





Product

Ó

Trade mark

Model/Type reference Serial Number Report Number

FCC ID

Date of Issue

**Test Standards** 

Test result

- Smart Pet Tracker
- : TK001

小毛球

- : N/A
- EED32J00245402
- : 2AOGH-TK001
- Apr. 24, 2018
- 47 CFR Part 2
- 47 CFR Part 22 subpart H
- 47 CFR Part 24 subpart E

: PASS

Prepared for:

Guangzhou Xiaomaoqiu Intellectual Technology Co., Ltd Room 801, No.240, Tianhe East Road, Tianhe District Guangzhou, Guangdong

Prepared by:

Centre Testing International Group Co., Ltd. Building C, Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

| Tested Byjon                            | Tom-chen             | Compiled by: | Max           | liang                |
|-----------------------------------------|----------------------|--------------|---------------|----------------------|
| AND | Tom chen (Test Proje | ect)         | Max Liang (Pi | roject Engineer)     |
| 🛏 Reviewed by                           | i kein Ing           | Approved by: | Shee          | k. Luo               |
|                                         | Kevin yang (Review   | er)          | Sheek Luo (L  | ab supervisor)       |
| Report Seal                             | Apr. 24, 2018        |              | C C           | Check No.:3043873907 |
|                                         |                      |              |               |                      |



Page 2 of 61

| 2 | Version     |   |              |   |            |      |     |
|---|-------------|---|--------------|---|------------|------|-----|
|   | Version No. |   | Date         | S | Descriptio | on 🤍 |     |
| _ | 00          | A | pr. 24, 2018 |   | Original   |      |     |
| 2 |             |   |              |   |            |      | (A) |
|   |             |   |              |   | V          |      |     |
|   |             |   |              |   |            |      |     |
|   |             |   |              |   |            |      |     |
|   |             |   |              |   |            |      |     |
|   |             |   |              |   |            |      |     |
|   |             |   |              |   |            |      |     |
|   |             |   |              |   |            |      |     |
|   |             |   |              |   |            |      |     |
|   |             |   |              |   |            |      |     |







Page 3 of 61

| Test Item                                        | Test Requirement                                | Test method                             | Result |  |  |
|--------------------------------------------------|-------------------------------------------------|-----------------------------------------|--------|--|--|
|                                                  | GSM 850                                         | · ·                                     |        |  |  |
| Conducted output power                           | Part 2.1046(a)/Part 22.913(a)                   | ITA-603-C-2004 &KDB 971168<br>D01v02r02 | PASS   |  |  |
| Effective Radiated Power<br>of Transmitter(ERP)  | Part 2.1046(a)/Part 22.913(a)                   | ITA-603-C-2004 &KDB 971168<br>D01v02r02 | PASS   |  |  |
| 99% &26dBOccupied<br>Bandwidth                   | Part 2.1049(h)                                  | Part 22.917(b) &KDB 971168<br>D01v02r02 | PASS   |  |  |
| Band Edge at antenna terminals                   | Part 2.1051/Part 22.917(a)                      | Part 22.917(b) &KDB 971168<br>D01v02r02 | PASS   |  |  |
| Spurious emissions at antenna terminals          | Part 2.1051/ Part 2.1057/<br>Part 22.917(a)(b)  | ITA-603-C-2004 &KDB 971168<br>D01v02r02 | PASS   |  |  |
| Field strength of spurious radiation             | Part 2.1053/ Part 2.1057/<br>Part 22.917(a)(b)  | ITA-603-C-2004 &KDB 971168<br>D01v02r02 | PASS   |  |  |
| Frequency stability                              | Part 2.1055/ Part 22.355                        | ITA-603-C-2004 &KDB 971168<br>D01v02r02 | PASS   |  |  |
|                                                  | GSM 1900                                        | 0                                       |        |  |  |
| Conducted output power                           | Part 2.1046(a) /Part 24.232(c)                  | ITA-603-C-2004&KDB 971168<br>D01v02r02  | PASS   |  |  |
| Effective Radiated Power<br>of Transmitter(EIRP) | Part 2.1046(a) / Part 24.232(c)                 | ITA-603-C-2004 &KDB 971168<br>D01v02r02 | PASS   |  |  |
| peak-to-average ratio                            | Part 24.232(d)                                  | KDB 971168 D01v02r02                    | PASS   |  |  |
| 99% &26dBOccupied<br>Bandwidth                   | Part 2.1049(h)                                  | Part 24.238(b) &KDB 971168<br>D01v02r02 | PASS   |  |  |
| Band Edge at antenna terminals                   | Part 2.1051/ Part 24.238(a)                     | Part 24.238(b) &KDB 971168<br>D01v02r02 | PASS   |  |  |
| Spurious emissions at antenna terminals          | Part 2.1051/ Part 2.1057/<br>Part 24.238(a)(b)  | ITA-603-C-2004 &KDB 971168<br>D01v02r02 | PASS   |  |  |
| Field strength of spurious radiation             | Part 2.1053 /Part 2.1057 /<br>Part 24.238(a)(b) | ITA-603-C-2004 &KDB 971168<br>D01v02r02 | PASS   |  |  |
| Frequency stability                              | Part 2.1055/Part 24.235                         | ITA-603-C-2004 &KDB 971168<br>D01v02r02 | PASS   |  |  |

#### Remark:

The tested sample(s) and the sample information are provided by the client.

Only the black of decoration sample is tested, since the model:TK001 samples have two kinds of decoration, and the decoration has two colors, but their decorative material, electrical circuit design, layout, components used, interface and firmware are identical, only the outer decoration and colors of decoration are different.











