

FCC TEST REPORT

S

5

Report No.: STS2004319W01

Issued for

AEOTEC LIMITED

OFFICE 4 10/F KWAN CHART TOWER NO. 6 TONNOCHY ROAD WANCHAI HK

Product Name:	Smart Switch 7
Brand Name:	Aeotec
Model Name:	ZWA023-A
Series Model:	N/A
FCC ID:	2AOGIZWA023
Test Standard:	FCC Part 15.249

Any reproduction of this document must be done in full. No single part of this document may be reproduced permission from STS, All Test Data Presented in this report is only applicable to presented Test sample.

Shenzhen STS Test Services Co., Ltd. A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

TEST RESULT CERTIFICATION

Applicant's Name:	AEOTEC LIMITED
Address	OFFICE 4 10/F KWAN CHART TOWER NO. 6 TONNOCHY ROAD WANCHAI HK
Manufacture's Name	Shenzhen Easy Home Technology Co.,Ltd
Address	6D Yiben Building, Chaguang Road, Nanshan District, Shenzhen
Product Description	
Product Name:	Smart Switch 7
Brand Name	Aeotec
Model Name:	ZWA023-A
Series Model	N/A
Test Standards	FCC Part15.249
Test Procedure:	ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document only be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test:

Date of receipt of test item:	30 Apr. 2020
Date of performance of tests:	30 Apr. 2020 ~ 02 July 2020
Date of Issue	03 July 2020

Test Result..... Pass

Testing Engineer :	Chins cher	
	 (Chris Chen)	STING . CONS
Technical Manager :	Sean She	
	 (Sean she)	APPROVAL
Authorized Signatory :	Mati	North Control
	(Vita Li)	

Shenzhen STS Test Services Co., Ltd.

Page

Table of Contents

1. SUMMARY OF TEST RESULTS	5
1.1 TEST FACTORY	6
1.2 MEASUREMENT UNCERTAINTY	6
2. GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF THE EUT	7
2.2 DESCRIPTION OF THE TEST MODES	8
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	10
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	11
3. EMC EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT	12
3.2 RADIATED EMISSION MEASUREMENT	16
4. BANDWIDTH TEST	27
4.1 TEST PROCEDURE	27
4.2 TEST SETUP	27
4.3 EUT OPERATION CONDITIONS	27
4.4 TEST RESULTS	28
5. ANTENNA REQUIREMENT	29
5.1 STANDARD REQUIREMENT	29
5.2 EUT ANTENNA	29
APPENDIX- PHOTOS OF TEST SETUP	30

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	03 July 2020	STS2004319W01	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part 15.249 , Subpart C				
Standard Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	Pass		
15.203	Antenna Requirement	Pass		
15.249	Radiated Spurious Emission	Pass		
15.249	Radiated Band Edge Emission	Pass		
15.215	20dB Bandwidth	Pass		

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2013.

Shenzhen STS Test Services Co., Ltd.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated 30-1GHz	±6.7dB
4	All emissions, radiated 1G-6GHz	±5.5dB
5	All emissions, radiated>6G	±5.8dB
6	Conducted Emission (9KHz-150KHz)	±4.43dB
7	Conducted Emission (150KHz-30MHz)	±5dB

Shenzhen STS Test Services Co., Ltd.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Smart Switch 7		
Trade Name	Aeotec		
Model Name	ZWA023-A		
Series Model	N/A		
Model Difference	N/A		
Product Description	The EUT is a Smart Switch 7Operation Frequency:908.42MHZModulation Type:GFSKAntenna Designation:Please refer to the Note 2.Antenna Gain(Peak):2.15dBiBased on the application, features, or specification exhibited in User Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User Manual.		
Adapter	Input: 120V, MAX:15A Output: 120V, MAX:15A		
Hardware version number	V1.0		
Software version number	V1.02		
Connecting I/O Port(s)	Please refer to the Note 1.		

