

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No.....: CTA24050901701 FCC ID.....: 2AOHH-XDV1-0003

Compiled by

(position+printed name+signature) : File administrators Zoey Cao

Supervised by

(position+printed name+signature): Project Engineer Amy Wen

Approved by

(position+printed name+signature): RF Manager Eric Wang

Date of issue.....: May 15, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

CTA TESTIN

CTATESTING

Applicant's name...... Thundercomm Technology Co., Ltd.

No. 107, Middle Datagu Road, Xiantao Street, Yubei

District, Chongqing, China, 401122

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description RF Board Unit

Trade Mark: N/A

Manufacturer Thundercomm Technology Co., Ltd.

Model/Type reference..... XDV1-0003

Listed Models: N/A

Modulation: GFSK

Frequency...... From 2402MHz to 2480MHz

Ratings: DC 1.80V from host device

Result..... PASS

Report No.: CTA24050901701 Page 2 of 34

TEST REPORT

Equipment under Test : RF Board Unit

Model /Type : XDV1-0003

Listed Models : N/A

Applicant : Thundercomm Technology Co., Ltd.

Address : No. 107, Middle Datagu Road, Xiantao Street, Yubei

District, Chongqing, China, 401122

Manufacturer : Thundercomm Technology Co., Ltd.

Address : No. 107, Middle Datagu Road, Xiantao Street, Yubei

District, Chongqing, China, 401122

Factory : Shenzhen ZECHENG Electronics Co.. Ltd.

Address : Building 5 and 6, Liantang Industrial Zone, No.48 Kangzheng Road,

Nanwan Street, Longgang District, Shenzhen, Guangdong, China

Test Result: PASS

The test report merely corresponds to the test sample.

CTATESTING

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

		TESTING Con	tents	
	1 C	TEST STANDARDS	$M_{\mathbf{G}}$	4
	(C)	TES	. C.	
	2	SUMMARY	TING	5
	_		, TES	<u>v</u>
	2.1	General Remarks	CTA CTA	5
	2.1	Product Description		5
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment under	Test (EUT)	5
	2.5	EUT operation mode	(=0.)	6
	2.6	Block Diagram of Test Setup		6
	2.7	Related Submittal(s) / Grant (s)		6
, C	2.8	Modifications		6
1				
	2	TEST ENVIRONMENT		7
	<u>3</u>	TEST ENVIRONMENT		··· /
	3.1	Address of the test laboratory		7
	3.2	Test Facility	CIA	7
	3.3	Environmental conditions	CTATES	7
	3.4	Summary of measurement results		8
	3.5	Statement of the measurement uncertainty		8
	3.6	Equipments Used during the Test		9
	<u>4</u>	TEST CONDITIONS AND RESUL	.TS	11
	C		INC	
	4.1	AC Power Conducted Emission		11
	4.2	Radiated Emissions and Band Edge		14
	4.3	Maximum Peak Output Power		20
	4.4	Power Spectral Density	CTA	21
	4.5	6dB Bandwidth	C. C.	24
	4.6	Out-of-band Emissions	CTA TESTING	27
	4.7	Antenna Requirement		32
		·		
	cilling	TEST SETUR BUOTOS OF THE	FUT	2.2
	<u> </u>	TEST SETUP PHOTOS OF THE	<u>EUT</u>	<u> 33</u>
CTATE				
	<u>6</u>	PHOTOS OF THE EUT		34
			CTATESTING	1112
			TATES	

Report No.: CTA24050901701 Page 4 of 34

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 V03r05: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

Report No.: CTA24050901701

SUMMARY

General Remarks

:	Mar. 24, 2024	
td	CIA	ING
	Mar. 25, 2024	TESTIT
COURTED TO		CTA
:	May 10, 2024	60
		: Mar. 25, 2024

2.2 Product Description

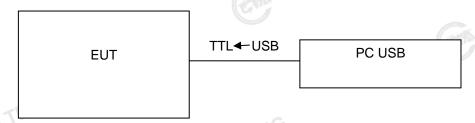
	C1F
Testing concluded on	: May 10, 2024
2.2 Product Descri	iption
Product Description:	RF Board Unit
Model/Type reference:	XDV1-0003
Power supply:	DC 1.8V from host device
Testing sample ID:	CTA240509017-1# (Engineer sample), CTA240509017-2# (Normal sample)
Hardware version:	V1.0
Software version:	V1.0
2.4GHz transceiver	
Supported type:	1Mbps & 2Mbps
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	PCB antenna
Antenna gain:	1.61 dBi

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz			
CIL		0	12 V DC	0	24 V DC			
Other (specified in blank below)								
DC 1.80V from host device								
2.4 Short description of the Equipment under Test (EUT)								
This is a RF Board Unit. For more details, refer to the user'	s manı	ıal d	of the EUT.					