Page 4 of 61

| 4 Contel<br>1 COVER PAG                                                                                                                                            | E                                                                                                                                                        |                                                                                                                                                          |               |                                      |          |         |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------|----------|---------|--------|
| 2 VERSION                                                                                                                                                          | ••••••                                                                                                                                                   |                                                                                                                                                          | ••••••        |                                      | ••••••   |         | •••••  |
| 3 TEST SUMM                                                                                                                                                        | ARY                                                                                                                                                      |                                                                                                                                                          | ••••••        |                                      |          |         | •••••• |
| 4 CONTENT                                                                                                                                                          |                                                                                                                                                          | •••••                                                                                                                                                    |               | •••••                                |          | •••••   |        |
| 5 TEST REQU                                                                                                                                                        | IREMENT                                                                                                                                                  |                                                                                                                                                          | <u> </u>      |                                      |          |         |        |
| 5.1.1 For<br>5.1.2 For<br>5.2 TEST EN                                                                                                                              | TUP<br>Conducted test<br>Radiated Emiss<br>VIRONMENT<br>NDITION                                                                                          | t setup<br>sions test setu                                                                                                                               | ıp            |                                      |          |         |        |
|                                                                                                                                                                    | FORMATION.                                                                                                                                               |                                                                                                                                                          |               |                                      |          |         |        |
|                                                                                                                                                                    | NFORMATION                                                                                                                                               |                                                                                                                                                          |               |                                      |          |         |        |
| 6.4 DESCRIP<br>6.5 TEST LOC<br>6.6 DEVIATIO                                                                                                                        | T SPECIFICATION<br>TION OF SUPPOF<br>CATION<br>IN FROM STAND/<br>ALITIES FROM ST                                                                         | RT UNITS<br>ARDS<br>TANDARD CONE                                                                                                                         | DITIONS       |                                      | <u> </u> |         |        |
|                                                                                                                                                                    | NFORMATION RE                                                                                                                                            |                                                                                                                                                          |               |                                      |          |         |        |
| 6.9 MEASURE                                                                                                                                                        |                                                                                                                                                          | ainty (95% co                                                                                                                                            | NFIDENCE LEVE | ELS, <b>κ=2</b> )                    |          |         |        |
| 6.9 Measure<br>7 <b>EQUIPMENT</b>                                                                                                                                  | EMENT UNCERT                                                                                                                                             | ainty (95% co                                                                                                                                            | NFIDENCE LEVE | ELS, <b>κ=2)</b>                     |          | $\odot$ |        |
| 6.9 MEASURE<br>7 EQUIPMENT<br>8 RADIO TECH<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix                         | HENT UNCERTA<br>LIST<br>HNICAL REQU<br>A)RF Power O<br>B)Peak-to-Ave<br>C)BandWidth<br>D)Band Edges<br>E)Spurious En<br>F)Frequency S<br>G) Effective Ra | AINTY (95% CO<br>IREMENTS S<br>Dutput<br>erage Ratio<br>s Compliance<br>nission at Ante<br>Stability<br>adiated Power                                    | PECIFICATIO   | ELS, κ=2)<br>Ν<br>r (ERP/EIRP)       |          |         | 6      |
| 6.9 MEASURE<br>7 EQUIPMENT<br>8 RADIO TECH<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix                         | HENT UNCERTA<br>LIST<br>HNICAL REQU<br>A)RF Power O<br>B)Peak-to-Ave<br>C)BandWidth<br>D)Band Edges<br>E)Spurious En<br>F)Frequency S                    | AINTY (95% CO<br>IREMENTS S<br>Dutput<br>erage Ratio<br>s Compliance<br>nission at Ante<br>Stability<br>adiated Power<br>gth of spurious                 | PECIFICATIO   | ELS, κ=2)<br>N<br>N<br>r (ERP/EIRP). |          |         |        |
| 6.9 MEASURE<br>7 EQUIPMENT<br>8 RADIO TECH<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix | A)RF Power O<br>B)Peak-to-Ave<br>C)BandWidth<br>D)Band Edges<br>E)Spurious En<br>F)Frequency S<br>G) Effective Ra<br>H) Field streng                     | AINTY (95% CO<br>IREMENTS S<br>Dutput<br>erage Ratio<br>s Compliance<br>nission at Ante<br>Stability<br>adiated Power<br>gth of spurious<br>IS OF TEST S | PECIFICATIO   | ELS, κ=2)<br>Ν<br>Γ (ERP/EIRP)       |          |         | 0      |
| 6.9 MEASURE<br>7 EQUIPMENT<br>8 RADIO TECH<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix | A)RF Power O<br>B)Peak-to-Ave<br>C)BandWidth<br>D)Band Edges<br>E)Spurious En<br>F)Frequency S<br>G) Effective Ra<br>H) Field streng                     | AINTY (95% CO<br>IREMENTS S<br>Dutput<br>erage Ratio<br>s Compliance<br>nission at Ante<br>Stability<br>adiated Power<br>gth of spurious<br>IS OF TEST S | PECIFICATIO   | ELS, κ=2)<br>Ν<br>Γ (ERP/EIRP)       |          |         | 0      |
| 6.9 MEASURE<br>7 EQUIPMENT<br>8 RADIO TECH<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix<br>Appendix | A)RF Power O<br>B)Peak-to-Ave<br>C)BandWidth<br>D)Band Edges<br>E)Spurious En<br>F)Frequency S<br>G) Effective Ra<br>H) Field streng                     | AINTY (95% CO<br>IREMENTS S<br>Dutput<br>erage Ratio<br>s Compliance<br>nission at Ante<br>Stability<br>adiated Power<br>gth of spurious<br>IS OF TEST S | PECIFICATIO   | ELS, κ=2)<br>Ν<br>Γ (ERP/EIRP)       |          |         |        |