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
- 2. Table for Filed Antenna

Ant	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	Aeotec	ZWA023-A	Built-in spring antenna	N/A	2.15dBi	Antenna

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Pretest Mode	Description	Data/Modulation
Mode 1	ТХ	GFSK

Note:

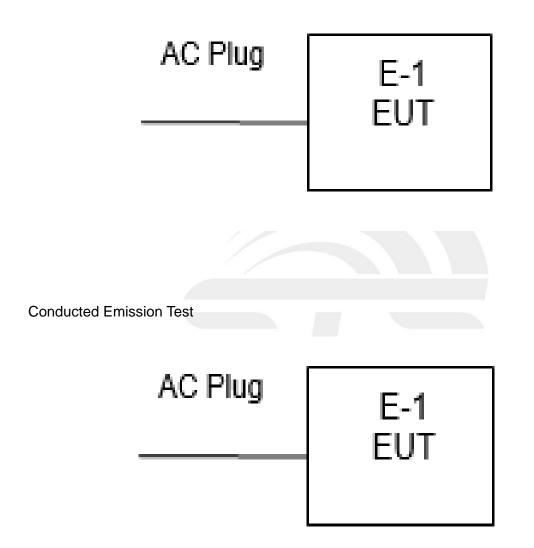
(1) All above mode have been measurement, only worst data was reported.

(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V,50/60Hz is shown in the report.

For AC Conducted Emission

	Test Case
AC Conducted Emission	Mode 2 : Keeping TX

RF Function	Туре	Mode Or Modulation type	Ant Gain(dBi)	Power Class	Software For Testing
Other SRD	908.42MHz	GFSK	2.15	10	tera term .exe



Page 9 of 30

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters.

Radiated Spurious Emission Test

Shenzhen STS Test Services Co., Ltd.

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
N/A	N/A	N/A	N/A	N/A	N/A

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
N/A	N/A	N/A	N/A	N/A	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ ^r Length $\]$ column.

Page 11 of 30

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until		
Test Receiver	R&S	ESCI	101427	2019.07.29	2020.07.28		
Signal Analyzer	Agilent	N9020A	MY51110105	2020.03.05	2021.03.04		
Active loop Antenna	ZHINAN	ZN30900C	16035	2018.03.11	2021.03.10		
Bilog Antenna	TESEQ	CBL6111D	34678	2017.11.02	2020.11.01		
Horn Antenna	SCHWARZBECK	BBHA 9120D(1201)	9120D-1343	2018.10.19	2021.10.18		
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	J211020657	2018.03.11	2021.03.10		
Pre-Amplifier(0.1M-3G Hz)	EM	EM330	060665	2019.10.09	2020.10.08		
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK201808090 1	2019.10.09	2020.10.08		
Temperature & Humidity	HH660	Mieo	N/A	2019.10.09	2020.10.08		
turn table	EM	SC100_1	60531	N/A	N/A		
Antenna mast	EM	SC100	N/A	N/A	N/A		
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 RE)					

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2019.07.29	2020.07.28
LISN	R&S	ENV216	101242	2019.10.09	2020.10.08
LISN	EMCO	3810/2NM	23625	2019.10.09	2020.10.08
Temperature & Humidity	HH660	Mieo	N/A	2019.10.12	2020.10.11
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 CE)			

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	
USB RF power sensor	DARE	RPR3006W	15I00041SNO03	2019.10.09	2020.10.08	
Signal Analyzer	Agilent	N9020A	MY49100060	2019.10.09	2020.10.08	
Temperature & Humidity	HH660	Mieo N/A		2019.10.12	2020.10.11	
Test SW	FARAD	LZ-RF /LzRf-3A3				

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

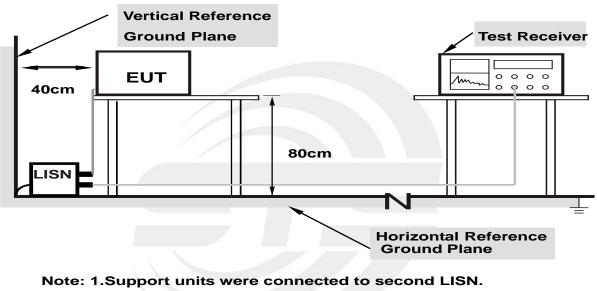
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

Operating frequency band. In case the emission fall within the restricted band specified on Part 15.249 limit in the table below has to be followed.