2.4 Short description of the Equipment under Test (EUT)


TO TATESTING For more details, refer to the user's manual of the EUT. Report No.: CTA24050901701 Page 6 of 34

EUT operation mode

The Applicant provides communication tools software(nRFconnect) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

H.C.				
Operat	ion Frequency:			
	Channel		Frequency (MHz)	
	00		2402	
	01		2404	
	02		2406	140
			:	CIA
16	19		2440	
TATES	:	G	i i	
C	37		2476	
1	38		2478	
	39		2480	
2.6	Block Diagram of Test Se	tup CTATE	<i>y</i>	STING
		C. C.		TATESTIN
		TTL ← USB	DO HOD	

Block Diagram of Test Setup 2.6

2.7 Related Submittal(s) / Grant (s)
This submittal(s) /too: This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria.

Report No.: CTA24050901701 Page 7 of 34

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Baoʻan District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Т	emperature:		25 ° C
	C,,		GTIME
Н	lumidity:		45 %
our go	-	STORIES .	71
Α	tmospheric pressure:	CAL	950-1050mbar

AC Main Conducted testing:

man conduction to a second						
Temperature:	25 ° C					
Humidity:	46 %					
Atmospheric pressure:	950-1050mbar					

Atmospheric pre

onducted testing:		
Temperature:	25 ° C	GTING
-Car		TES.
Humidity:	44 %	X .
Atmospheric pressure:	950-1050mbar	

3.4 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
§15.247(e)	Power spectral density	1&2Mpbs	✓ Lowest✓ Middle✓ Highest	1&2Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	1&2Mpbs	☑ Lowest☑ Middle☑ Highest	1&2Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.247(b)(3)	Maximum Peak output power	1&2Mpbs	☐ Lowest☐ Middle☐ Highest	1&2Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.247(d)	Band edge compliance conducted	1&2Mpbs	☑ Lowest☑ Highest	1&2Mpbs	☑ Lowest☑ Highest	complies
§15.205	Band edge compliance radiated	1&2Mpbs	☑ Lowest☑ Highest	2Mpbs	☑ Lowest☑ Highest	complies
§15.247(d)	TX spurious emissions conducted	1&2Mpbs	✓ Lowest✓ Middle✓ Highest	1&2Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.209(a)	TX spurious emissions Radiated above 1GHz	1&2Mpbs	☑ Lowest☑ Middle☑ Highest	2Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.209(a)	TX spurious Emissions radiated Below 1GHz	1&2Mpbs		2Mpbs	⊠ Middle	complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	1&2Mpbs	✓ Lowest✓ Middle✓ Highest	2Mpbs	⊠ Middle	complies

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	-ING	0.57 dB	(1)
Spectrum bandwidth	-65/11/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

Report No.: CTA24050901701 Page 9 of 34

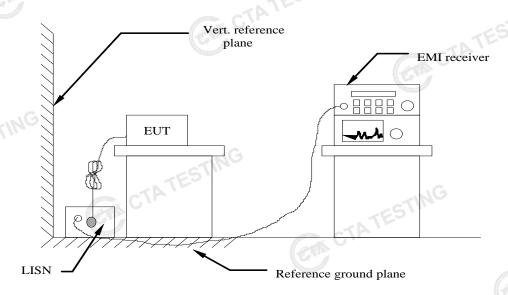
(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
	LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
	EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
TATE	EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
	Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
	Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
	Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
	Universal Radio Communication	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
TE	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
	Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
	Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01
	CTA TE	GM C	BBV9719	CTA	TESTING	

Report No.: CTA24050901701 Page 10 of 34

Test Software	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A



Report No.: CTA24050901701 Page 11 of 34

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

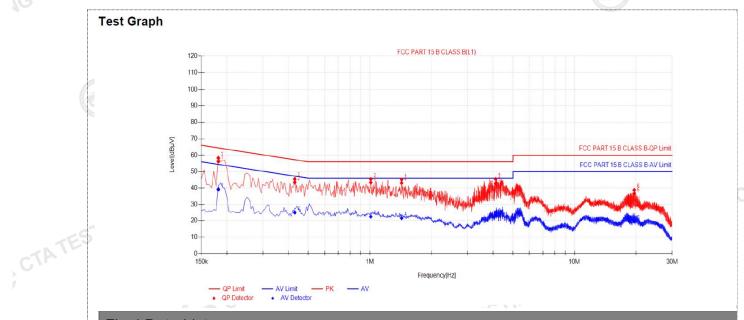
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tatop system, a wooden ta with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cas were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by ca manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguency ronge (MHz)	Limit (d	dBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the freq	uency.	•


TEST RESULTS

Remark:

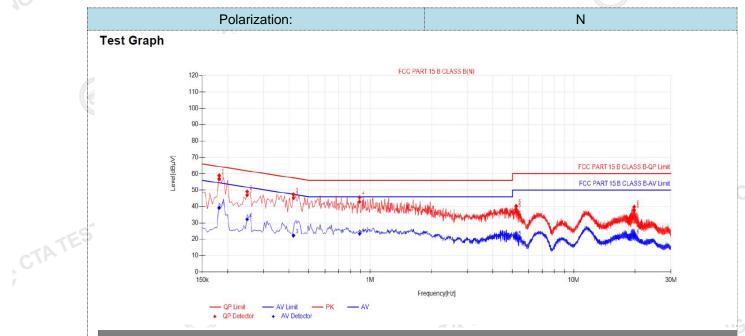
- Both modes of 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel; only the worst result of 2Mpbs middle channel was reported as below:
- 2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:.