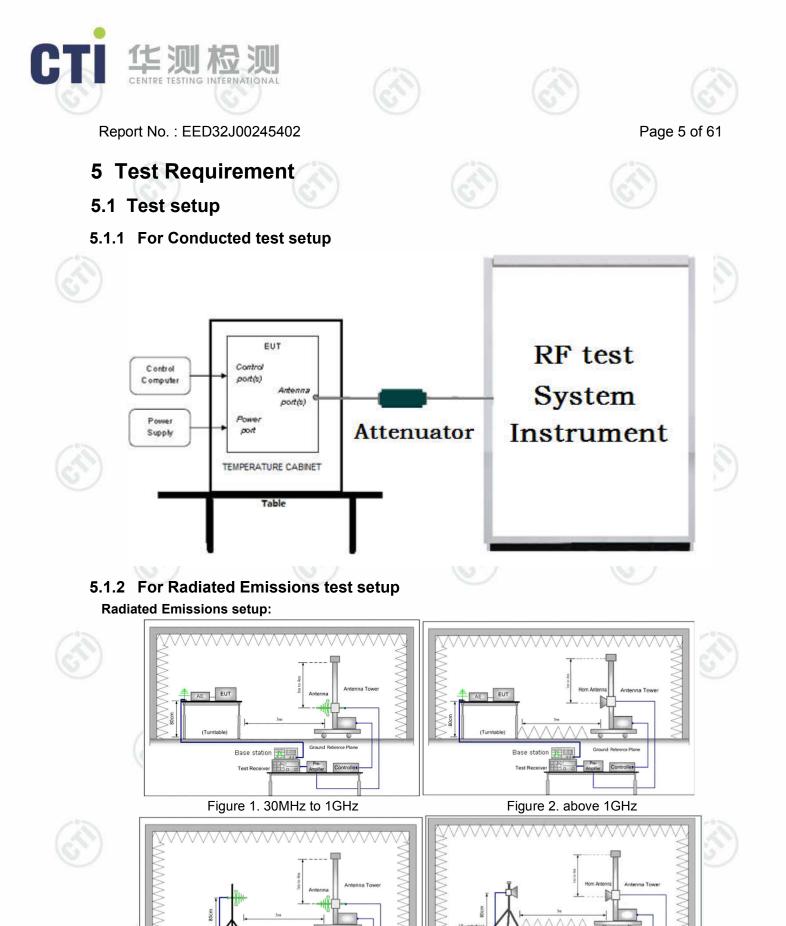



Figure 2. above 1GHz

signal Generator

Figure 1. 30MHz to 1GHz









Page 6 of 61

| <b>Operating Envi</b>                              | ironment:            | (GT)       | (67)            |             | 67)         |  |  |
|----------------------------------------------------|----------------------|------------|-----------------|-------------|-------------|--|--|
| Temperature:<br>Humidity:<br>Atmospheric Pressure: |                      | 24.0 °C    | $\cup$          |             | $\smile$    |  |  |
|                                                    |                      | 53 % RH    | 53 % RH         |             |             |  |  |
|                                                    |                      | 1010mbar   | 13              | 12          | 10          |  |  |
| 3 Test Con<br>st channel:                          | dition               |            | $(\mathcal{S})$ | 65          | Ó           |  |  |
|                                                    |                      |            |                 | RF Channel  |             |  |  |
| Test Mode                                          | t Mode Tx/R          |            | Low(L)          | Middle(M)   | High(H)     |  |  |
|                                                    |                      |            | Channel 128     | Channel 190 | Channel 251 |  |  |
|                                                    |                      | ~849 MHz)  | 824.2MHz        | 836.6 MHz   | 848.8 MHz   |  |  |
| GPRS850                                            | F                    | Rx         | Channel 128     | Channel 190 | Channel 251 |  |  |
|                                                    | (869 MHz             | ~894 MHz)  | 869.2 MHz       | 881.6 MHz   | 893.8 MHz   |  |  |
|                                                    |                      | Гх         | Channel 512     | Channel 661 | Channel 810 |  |  |
|                                                    | (1850 MHz ~1910 MHz) | 1850.2MHz  | 1880.0 MHz      | 1909.8 MHz  |             |  |  |
| GPRS1900                                           | F                    | ₹x         | Channel 512     | Channel 661 | Channel 810 |  |  |
|                                                    | (1930 MHz            | ~1990 MHz) | 1930.2 MHz      | 1960.0 MHz  | 1989.8 MHz  |  |  |
| 200                                                |                      |            | 19622           |             | 1 million   |  |  |

Pre-scan data rates and positions, find the worse case mode as below:

| band     | Radiated    | Conducted   |
|----------|-------------|-------------|
| GPRS850  | GPRS 8 Link | GPRS 8 Link |
| GPRS1900 | GPRS 8 Link | GPRS 8 Link |

### Test mode:

| Test Mode | Test Modes description            |
|-----------|-----------------------------------|
| GSM/TM2   | GSM system, GPRS, GMSK modulation |





### 6.1 Client Information

|   | Applicant:                                                                               | Guangzhou Xiaomaoqiu Intellectual Technology Co., Ltd                    |  |  |  |  |  |
|---|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|--|
|   | Address of Applicant: Room 801, No.240, Tianhe East Road, Tianhe District Guan Guangdong |                                                                          |  |  |  |  |  |
| ) | Manufacturer:                                                                            | Guangzhou Xiaomaoqiu Intellectual Technology Co., Ltd                    |  |  |  |  |  |
|   | Address of Manufacturer:                                                                 | Room 801, No.240, Tianhe East Road, Tianhe District Guangzhou, Guangdong |  |  |  |  |  |
|   | Factory 1:                                                                               | SIRTEC (DongGuan) Plastics & Electronics CO., Ltd                        |  |  |  |  |  |
|   | Factory 2:                                                                               | Dongguan Xiesheng Plastic Electronic Co., Ltd                            |  |  |  |  |  |
|   | Address of Factory:                                                                      | Building E, No.111, Shaxin Road, Tangxia Town, Dongguan, Guangdong       |  |  |  |  |  |

### 6.2 General Description of EUT

| Product Name:                    | Smart Pet Tracker                                       |     |     |
|----------------------------------|---------------------------------------------------------|-----|-----|
| Model No.(EUT):                  | TK001                                                   | 0   | (2) |
| Trade Mark:                      | で<br>い<br>モ<br>び<br>ー<br>で<br>LUFE<br>で                 | 9   | (C) |
| EUT Supports Radios application: | GSM850/1900(GPRS);                                      | -15 |     |
|                                  | GPS: L1: 1575.42MHz.                                    |     |     |
| Power Supply:                    | DC 3.7V, 400mAh by lithium battery<br>DC 5V by USB port | G   |     |
| Firmware version:                | X2_64X32_A_170821 (manufacturer declare )               |     |     |
| Hardware version:                | V1.2 (manufacturer declare)                             |     | 12  |
| Sample Received Date:            | Nov. 01, 2017                                           | (°) | (1) |
| Sample tested Date:              | Nov. 01, 2017 to Apr. 23, 2018                          |     | V   |

### 6.3 Product Specification subjective to this standard

| Frequency Band:  | GPRS 850:<br>Tx:824.20 – 848.80MHz, Rx: 869<br>GPRS 1900:<br>Tx:1850.20 – 1909.80MHz, Rx:19 |      |                   |
|------------------|---------------------------------------------------------------------------------------------|------|-------------------|
| Modulation Type: | GMSK                                                                                        |      |                   |
| Antenna Type:    | FPC Antenna                                                                                 | 10-  | -0-               |
| Antenna Gain:    | GSM850MHz: -1dBi<br>GSM1900MHz: -1.5dBi                                                     | (34) | (3 <sup>1</sup> ) |
| Test Voltage:    | AC 120V, 60Hz                                                                               |      |                   |

### 6.4 Description of Support Units

The EUT has been tested independently.













### 6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd. Building C, Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101 Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

### 6.6 Deviation from Standards

None.