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of "*" marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 TEST SETUP

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

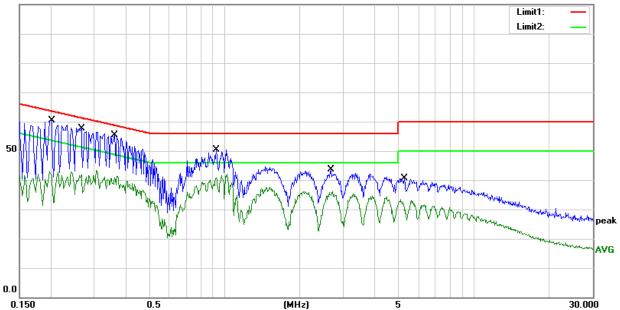
3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.5 TEST RESULT

Temperature:	22.8(C)	Relative Humidity:	66%RH
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 2		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.2020	40.57	19.76	60.33	63.53	-3.20	QP
2	0.2020	12.56	19.76	32.32	53.53	-21.21	AVG
3	0.2660	37.66	20.05	57.71	61.24	-3.53	QP
4	0.2660	17.59	20.05	37.64	51.24	-13.60	AVG
5	0.3620	35.29	20.07	55.36	58.68	-3.32	QP
6	0.3620	19.80	20.07	39.87	48.68	-8.81	AVG
7	0.9260	30.55	19.76	50.31	56.00	-5.69	QP
8	0.9260	19.18	19.76	38.94	46.00	-7.06	AVG
9	2.6780	23.80	19.74	43.54	56.00	-12.46	QP
10	2.6780	16.12	19.74	35.86	46.00	-10.14	AVG
11	5.2660	20.96	19.78	40.74	60.00	-19.26	QP
12	5.2660	7.96	19.78	27.74	50.00	-22.26	AVG


Remark:

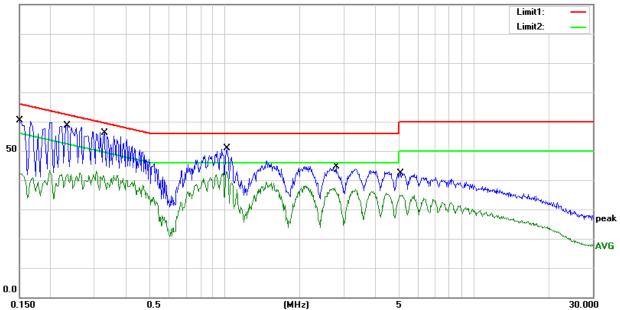
1. All readings are Quasi-Peak and Average values

2. Margin = Result (Result = Reading + Factor)-Limit

3. Factor=LISN factor+Cable loss+Limiter (10dB)

100.0 dBuV

Shenzhen STS Test Services Co., Ltd.


Temperature:	22.8(C)	Relative Humidity:	66%RH
Test Voltage:	AC 120V/60Hz	Phase:	Ν
Test Mode:	Mode 2		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1500	40.67	19.76	60.43	66.00	-5.57	QP
2	0.1500	22.26	19.76	42.02	56.00	-13.98	AVG
3	0.2340	38.82	19.90	58.72	62.31	-3.59	QP
4	0.2340	20.14	19.90	40.04	52.31	-12.27	AVG
5	0.3300	36.02	20.14	56.16	59.45	-3.29	QP
6	0.3300	16.62	20.14	36.76	49.45	-12.69	AVG
7	1.0260	31.18	19.75	50.93	56.00	-5.07	QP
8	1.0260	22.05	19.75	41.80	46.00	-4.20	AVG
9	2.8020	24.88	19.75	44.63	56.00	-11.37	QP
10	2.8020	15.51	19.75	35.26	46.00	-10.74	AVG
11	5.0940	22.53	19.78	42.31	60.00	-17.69	QP
12	5.0940	15.07	19.78	34.85	50.00	-15.15	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