	17.10, 00 112 mae repenteu ae belemm	
	Polarization	L
GING		
CTATES!		

Report No.: CTA24050901701 Page 12 of 34

Fina	Final Data List													
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµ∨]	QP Margin [dB]	A∀ Reading [dBμ∀]	A∀ ∀alue [dBµ∀]	AV Limit [dBµV]	A∀ Margin [dB]	Verdict			
1	0.1815	10.01	46.23	56.24	64.42	8.18	29.18	39.19	54.42	15.23	PASS			
2	0.429	9.91	33.52	43.43	57.27	13.84	15.20	25.11	47.27	22.16	PASS			
3	1.0095	9.91	33.45	43.36	56.00	12.64	12.61	22.52	46.00	23.48	PASS			
4	1.428	9.90	33.17	43.07	56.00	12.93	11.72	21.62	46.00	24.38	PASS			
5	4.1145	9.93	32.87	42.80	56.00	13.20	13.72	23.65	46.00	22.35	PASS			
6	19.5945	10.42	26.23	36.65	60.00	23.35	9.28	19.70	50.00	30.30	PASS			

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)


- 2). Factor (dB)=insertion loss of LISN (dB) + Ca loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

CTATESTING

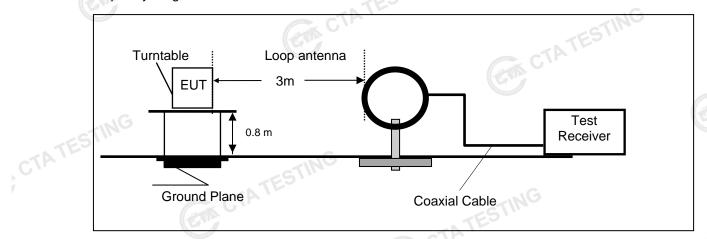
GA CTATE

Page 13 of 34 Report No.: CTA24050901701

No. $ \begin{array}{ c c c c c c c c } \hline \text{No.} & \hline \text{Freq.} \\ \hline \text{[MHz]} & \hline \text{Factor} \\ \hline \text{[dB]} & \hline \text{Reading[dB} \\ \hline \text{Pactor} \\ \hline \text{[dB]} & \hline \text{Value} \\ \hline \text{[dB]} & \hline \text{Imit} \\ \hline \text{[dB]} & \hline \text{Imit} \\ \hline \text{[dB]} & \hline \text{Margin} \\ \hline \text{[dB]} & \hline \text{[dB]} & \hline \text{Value} \\ \hline \text{[dB]} & \hline \text{Imit} \\ \hline \text{[dB]} & \hline \text{Value} $		Final	l Data Lis	st									
2 0.249 10.02 36.95 46.97 61.79 14.82 22.19 32.21 51.79 19.58 PASS 3 0.42 9.95 35.22 45.17 57.45 12.28 12.29 22.24 47.45 25.21 PASS 4 0.888 10.13 32.70 42.83 56.00 13.17 13.17 23.30 46.00 22.70 PASS 5 5.2125 10.12 28.02 38.14 60.00 21.86 10.95 21.07 50.00 28.93 PASS		NO.			Reading[dB	Value	Limit	Margin	Reading	Value	Limit	Margin	∨erdict
3 0.42 9.95 35.22 45.17 57.45 12.28 12.29 22.24 47.45 25.21 PASS 4 0.888 10.13 32.70 42.83 56.00 13.17 13.17 23.30 46.00 22.70 PASS 5 5.2125 10.12 28.02 38.14 60.00 21.86 10.95 21.07 50.00 28.93 PASS		1	0.1815	10.03	46.74	56.77	64.42	7.65	29.14	39.17	54.42	15.25	PASS
4 0.888 10.13 32.70 42.83 56.00 13.17 13.17 23.30 46.00 22.70 PASS 5 5.2125 10.12 28.02 38.14 60.00 21.86 10.95 21.07 50.00 28.93 PASS		2	0.249	10.02	36.95	46.97	61.79	14.82	22.19	32.21	51.79	19.58	PASS
5 5.2125 10.12 28.02 38.14 60.00 21.86 10.95 21.07 50.00 28.93 PASS		3	0.42	9.95	35.22	45.17	57.45	12.28	12.29	22.24	47.45	25.21	PASS
		4	0.888	10.13	32.70	42.83	56.00	13.17	13.17	23.30	46.00	22.70	PASS
Note:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Ca loss (dB) 3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V) 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)		5	5.2125	10.12	28.02	38.14	60.00	21.86	10.95	21.07	50.00	28.93	PASS
Note:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Ca loss (dB) 3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V) 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)	9	6	19.815	10.57	27.10	37.67	60.00	22.33	11.46	22.03	50.00	27.97	PASS
	Note:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Ca loss (dB) 3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V) 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)												

.....