### 6.7 Abnormalities from Standard Conditions None.

### 6.8 Other Information Requested by the Customer



### 6.9 Measurement Uncertainty (95% confidence levels, k=2)

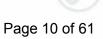
| No.            | Item                            | Measurement Uncertainty |
|----------------|---------------------------------|-------------------------|
| 1              | Radio Frequency                 | 7.9 x 10 <sup>-8</sup>  |
| 2              | PE power conducted              | 0.31dB (30MHz-1GHz)     |
| S <sup>2</sup> | RF power, conducted             | 0.57dB (1GHz-18GHz)     |
| 3              | Dedicted Spurious emission test | 4.5dB (30MHz-1GHz)      |
| 3              | Radiated Spurious emission test | 4.8dB (1GHz-12.75GHz)   |
| 4              | Conduction emission             | 3.6dB (9kHz to 150kHz)  |
| 4              | Conduction emission             | 3.2dB (150kHz to 30MHz) |
| 5              | Temperature test                | 0.64°C                  |
| 6              | Humidity test                   | 2.8%                    |
| 7              | DC power voltages               | 0.025%                  |
| S)             | (LCC)                           | (S) (S)                 |










### 7 Equipment List

|                        |              | Communication                | RF test system   | n                         |                               |
|------------------------|--------------|------------------------------|------------------|---------------------------|-------------------------------|
| Equipment              | Manufacturer | Model No.                    | Serial<br>Number | Cal. Date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |
| Spectrum Analyzer      | Agilent      | E4440A                       | MY46185649       | 11-16-2017                | 11-15-2018                    |
| Signal Generator       | Agilent      | E4438C                       | MY45095744       | 03-13-2018                | 03-12-2019                    |
| Communication test set | Agilent      | E5515C                       | GB47050534       | 03-16-2018                | 03-15-2019                    |
| Signal Generator       | Keysight     | E8257D                       | MY53401106       | 03-13-2018                | 03-12-2019                    |
| Communication test set | R&S          | CMW500                       | 152394           | 03-16-2018                | 03-15-2019                    |
| High-pass filter       | Sinoscite    | FL3CX03WG18<br>NM12-0398-002 | V                | 01-10-2018                | 01-09-2019                    |
| band rejection filter  | Sinoscite    | FL5CX01CA09C<br>L12-0395-001 |                  | 01-10-2018                | 01-09-2019                    |
| band rejection filter  | Sinoscite    | FL5CX01CA08C<br>L12-0393-001 |                  | 01-10-2018                | 01-09-2019                    |
| band rejection filter  | Sinoscite    | FL5CX02CA04C<br>L12-0396-002 |                  | 01-10-2018                | 01-09-2019                    |
| band rejection filter  | Sinoscite    | FL5CX02CA03C<br>L12-0394-001 |                  | 01-10-2018                | 01-09-2019                    |
| DC Power               | Keysight     | E3642A                       | MY54426112       | 03-13-2018                | 03-12-2019                    |
| DC Power               | Keysight     | E3642A                       | MY54426115       | 03-13-2018                | 03-12-2019                    |
| RF control unit        | JS Tonscend  | JS0806-1                     | 158060004        | 03-13-2018                | 03-12-2019                    |
| DC power Box           | JS Tonscend  | JS0806-4                     | 158060007        | 03-31-2018                | 03-30-2019                    |









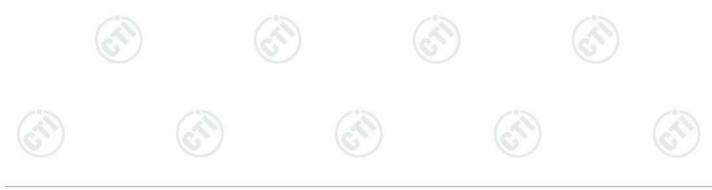
|                                     | Radiated Sp  | urious Emission              | & Radiated E     | mission                   |                               |
|-------------------------------------|--------------|------------------------------|------------------|---------------------------|-------------------------------|
| Equipment                           | Manufacturer | Model No.                    | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |
| 3M Chamber &<br>Accessory Equipment | трк          | SAC-3                        |                  | 06-04-2016                | 06-03-2019                    |
| TRILOG Broadband<br>Antenna         | SCHWARZBECK  | VULB9163                     | 9163-484         | 06-09-2017                | 06-08-2018                    |
| Preamplifier                        | JS Tonscend  | EMC051845SE                  | 980380           | 01-19-2018                | 01-18-2019                    |
| Horn Antenna                        | ETS-LINDGREN | 3117                         | 00057407         | 07-20-2015                | 07-18-2018                    |
| Loop Antenna                        | ETS          | 6502                         | 00071730         | 06-22-2017                | 06-21-2019                    |
| Spectrum Analyzer                   | R&S          | FSP40                        | 100416           | 06-13-2017                | 06-12-2018                    |
| Receiver                            | R&S          | ESCI                         | 100435           | 06-14-2017                | 06-13-2018                    |
| LISN                                | schwarzbeck  | NNBM8125                     | 81251547         | 06-13-2017                | 06-12-2018                    |
| LISN                                | schwarzbeck  | NNBM8125                     | 81251548         | 06-13-2017                | 06-12-2018                    |
| Signal Generator                    | Agilent      | E4438C                       | MY45095744       | 03-13-2018                | 03-12-2019                    |
| Signal Generator                    | Keysight     | E8257D                       | MY53401106       | 03-13-2018                | 03-12-2019                    |
| Temperature/ Humidity<br>Indicator  | TAYLOR       | 1451                         | 1905             | 05-08-2017                | 05-07-2018                    |
| Communication test set              | Agilent      | E5515C                       | GB47050534       | 03-16-2018                | 03-15-2019                    |
| Cable line                          | Fulai(7M)    | SF106                        | 5219/6A          | 01-10-2018                | 01-09-2019                    |
| Cable line                          | Fulai(6M)    | SF106                        | 5220/6A          | 01-10-2018                | 01-09-2019                    |
| Cable line                          | Fulai(3M)    | SF106                        | 5216/6A          | 01-10-2018                | 01-09-2019                    |
| Cable line                          | Fulai(3M)    | SF106                        | 5217/6A          | 01-10-2018                | 01-09-2019                    |
| Communication test set              | R&S          | CMW500                       | 152394           | 03-16-2018                | 03-15-2019                    |
| High-pass filter                    | Sinoscite    | FL3CX03WG18<br>NM12-0398-002 |                  | 01-10-2018                | 01-09-2019                    |
| band rejection filter               | Sinoscite    | FL5CX01CA09C<br>L12-0395-001 | ~                | 01-10-2018                | 01-09-2019                    |
| band rejection filter               | Sinoscite    | FL5CX01CA08C<br>L12-0393-001 | $(\mathcal{S})$  | 01-10-2018                | 01-09-2019                    |