- 2. Margin = Result (Result = Reading + Factor)-Limit
- 3. Factor=LISN factor+Cable loss+Limiter (10dB)
- 100.0 dBuV

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on Part 15.249 and the Part 15.209(a) limit in the table below has to be followed. Standard FCC 15.209

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3
Above 1000	Other:74.0 dB(µV)/m (Peak)	3
	54.0 dB(µV)/m (Average)	

Standard FCC 15.249

Frequency of Emission (MHz)	Field Strength of fundamental (millivolts /meter)	Field Strength of Harmonics (microvolts/meter)
900~928	50	500
2400~2483.5	50	500
5725~5875	50	500
24000~242500	250	2500

Notes:

(1) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Spectrum Parameter	Setting		
Detector	Peak/AV		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RB (emission in restricted band)	>20BW		
VB (emission in restricted band)	=3xRB		

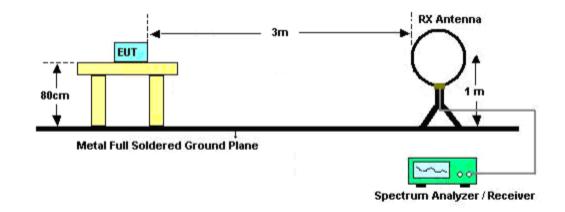
Shenzhen STS Test Services Co., Ltd.

Page 17 of 30

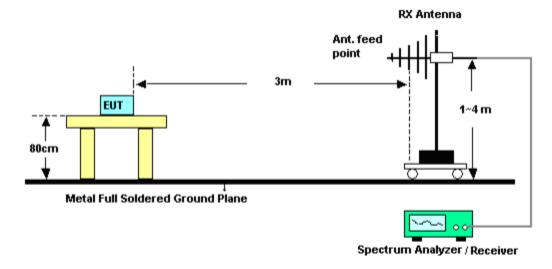
Report No.: STS2004319W01

Receiver Parameter	Setting				
Attenuation	Auto				
	9kHz~90kHz / RB 200Hz for PK & AV				
	90kHz~110kHz / RB 200Hz for QP				
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV				
	490kHz~30MHz / RB 9kHz for QP				
	30MHz~1000MHz / RB 120kHz for QP				

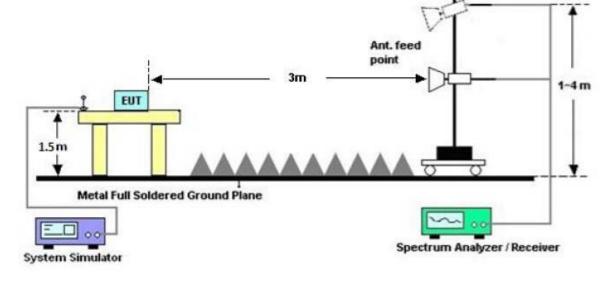
3.2.2 TEST PROCEDURE


- a. The measuring distance of 3m shall be used for measurements. The EUT was placed on the top of arotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Below 1GHz)
- b. The measuring distance of 3m shall used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Above 1GHz)
- c. The height of the test antenna shall vary between 1m to 4m.Both horizontal and vertical polarization Of the antenna are set to make the measurement.
- d. The initial step in collecting radiated emission data is a receive peak detector mode. Pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. All readings are peak unless otherwise stated QP in column of Note. Peak denoted that the Peak reading compliance with the QP limits and then QP Mode measurement didn't perform (Below 1GHz)
- f. All readings are Peak mode value unless otherwise stated AVG in column of Note. If the Peak mode measured value compliance with the Peak limits and lower than AVG Limits, the EUT shall be deemed to meet Peak & AVG limits and then only Peak mode was measured, but AVG mode didn't perform.(Above 1GHz)
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

3.2.3 DEVIATION FROM TEST STANDARD No deviation



3.2.4 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

Shenzhen STS Test Services Co., Ltd.