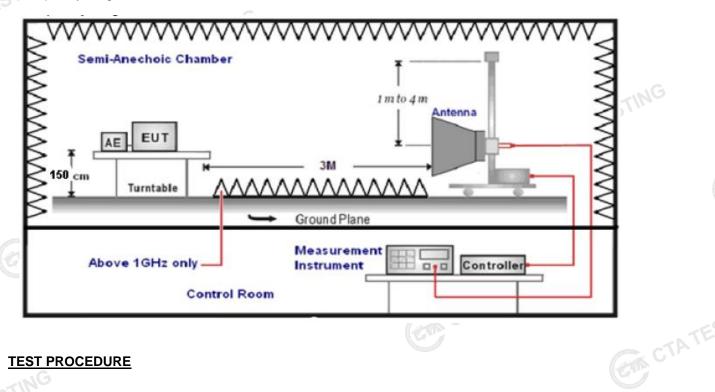
- 2). Factor (dB)=insertion loss of LISN (dB) + Ca loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$


CTATESTIN

Page 14 of 34 Report No.: CTA24050901701

Radiated Emissions and Band Edge

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

- 1. The EUT was placed on a turn to which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn ta which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn ta from 0°C to 360°C to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following ta states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Dou Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

CTATESTIN 7. Setting test receiver/spectrum as following ta states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Ca Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample TATESTING calculation is as follows:

FS = RA + AF + CL - AG

	Where FS = Field Strength	CL = Ca Attenuation Factor (Ca Loss)	
ſ	RA = Reading Amplitude	AG = Amplifier Gain	-1
	AF = Antenna Factor	(EVIA)	

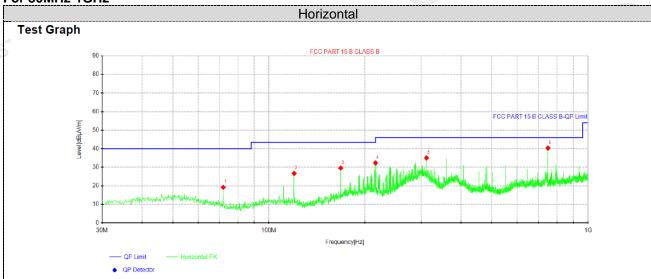
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following ta. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance	Radiated (dBµV/m)	Radiated (µV/m)	
	(Meters)			
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)	
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)	
1.705-30	3	20log(30)+ 40log(30/3)	30	
30-88	3	40.0	100	
88-216	3	43.5	150	
216-960	3	46.0	200	
Above 960	3	54.0	500	75
TEST RESULTS			CT CT	A

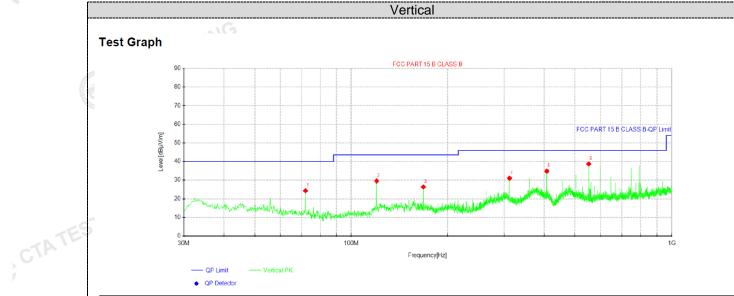

Report No.: CTA24050901701 Page 16 of 34

Remark:

 For below 1GHz radiated emissions test, only the worst case at 2Mpbs middle channel recorded.

- For above 1GHz radiated emissions and band edge test, only the worst case at 2Mpbs recorded.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and the emission levels from 9kHz to 30MHz are attenuated 20dB below the limit and not recorded in report.

For 30MHz-1GHz


Suspe	ected Data	List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	71.9525	34.59	19.15	-15.44	40.00	20.85	100	315	Horizontal
2	119.967	40.96	26.70	-14.26	43.50	16.80	100	315	Horizontal
3	167.982	45.21	29.54	-15.67	43.50	13.96	100	327	Horizontal
4	215.997	45.53	32.39	-13.14	43.50	11.11	100	0	Horizontal
5	312.027	46.40	35.06	-11.34	46.00	10.94	100	211	Horizontal
6	750.103	45.16	40.43	-4.73	46.00	5.57	100	154	Horizontal

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Ca loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dBµV/m) Level (dBµV/m)

Page 17 of 34 Report No.: CTA24050901701

CTATE

CTATE

Suspe	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	71.9525	39.73	24.29	-15.44	40.00	15.71	100	266	Vertical
2	119.967	43.81	29.55	-14.26	43.50	13.95	100	266	Vertical
3	167.982	41.99	26.32	-15.67	43.50	17.18	100	115	Vertical
4	312.027	42.38	31.04	-11.34	46.00	14.96	100	185	Vertical
5	408.057	45.20	34.79	-10.41	46.00	11.21	100	313	Vertical
6	551.981	47.24	38.69	-8.55	46.00	7.31	100	344	Vertical

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Ca loss (dB) - Pre Amplifier gain (dB) CTATESTI

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Report No.: CTA24050901701

For 1GHz to 25GHz

2M (above 1GHz)

Freque	Frequency(MHz):			2402		arity:	HORIZONTAL			
Frequency (MHz)			Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Ca Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	47.56	PK	74.00	26.44	51.83	32.33	5.12	41.72	-4.27	
4804.00	1	AV	54.00				TED			
7206.00	50.15	PK	74.00	23.85	50.67	36.60	6.49	43.61	-0.52	
7206.00	1	AV	54.00			AND.				