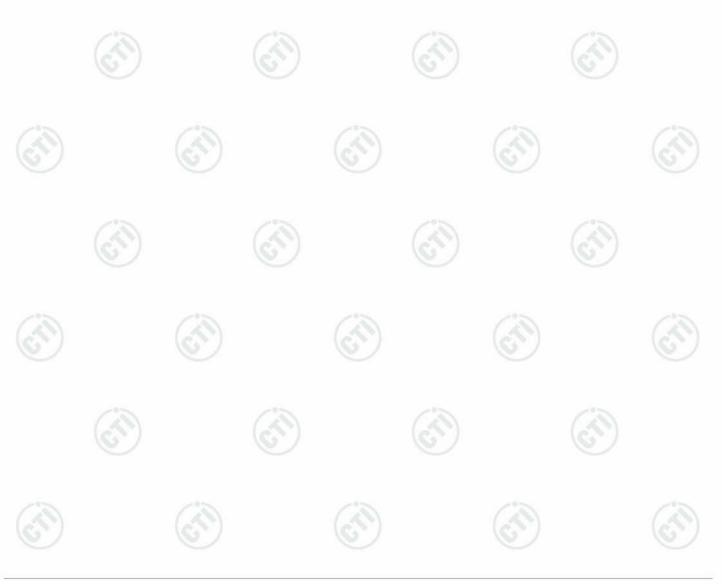



### 8 Radio Technical Requirements Specification

### Reference documents for testing:

| No. | Identity         | Document Title                                                                                              |
|-----|------------------|-------------------------------------------------------------------------------------------------------------|
|     |                  | PART 22 – PUBLIC MOBILE SERVICES                                                                            |
| 1   | PART 22          | Subpart H – Cellular Radiotelephone Service                                                                 |
| 2   | PART 24          | PART 24 – PERSONAL COMMUNICATIONS SERVICES<br>Subpart E – Broadband PCS                                     |
| 3   | PART 2           | Frequency allocations and radio treaty matters; general rules and regulations                               |
| 4   | TIA-603-E-2016   | Land Mobile FM or PM -Communications Equipment -Measurement and Performance Standards                       |
| 5   | KDB971168 D01    | KDB971168 D01 Power Meas License Digital Systems v02r02                                                     |
|     | 1<br>2<br>3<br>4 | 1         PART 22           2         PART 24           3         PART 2           4         TIA-603-E-2016 |

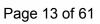
Test Results List:


| Test Requirement                                                     | Test method                                               | Test item                                          | Verdict | Note        |
|----------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|---------|-------------|
| Part 2.1046(a)/Part 22.913(a)/<br>part 24.232(c)                     | ITA-603-C&KDB<br>971168 D01v02r02                         | Conducted output power                             | PASS    | Appendix A) |
| Part 24.232(d)                                                       | KDB 971168<br>D01v02r02                                   | peak-to-average ratio                              | PASS    | Appendix B) |
| Part 2.1049(h)                                                       | Part 22.917(b)/ Part<br>24.238(b)&KDB<br>971168 D01v02r02 | 99%<br>&26dBOccupied<br>Bandwidth                  | PASS    | Appendix C) |
| Part 2.1051/Part 22.917(a)/<br>Part 24.238(a)                        | Part 22.917(b)/ Part<br>24.238(b)&KDB<br>971168 D01v02r02 | Band Edge at antenna terminals                     | PASS    | Appendix D) |
| Part 2.1051/ Part 2.1057/<br>Part 22.917(a)(b)/<br>Part 24.238(a)(b) | ITA-603-C&KDB<br>971168 D01v02r02                         | Spurious emissions at antenna terminals            | PASS    | Appendix E) |
| Part 2.1055/ Part 22.355/<br>Part 24.235                             | ITA-603-C&KDB<br>971168 D01v02r02                         | Frequency stability                                | PASS    | Appendix F) |
| Part 2.1053/ Part 2.1057/<br>Part 22.917(a)(b)/<br>Part 24.238(a)(b) | ITA-603-C&KDB<br>971168 D01v02r02                         | Field strength of spurious radiation               | PASS    | Appendix H) |
| Part 2.1046(a)/Part 22.913(a)/<br>Part 24.232(c)                     | ITA-603-C&KDB<br>971168 D01v02r02                         | Effective Radiated<br>Power of<br>Transmitter(ERP) | PASS    | Appendix G) |





|  | Page | 12 | of | 6 |
|--|------|----|----|---|
|--|------|----|----|---|


#### Appendix A)RF Power Output **Test Requirement:** Part 2.1046(a) **Test Method:** TIA-603-E-2016 Clause 2.2.1 **Test Setup:** Refer to section 5 for details GSM 850/WCDMA/HSDPA GSM 1900/WCDMA/HSDPA Mode /HSUPA 850 Band V /HSUPA 1900 Band II Limit: 824 - 849MHz 1850 – 1910MHz Frequency 38.45dBm (ERP) 33.01dBm (EIRP) Limit The transmitter output was connected to a calibrated coaxial cable, attenuator and power meter, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The power output at the transmitter antenna port was determined **Measurement Procedure:** by adding the value of the cable insertion loss to the power reading. The tests were performed at three frequencies (low channel, middle channel and high channel) and on the highest power levels, which can be setup on the transmitters. **Instruments Used:** Refer to section 7 for details **Test Results:** Pass











| Test Data: |           | 13           | 13            | 10             |         |
|------------|-----------|--------------|---------------|----------------|---------|
| Test Band  | Test Mode | Test Channel | Measured(dbm) | Limit<br>(dbm) | Verdict |
|            |           | LCH          | 31.22         | 38.5           | PASS    |
| GSM850     | GSM/TM2   | мсн          | 31.50         | 38.5           | PASS    |
|            | S         | нсн          | 31.98         | 38.5           | PASS    |
| Test Band  | Test Mode | Test Channel | Measured(dbm) | Limit<br>(dbm) | Verdict |
|            |           | LCH          | 29.25         | 33             | PASS    |
| GSM1900    | GSM/TM2   | МСН          | 28.88         | 33             | PASS    |
|            | 215       | нсн          | 28.62         | 33             | PASS    |
|            |           |              |               |                |         |

