3.2.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

Margin=PL-PK L or AL- AV L; Margin only shown the worst case. Where PR = Peak Reading AR = Average Reading

AR = Average Reading PL = Peak Level AL = Average Level AF = Antenna Factor PK L = Peak Limit AV L = AV Limit For example

Frequency	PR	AR	AF	PL	AL	PK L	AV L	Margin
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
2178	40.23	30.31	9.83	50.06	40.14	74.00	54.00	-13.86

Shenzhen STS Test Services Co., Ltd.

3.2.6 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Below 30 MHz

Temperature:	23.4(C)	Relative Humidity:	52%RH
Test Voltage:	AC 120V/60Hz	Polarization:	
Test Mode:	TX Mode		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

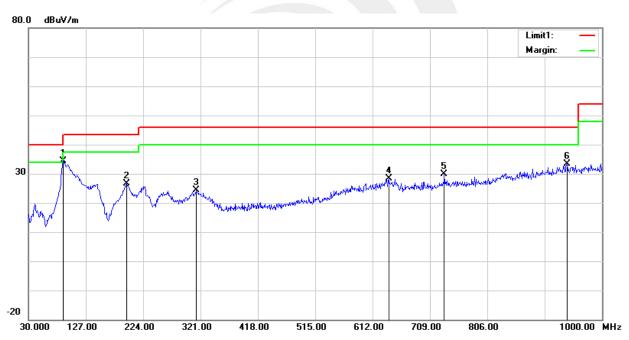
NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Between 30MHz – 1000 MHz Radiation Spurious

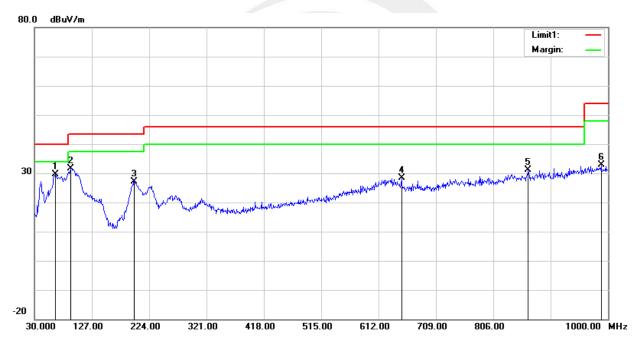

Temperature:	23.4(C)	Relative Humidity:	52%RH
Test Voltage:	AC 120V/60Hz	Phase:	Horizontal
Test Mode:	Mode 1		

Page 21 of 30

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	89.1700	56.03	-21.57	34.46	43.50	-9.04	QP
2	195.8700	47.88	-21.14	26.74	43.50	-16.76	QP
3	313.2400	38.64	-14.31	24.33	46.00	-21.67	QP
4	639.1600	33.12	-4.86	28.26	46.00	-17.74	QP
5	733.2500	32.12	-2.35	29.77	46.00	-16.23	QP
6	940.8300	32.08	1.39	33.47	46.00	-12.53	QP

Remark:

- Margin = Result (Result = Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain


Temperature:	23.4(C)	Relative Humidity:	52%RH
Test Voltage:	AC 120V/60Hz	Phase:	Vertical
Test Mode:	Mode 1		