Freque	Frequency(MHz):			2402		rity:	VERTICAL			
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Ca Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	48.96	PK	74.00	25.04	53.23	32.33	5.12	41.72	-4.27	
4804.00		AV	54.00			t·G				
7206.00	51.25	PK	74.00	22.75	51.77	36.60	6.49	43.61	-0.52	
7206.00	- Day well	AV	54.00		CTA		-		-NE	

_	H SPAIN									
	Frequency(MHz):		24	40	Polarity: HORIZON			IORIZONTA	AL	
	Frequency (MHz)	Le	ssion vel ıV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Ca Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
	4880.00	46.88	PK	74.00	27.12	50.76	32.60	5.34	41.82	-3.88
	4880.00	-51	AV	54.00				-		
	7320.00	50.20	PK	74.00	23.80	50.31	36.80	6.81	43.72	-0.11
	7320.00		AV	54.00						

Frequency(MHz):		24	40	Polarity: VERTICAL					
Frequency (MHz)	_	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Ca Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	47.88	PK	74.00	26.12	51.76	32.60	5.34	41.82	-3.88
4880.00		ΑV	54.00		-				
7320.00	51.10	PK	74.00	22.90	51.21	36.80	6.81	43.72	-0.11
7320.00		ΑV	54.00						

			JAIG						
Freque	Frequency(MHz):		2480 Polarity:		arity:	HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Ca Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	48.47	PK	74.00	25.53	51.55	32.73	5.66	41.47	-3.08
4960.00		AV	54.00	-			-	- K-7E	
7440.00	50.72	PK	74.00	23.28	50.27	37.04	7.25	43.84	0.45
7440.00		AV	54.00	I					

Freque	ncy(MHz)	:	24	80	Pola	arity:	VERTICAL			
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Ca Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	49.77	PK	74.00	24.23	52.85	32.73	5.66	41.47	-3.08	
4960.00		AV	54.00	P			IN	3		
7440.00	51.22	PK	74.00	22.78	50.77	37.04	7.25	43.84	0.45	
7440.00		AV	54.00			TP				
7440.00 AV 54.00 REMARKS 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m) 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Ca Factor (dB)- Pre-amplifier 3. Margin value = Limit value- Emission level.								CTA		

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
 Correction Factor (dB/m) = Antenna Factor (dB/m)+Ca Factor (dB)- Pre-amplifier
 Margin value = Limit value- Emission level.

Report No.: CTA24050901701

- -- Mean the PK detector measured value is below average limit.
- The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

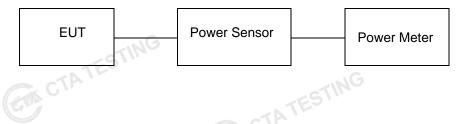
GFSK

Frequency(MHz):		24	02	Pola	arity:	н	HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Ca Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	47.22	PK	74.00	26.78	57.64	27.42	4.31	42.15	-10.42	
2390.00		ΑV	54.00	-		-				
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Ca Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	48.82	PK	74.00	25.18	59.24	27.42	4.31	42.15	-10.42	
2390.00		AV	54.00							
Freque	Frequency(MHz):		24	80	Pola	olarity: HORIZON		IORIZONTA	IZONTAL	
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Ca Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	50.26	PK	74.00	23.74	60.37	27.70	4.47	42.28	-10.11	
2483.50		ΑV	54.00							
Freque	ncy(MHz)	:	24	80	Pola	arity:	VERTICAL			
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Ca Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	52.66	PK	74.00	21.34	62.77	27.70	4.47	42.28	-10.11	
2483.50		AV	54.00	-657111						
REMARKS: 1. 2. 3. 4.	Correctior Margin va	n Factor (dB/ lue = Limit v	m) =Raw Value (d m) = Antenna Fac alue- Emission lev or measured value	tor (dB/m)+Ca Fa el.	Factor (dB/m) actor (dB) - Pre-a	amplifier	TESTIN			

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- Correction Factor (dB/m) = Antenna Factor (dB/m)+Ca Factor (dB)- Pre-amplifier 2.
- 3. 4. Margin value = Limit value- Emission level.
- -- Mean the PK detector measured value is below average limit.

Page 20 of 34 Report No.: CTA24050901701

Maximum Peak Output Power


<u>Limit</u>

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF ca from the antenna port to the power CTATE sensor.