Page 14 of 61

### Appendix B)Peak-to-Average Ratio

| Test Requirement:      | Part 24.232(d)                                                                                                                                                                                                                                                                                                                                        |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:           | KDB 971168 D01                                                                                                                                                                                                                                                                                                                                        |
| Test Setup:            | Refer to section 5 for details                                                                                                                                                                                                                                                                                                                        |
| Limit:                 | 13dB                                                                                                                                                                                                                                                                                                                                                  |
| Measurement Procedure: | Use one of the procedures to measure the total peak power and record as PPk.<br>Use one of the applicable procedures to measure the total average power and<br>record as PAvg. Both the peak and average power levels must be expressed in<br>the same logarithmic units (e.g., dBm). Determine the PAPR from:<br>PAPR (dB) = PPk (dBm) - PAvg (dBm). |
| Instruments Used:      | Refer to section 7 for details                                                                                                                                                                                                                                                                                                                        |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                  |

#### Test Data:

| Test Band | Test Mode | Test Channel | Measured<br>(dbm) | Limit<br>(dbm) | Verdict |
|-----------|-----------|--------------|-------------------|----------------|---------|
|           |           | LCH          | 0.29              | 13             | PASS    |
| GSM1900   | GSM/TM2   | МСН          | 0.38              | 13             | PASS    |
| 6         |           | НСН          | 0.40              | 13             | PASS    |

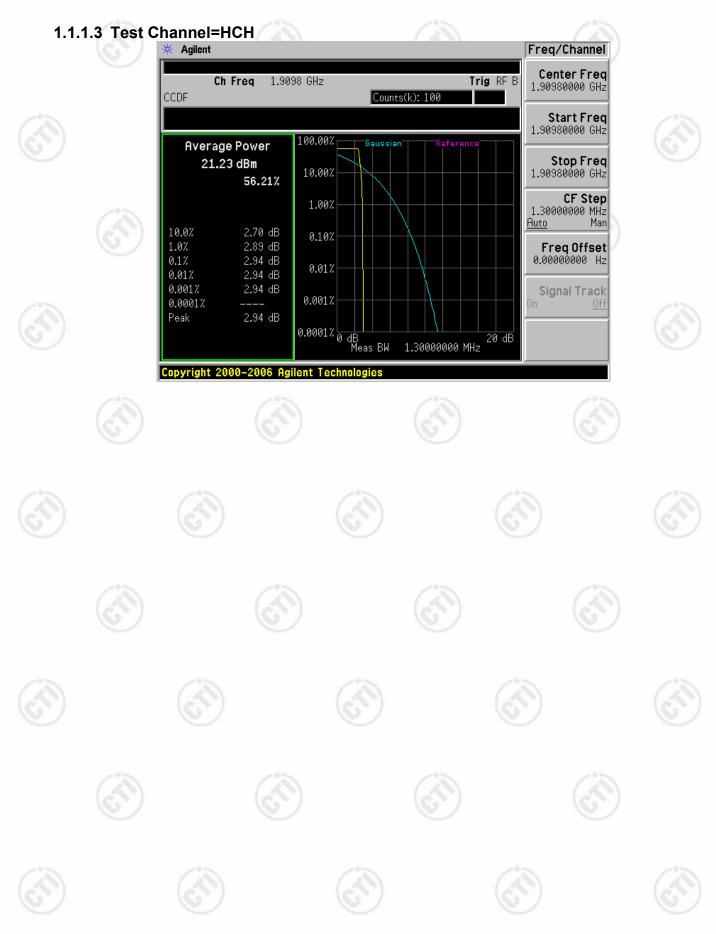






**CF** Step

Man


#### Copyright 2000-2006 Agilent Technolog





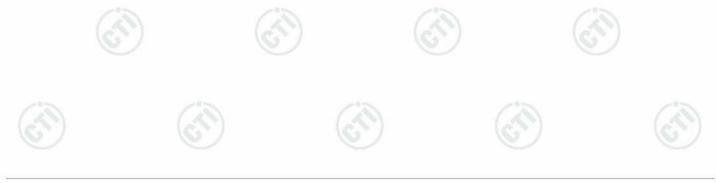











### Appendix C)BandWidth

| Appendix e/Bund        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement:      | Part 2.1049(h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test Method:           | Part 22.917(b)/Part 24.238(b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Setup:            | Refer to section 5 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Limit:                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Measurement Procedure: | The transmitter output was connected to a calibrated coaxial cable, attenuator<br>and Spectrum analyser, the other end of which was connected to a Base<br>Station Simulator. The Base Station Simulator was set to force the EUT to its<br>maximum power setting. The tests were performed at three frequencies (low<br>channel, middle channel and high channel).the resolution bandwidth of the<br>analyser is set to 100kHz or 1% of the emission bandwidth, the EUT emission<br>bandwidth is measured as the width of the signal between two points, outside<br>of which all emission are attenuated at least 26dB below the transmitter power.<br>The video bandwidth of the spectrum analyzer was set at thrice the resolution<br>bandwidth. Detector Mode was set to peak or peak hold power. |
| Instruments Used:      | Refer to section 7 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### Test data:

|   |           |         | and the second se |                    |                    |         |
|---|-----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|---------|
|   | Test Band | Test    | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Occupied Bandwidth | Emission Bandwidth | Verdict |
|   | Test Danu | Mode    | Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (KHZ)              | (KHZ)              | verdict |
|   |           |         | LCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 244.87             | 308.66             | PASS    |
| 1 | GSM850    | GSM/TM2 | MCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 245.40             | 314.29             | PASS    |
| Q | 3)        |         | НСН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 244.94             | 318.29             | PASS    |

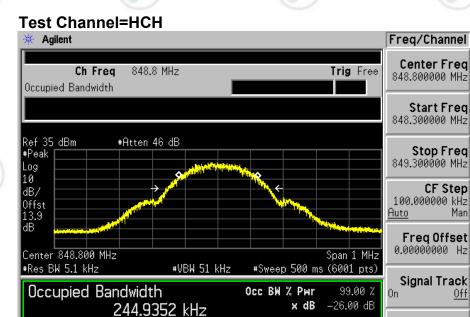

| Test Dand | Test           | Test    | Occupied Bandwidth | Emission Bandwidth | Vordiot |
|-----------|----------------|---------|--------------------|--------------------|---------|
| Test Band | Mode           | Channel | (KHZ)              | (KHZ)              | Verdict |
| (e)       | 2              | LCH     | 245.21             | 317.26             | PASS    |
| GSM1900   | GSM/TM2        | МСН     | 245.30             | 316.57             | PASS    |
|           |                | НСН     | 244.82             | 310.99             | PASS    |
| ST)       | $(\mathbf{C})$ |         | G                  | 6                  | G)      |