No.	Frequency	Reading	Correct	Result Limit		Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	65.8900	55.22	-25.60	29.62	40.00	-10.38	QP
2	91.1100	52.94	-21.31	31.63	43.50	-11.87	QP
3	198.7800	48.37	-21.12	27.25	43.50	-16.25	QP
4	650.8000	33.23	-4.90	28.33	46.00	-17.67	QP
5	865.1700	31.49	-0.48	31.01	46.00	-14.99	QP
6	988.3600	30.64	2.15	32.79	54.00	-21.21	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

GFSK

Above 1G Radiation Spurious

					Н	orizontal						
Frequency (MHz)	Peak Reading (dBuV/m)	Average Reading (dBuV/m)	Factor (dB)	Peak Level (dBuV/m)	Average Level (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	PK Over Limit (dB)	AV Over Limit (dB)	Margin(dB)	ANT	Result
1439	40.70	28.95	-0.6	40.10	28.35	74.00	54.00	-33.90	-25.65	-25.65	Horizontal	Pass
2465.5	41.95	35.23	4.02	45.97	39.25	74.00	54.00	-28.03	-14.75	-14.75	Horizontal	Pass
5138	51.80	40.66	-5.29	46.51	35.37	74.00	54.00	-27.49	-18.63	-18.63	Horizontal	Pass
8743.5	51.80	40.95	5.03	56.83	45.98	74.00	54.00	-17.17	-8.02	-8.02	Horizontal	Pass
11103	50.27	40.00	9.68	59.95	49.68	74.00	54.00	-14.05	-4.32	-4.32	Horizontal	Pass
15170.25	49.73	40.01	10.82	60.55	50.83	74.00	54.00	-13.45	-3.17	-3.17	Horizontal	Pass
	Vertical											
Frequency	Peak	Average	Factor	Peak	Average	PK Limit	AV Limi	PK t Ove				

Frequency (MHz)	Peak Reading (dBuV/m)	Average Reading (dBuV/m)	Factor (dB)	Peak Level (dBuV/m)	Average Level (dBuV/m)	PK Limit (dBuV/m)	AV Limit (dBuV/m)	PK Over Limit (dB)	AV Over Limit (dB)	Margin(dB)	ANT	Result
1379.5	40.47	29.66	-0.71	39.76	28.95	74.00	54.00	-34.24	-25.05	-25.05	Vertical	Pass
2260.5	40.03	28.72	4.63	44.66	33.35	74.00	54.00	-29.34	-20.65	-20.65	Vertical	Pass
4005	53.29	41.13	-10.16	43.13	30.97	74.00	54.00	-30.87	-23.03	-23.03	Vertical	Pass
8743.5	51.55	40.85	5.03	56.58	45.88	74.00	54.00	-17.42	-8.12	-8.12	Vertical	Pass
11086.5	50.71	40.01	9.75	60.46	49.76	74.00	54.00	-13.54	-4.24	-4.24	Vertical	Pass
14133.5	50.44	39.38	10.48	60.92	49.86	74.00	54.00	-13.08	-4.14	-4.14	Vertical	Pass

Note: Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Margin= MAX(PK Over Limit:AV Over Limit)

PK Over Limit= Peak Level- PK Limit

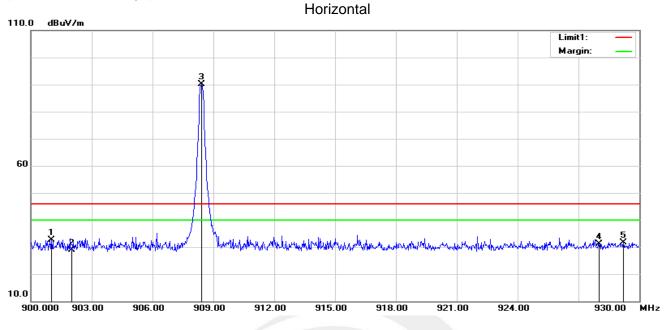
AV Over Limit= Average Level- AV Limit

Shenzhen STS Test Services Co., Ltd.