Test Configuration CTATESTING

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	5.93	(EVA)	
GFSK 1Mbps	19	6.13	30.00	Pass
CTING	39	6.19		
TATES	00	5.97		
GFSK 2Mbps	19	6.15	30.00	Pass
	39	6.13	TING	

Report No.: CTA24050901701 Page 21 of 34

4.4 Power Spectral Density

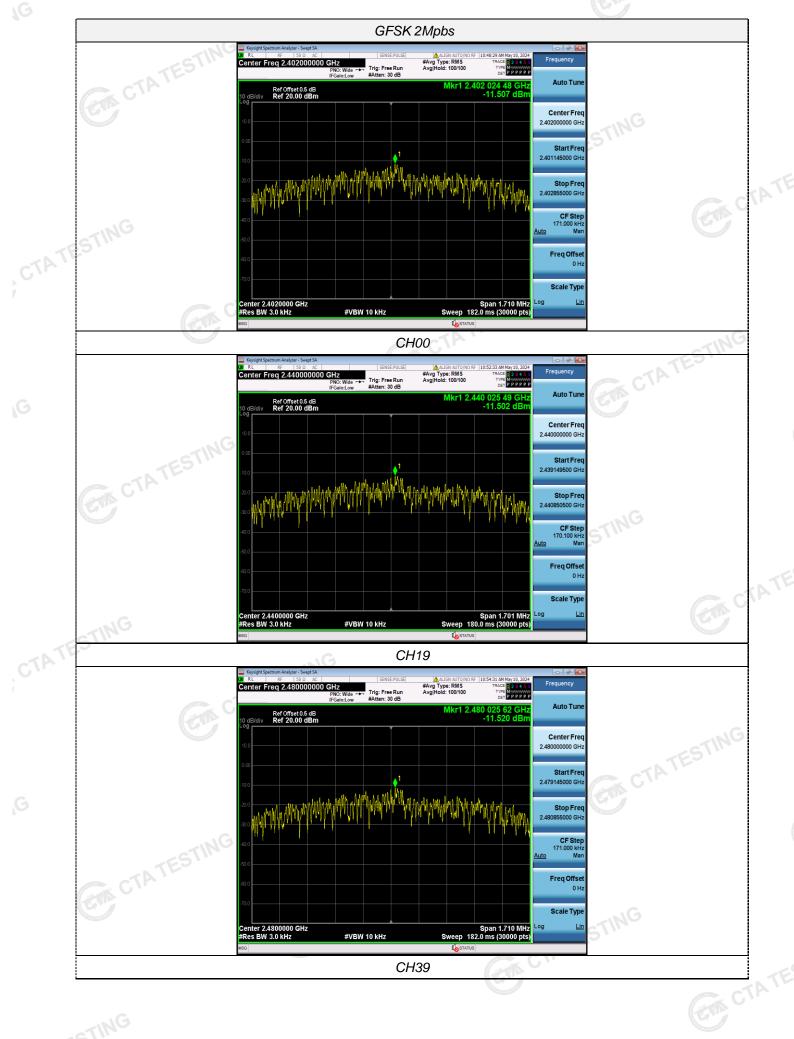
Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- CTATE 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- Set the RBW ≥ 3 kHz.
- 3. Set the VBW ≥ 3× RBW.
- Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration


Test Results

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	00	-8.92	Country	St. 140
GFSK 1Mbps	19	-8.93	8.00	Pass
INC	39	-8.96		No or Wallet
	00	-11.51		
GFSK 2Mbps	19	-11.50	8.00	Pass
	39	-11.52		
Test plot as follows:	CIP	-11.52	STING	TATES

Page 22 of 34 Report No.: CTA24050901701

Report No.: CTA24050901701 Page 23 of 34

Page 24 of 34 Report No.: CTA24050901701

6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB CTATE bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

st Results		CTATES				
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result		
	00	0.684	CAL			
GFSK 1Mbps	19	0.688	≥500	Pass		
\C	39	0.692				
ESTIN	00	1.140				
GFSK 2Mbps	19	1.134	≥500	Pass		
W.C.	39	1.140				
st plot as follows:	CTIN C	(A)	CTATESTIN	(G		

Report No.: CTA24050901701 Page 25 of 34

Report No.: CTA24050901701 Page 26 of 34

Page 27 of 34 Report No.: CTA24050901701

Out-of-band Emissions

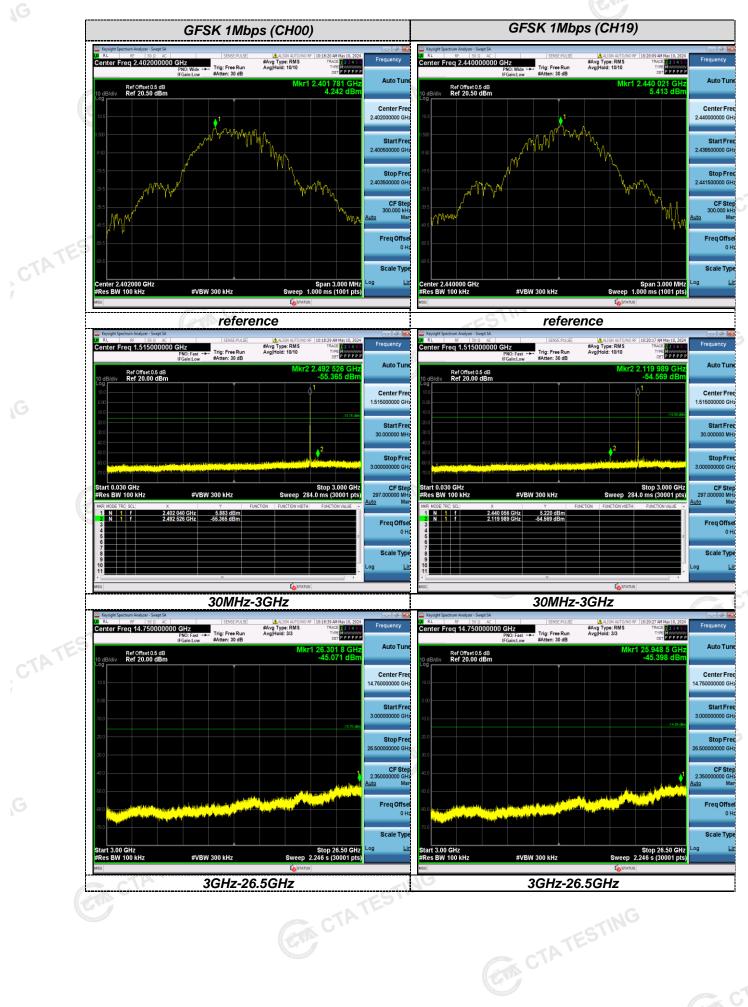
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