### Test Channel=MCH

1.1.1.2








Page 19 of 61



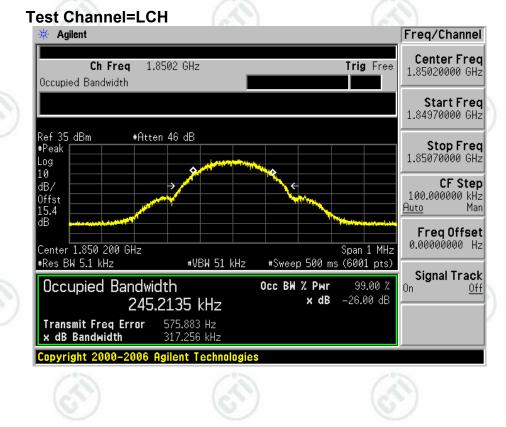


701.548 Hz

318.290 kHz



## Test GSM 1900


**Transmit Freq Error** 

Copyright 2000–2006 Agilent Techn

x dB Bandwidth



## Test Mode=GSM/TM2





<u>Off</u>







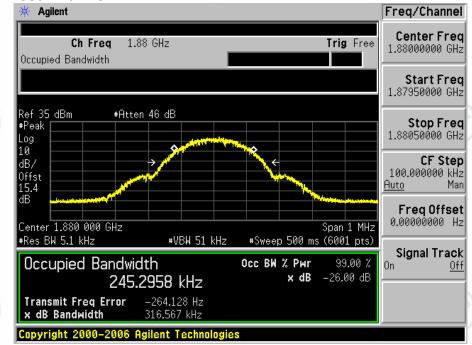






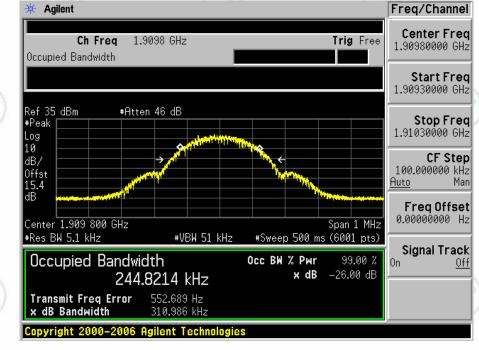

64

Page 20 of 61









1.2.1.2

### Test Channel=MCH





### Test Channel=HCH









Page 21 of 61

### Appendix D)Band Edges Compliance

| Test Requirement:     | Part 2.1051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                              |                                                                    |  |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|
| Test Method:          | Part 22.917(b)/Part 24.238(b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                    |  |  |  |  |  |
| Test Setup:           | Refer to section 5 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Refer to section 5 for details                                                                                               |                                                                    |  |  |  |  |  |
| Measurement Procedure | asurement Procedure:<br>The transmitter output was connected to a calibrated coaxial cable<br>and Spectrum analyser, the other end of which was connected<br>Station Simulator. The Base Station Simulator was set to force the<br>maximum power setting. The tests were performed at three freque<br>channel and high channel).in the 1MHz bands immediately of<br>adjacent to the frequency block a resolution bandwidth of 100kHz of<br>emission bandwidth of the fundamental emission of the transmit<br>employed. The EUT emission bandwidth is measured as the w<br>signal between two points, outside of which all emission are attenua<br>26dB below the transmitter power. The video bandwidth of the<br>analyzer was set at thrice the resolution bandwidth. Detector Mode |                                                                                                                              |                                                                    |  |  |  |  |  |
|                       | 26dB below the transmitter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | power. The video ba                                                                                                          | ndwidth of the spectru                                             |  |  |  |  |  |
| Limit:                | 26dB below the transmitter<br>analyzer was set at thrice th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | power. The video ba                                                                                                          | ndwidth of the spectru                                             |  |  |  |  |  |
| Limit:                | 26dB below the transmitter<br>analyzer was set at thrice th<br>peak or peak hold power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | power. The video ba<br>e resolution bandwidth.<br>Frequency Range                                                            | ndwidth of the spectru<br>Detector Mode was set                    |  |  |  |  |  |
| Limit:                | 26dB below the transmitter<br>analyzer was set at thrice th<br>peak or peak hold power.<br>Operation Band<br>GPRS/EDGE/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F power. The video ba<br>e resolution bandwidth.<br>Frequency Range<br>(MHz)<br>Below 824 and                                | Attenuated at least                                                |  |  |  |  |  |
| Limit:                | 26dB below the transmitter<br>analyzer was set at thrice th<br>peak or peak hold power.<br>Operation Band<br>GPRS/EDGE/<br>WCDMA 850<br>GPRS/EDGE/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F power. The video ba<br>e resolution bandwidth.<br>Frequency Range<br>(MHz)<br>Below 824 and<br>above 849<br>Below 1850 and | Limit<br>Attenuated at least<br>43+10log(P)<br>Attenuated at least |  |  |  |  |  |

