43.5	31.26	16.9	1.27	32.19	-	-	Р	Н
		288.02	23.35	-22.65	46	33.68	19.63	1.76	31.72	-	-	Р	Н
		600.36	29.38	-16.62	46	31.14	26.38	2.56	30.7	-	-	Р	н
		866.14	32.05	-13.95	46	31.43	28.97	3.09	31.44	-	-	Р	Н
2.4GHz BLE		966.05	33.78	-20.22	54	31.05	30.82	3.26	31.35	-	-	Р	н
LF		30	27.09	-12.91	40	33.1	25.86	0.53	32.4	-	-	Р	V
		63.95	21.43	-18.57	40	40.79	12.24	0.8	32.4	-	-	Р	V
		115.36	19.17	-24.33	43.5	32.87	17.4	1.1	32.2	-	-	Р	V
		622.67	28.4	-17.6	46	30.12	26.43	2.6	30.75	-	-	Р	V
		800.18	31.62	-14.38	46	31.09	28.89	2.94	31.3	-	-	Р	V
		985.45	33.43	-20.57	54	30.88	30.41	3.29	31.15	-	-	Р	V
Remark		o other spurio I results are F		st limit li	ne.								

-			2.4GF	lz 2400	~2483.5N	lHz (Ban	d Edge	@ 3m)					_
BLE Ant.	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos		Peak Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	Avg. (P/A)	
	*	2480	92.59	-	-	88.84	32.45	4.92	33.62	364	64	Р	н
	*	2480	91.81	-	-	88.06	32.45	4.92	33.62	364	64	А	н
		2495.6	50.89	-23.11	74	47.08	32.49	4.92	33.6	364	64	Ρ	Н
BLE		2499.2	42.47	-11.53	54	38.65	32.5	4.92	33.6	364	64	А	н
CH 39& LTE B7	*	2480	86.72	-	-	82.97	32.45	4.92	33.62	377	179	Ρ	V
	*	2480	86.07	-	-	82.32	32.45	4.92	33.62	377	179	А	V
		2499.24	52.12	-21.88	74	48.3	32.5	4.92	33.6	377	179	Ρ	V
		2499.48	43.72	-10.28	54	39.9	32.5	4.92	33.6	377	179	А	V
Remark		o other spurio I results are P		st Peak	and Averag	je limit line	е.						

Co-location mode: BLE CH39 + LTE Band 7

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		4960	44.48	-29.52	74	54.79	34.62	7.81	52.74	-	-	Ρ	н
		5052	47.05	-26.95	74	57.3	34.58	7.86	52.69	-	-	Ρ	Н
		7440	45.09	-28.91	74	53.4	36.54	9.19	54.04	-	-	Ρ	Н
		7578	48.25	-25.75	74	56.47	36.58	9.15	53.95	-	-	Ρ	Н
BLE		10104	48.12	-25.88	74	50.89	39.56	10.52	52.85	-	-	Ρ	Н
CH 39& LTE B7		4960	43.43	-30.57	74	53.74	34.62	7.81	52.74	-	-	Ρ	V
		5052	53.83	-20.17	74	64.08	34.58	7.86	52.69	-	-	Ρ	V
		7440	45.03	-28.97	74	53.34	36.54	9.19	54.04	-	-	Р	V
		7578	52.95	-21.05	74	61.17	36.58	9.15	53.95	-	-	Р	V
		10104	48.67	-25.33	74	51.44	39.56	10.52	52.85	-	-	Р	V
Remark		o other spurio I results are F		st Peak	and Averag	je limit lin	e.		1	1	<u> </u>		

2.4GHz 2400~2483.5MHz (Harmonic @ 3m)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin (dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Margin (dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix C. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
Bluetooth LE 1Mbps	63.49	0.400	2.5	3kHz

Bluetooth LE 1Mbps

SGL Co	iunt 1,		B SWT TRG: \		VBW 10 MHz					
1Pk Cl	rw		-	101						
						M	1[1]			-36.42 dBr -1.880000 m
10 dBm	-			-		D	1[1]			1.52 d
Γ			+	D				1		^{400.000} μ
0 dBm-	T	RG 0.500) dBm							
-10 dBm										
10 00.	· [
-20 dBm						-				
20 40										
-30 dBn			D							
4D, dBm			-	the way all the		- Lat	عه بالدالساطية -			United by a shifting
			10			and a second	A STATE AND A STATE			Manufactored A
-50 dBm	1		-		-					
-60 dBrr				-				_		
	~ I.									
-70 dBm	1		-	+	-	;				
CF 2.4	02 GH	z			3001 pt	s				200.0 µs/
1arker										
Туре	Ref	Trc	X-valu		Y-value	Func	tion	Fu	unction Res	ult
M1		1		1.88 ms	-36.42 dBm					
D1 D2	M1 M1	1		400.0 μs 530.0 μs	1.52 dB 40.73 dB					