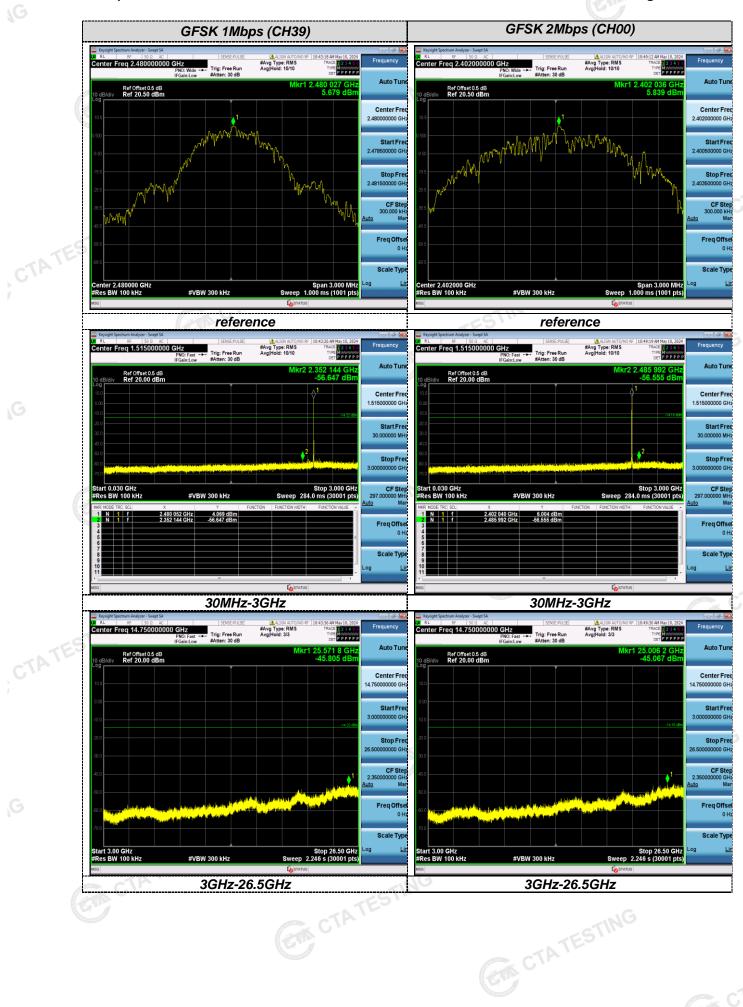
Connect the transmitter output to spectrum analyzer using a low loss RF ca, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