Duty cycle

		SENSE:PULSE	ALIGNAUTO	11:42:50 AM May 11, 2
arker 3 ∆ 276.000 m	IS	Trig: Free Run Atten: 30 dB	Avg Type: Log	g-Pwr IRACE 1 2 3 4 TYPE WHATA DET P N N N
dB/div Ref 20.00 dE	3m			ΔMkr3 276.0 n -0.38 c
>g		_		
00				
10				
10				
		142	344	
10	an a	Veronauno	more land land	man the state of the second se
10				
enter 908.420000 MH				Span 0
es BW 1.0 MHz		BW 1.0 MHz		Sweep 1.000 s (1001 p
R MODE THC SIL 1 Δ2 1 1 (Δ) 2 F 1 1		1.57 dB 55 dBm	FUNCTIONWIDTH	FUNCTION VALUE
3 Δ4 1 t (Δ) 4 F 1 t	276.0 ms (Δ) -	0.38 dB 55 dBm		
5				
5 6 7				
6 7 3 9 0				
6 7 9				

Ton(ms)	Tp(ms)	Duty Factor
28	276	19.88

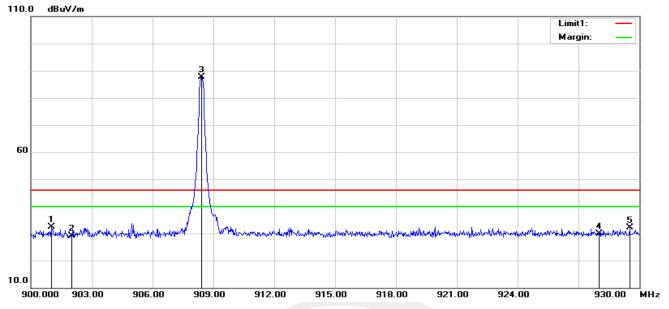

Note: Duty Factor=20*LOG10(1/(Ton/Tp))

Shenzhen STS Test Services Co., Ltd.

Page 25 of 30

(Radiation Band edge)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	901.0200	33.10	-0.43	32.67	46.00	-13.33	peak
2	902.0000	29.40	-0.40	29.00	46.00	-17.00	peak
4	928.0000	30.66	0.43	31.09	46.00	-14.91	peak
5	929.2200	31.23	0.50	31.73	46.00	-14.27	peak


Fundamental Frequency

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
3	908.4200	90.25	-0.22	90.03	94.00	-3.97	QP

Page 26 of 30

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	901.0200	32.70	-0.43	32.27	46.00	-13.73	peak
2	902.0000	29.61	-0.40	29.21	46.00	-16.79	peak
4	928.0000	29.43	0.43	29.86	46.00	-16.14	peak
5	929.5200	31.52	0.52	32.04	46.00	-13.96	peak

Fundamental Frequency

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
3	908.4200	87.88	-0.22	87.66	94.00	-6.34	QP

4. BANDWIDTH TEST

4.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- ^{b.} Spectrum Setting : RBW= 1~5% of the OBW, VBW≧RBW, Sweep time = Auto.

4.2 TEST SETUP

EUT	SPECTRUM
	ANALYZER

4.3 EUT OPERATION CONDITIONS TX mode.

4.4 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Voltage:	AC 120V/60Hz		

Test Channel	Frequency(MHz)	20 dB Bandwidth(KHz)	99% Bandwidth(KHz)
CH01	908.42	99.02	91.242

Mid Channel

Shenzhen STS Test Services Co., Ltd.

5. ANTENNA REQUIREMENT

5.1 STANDARD REQUIREMENT

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.2 EUT ANTENNA

The EUT antenna is Built-in spring antenna Antenna. It conforms to the standard requirements.

Shenzhen STS Test Services Co., Ltd.

APPENDIX- PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

** ** ** ** END OF THE REPORT ** ** ** **

Shenzhen STS Test Services Co., Ltd.