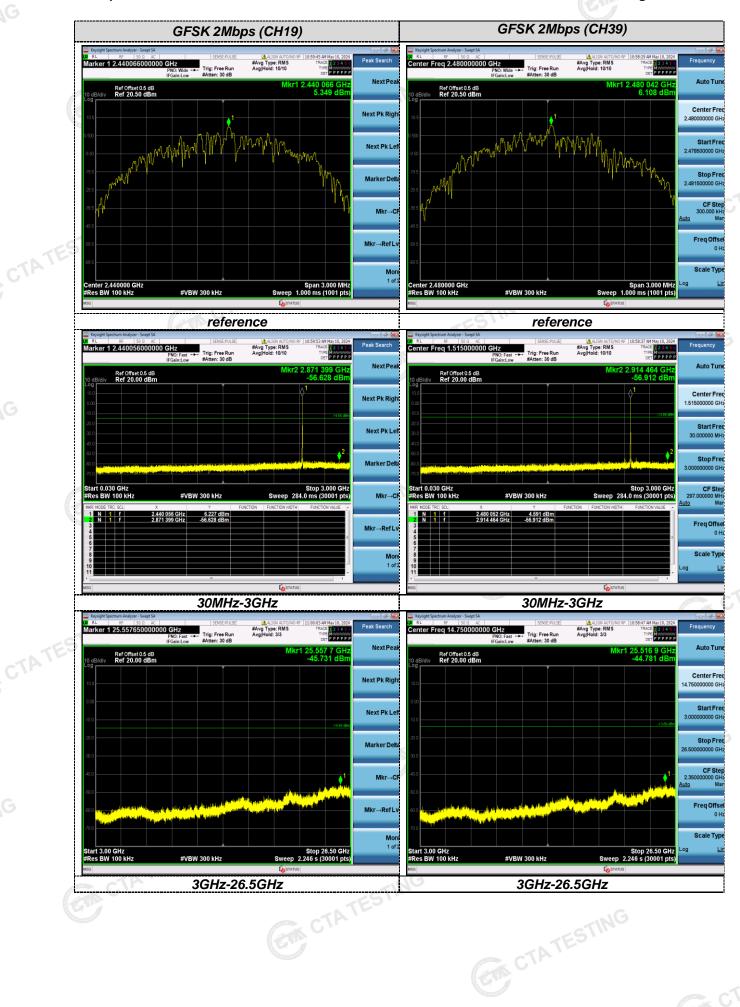

Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage CTATESTIN measurement data.

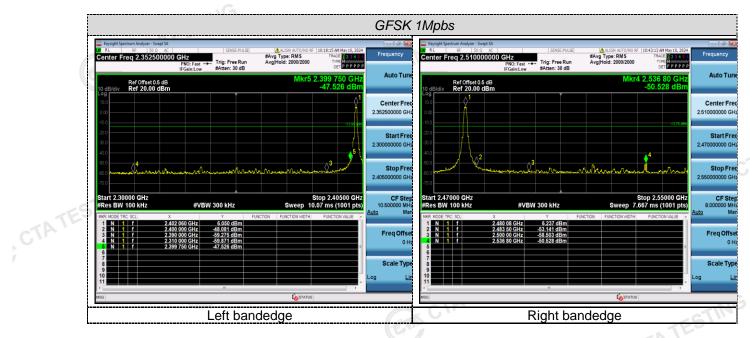
Test plot as follows:

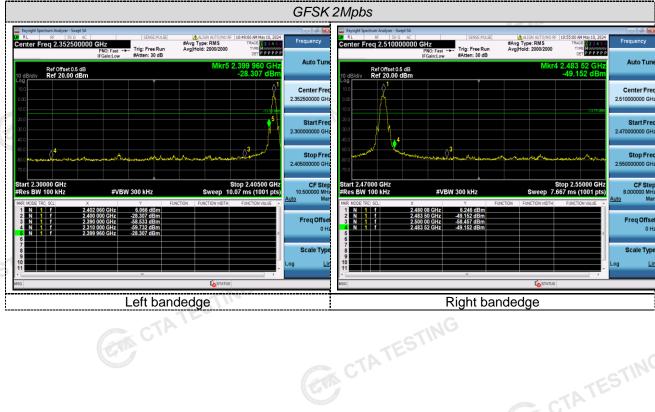


Report No.: CTA24050901701 Page 28 of 34



Report No.: CTA24050901701 Page 29 of 34


Report No.: CTA24050901701 Page 30 of 34



Report No.: CTA24050901701 Page 31 of 34

Band-edge Measurements for RF Conducted Emissions:

Report No.: CTA24050901701 Page 32 of 34

4.7 Antenna Requirement

Standard Requirement

For intentional device, according to RSS-Gen 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (i):

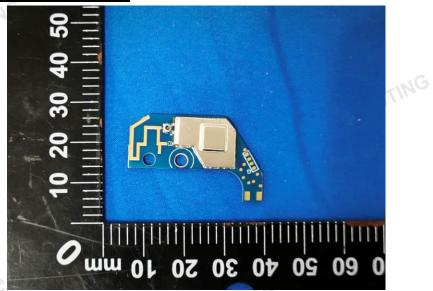
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

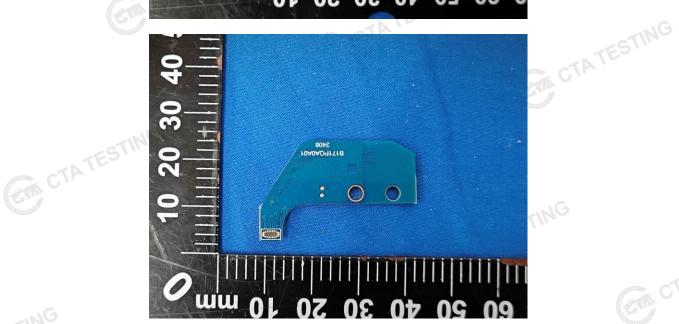
Test Result:

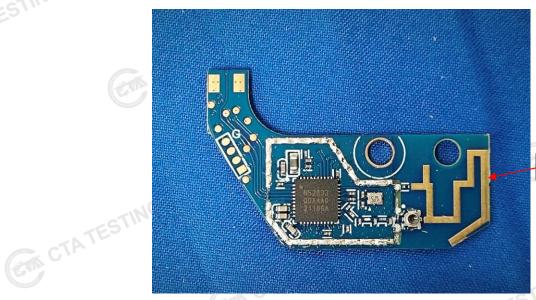

The maximum gain of antenna was 1.61 dBi with impedance 50Ω .

Report No.: CTA24050901701 Page 33 of 34

5 Test Setup Photos of the EUT






ATESTING

Report No.: CTA24050901701 Page 34 of 34

6 Photos of the EUT

antenna

ATESTING