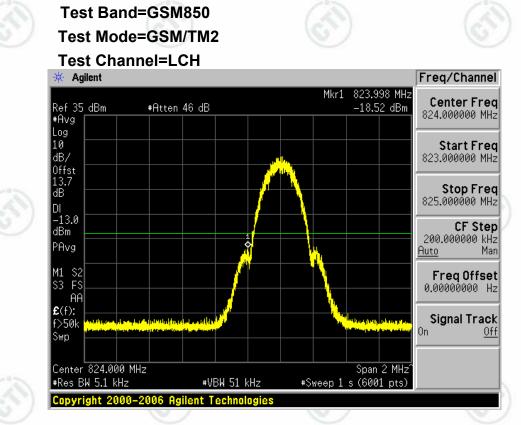






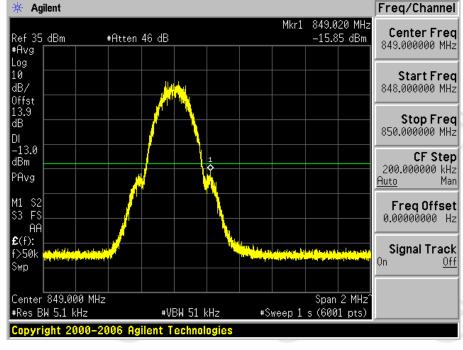









# 61


Page 22 of 61







### Test Channel=HCH





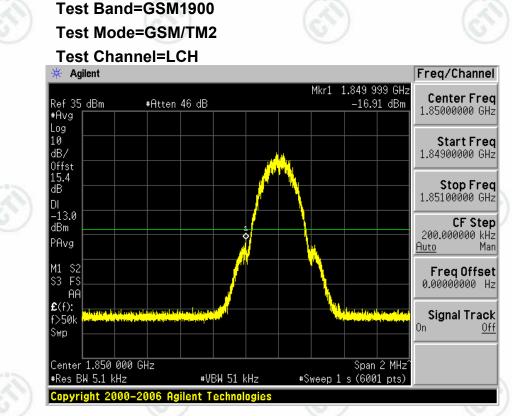




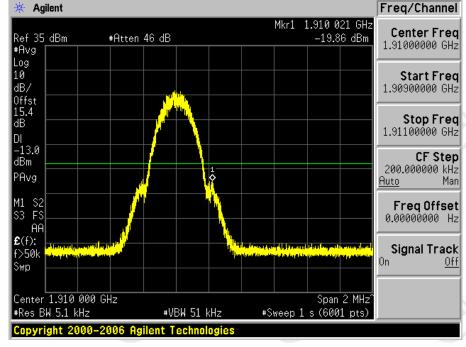













1.2.1.2







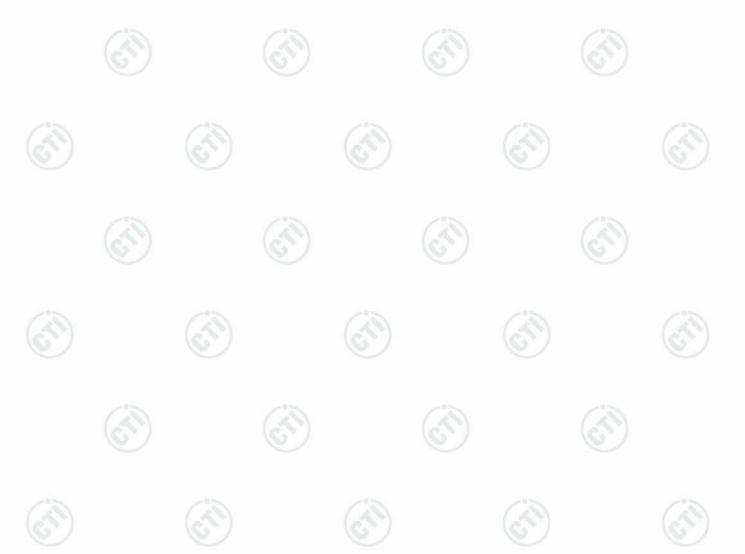


(S












Page 24 of 61

### Appendix E)Spurious Emission at Antenna Terminal

| Test Requirement:      | Part 2.1051/Part 2.1057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:           | TIA-603-E-2016 Clause 2.2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test Setup:            | Refer to section 5 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Measurement Procedure: | The transmitter output was connected to a calibrated coaxial cable, attenuator<br>and Spectrum analyzer, the other end of which was connected to a Base<br>Station Simulator. The Base Station Simulator was set to force the EUT to its<br>maximum power setting. The tests were performed at three frequencies (low<br>channel and high channel).the equipment operates below 10GHz: to the tenth<br>harmonic of the highest fundamental frequency or to 40GHz.whichever is<br>lower, the resolution bandwidth of the spectrum analyzer was set at 100kHz for<br>spurious emissions below 1 GHz, and 1 MHz for spurious emissions above<br>1GHz.the video bandwidth of the spectrum analyzer was set at thrice the<br>resolution bandwidth. Detector Mode was set to mean or average power. |
| Instruments Used:      | Refer to section 7 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Limit:                 | Attenuated at least 43+10log(P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| i oot i toouitoi       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |









Freq/Channel

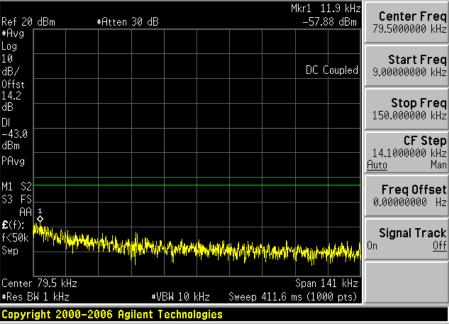


1.1 1.1.1 1.1.1.1


















\* Agilent Freq/Channel Mkr1 180 kHz Center Freq Ref 20 dBm -63.34 dBm #Atten 30 dB 15.0750000 MHz #Avg Log 10 Start Freq DC Coupled dB/ 150.000000 kHz Offst 14.4 Stop Freq 30.000000 MHz dB DI -33.0 dBm **CF** Step 2.98500000 MHz PAvg Man <u>Auto</u> M1 S3 S2 FS Freq Offset 0.00000000 Hz AA £(f): Signal Track FTun 0n Off Swp Center 15.08 MHz Span 29.85 MHz #Res BW 10 kHz Sweep 902.2 ms (1000 pts) #VBW 30 kHz Copyright 20 06 Agilent Technolog









-36-

#Avg Log 10

dB/

0ffst 14 dB

PAvg

M1 S2 S3 FS

FTun

Swp

AA £(f):

Center 515.0 MHz #Res BW 1 MHz

Copyright 2000-2006 Agilent Technologies

DI –13.0 dBm

Agilent

#Atten 40 dB

Ref 35 dBm





Freq/Channel

**Center Freq** 

Start Freq

Stop Freq 1.00000000 GHz

Man

<u>0ff</u>

Man

<u>0ff</u>

515.000000 MHz

30.0000000 MHz

CF Step 97.0000000 MHz

FreqOffset 0.00000000 Hz

Signal Track

<u>Auto</u>

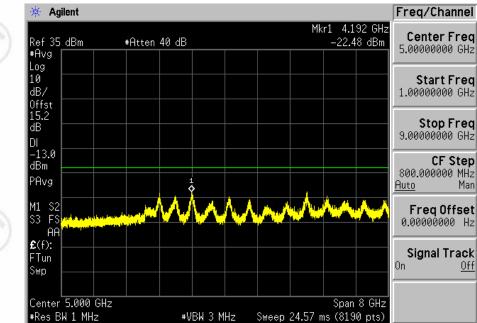
0n

Mkr2 906.8 MHz

-32.38 dBm

ò

Span 970 MHz


Sweep 2.997 ms (1000 pts)

#### Page 26 of 61





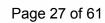




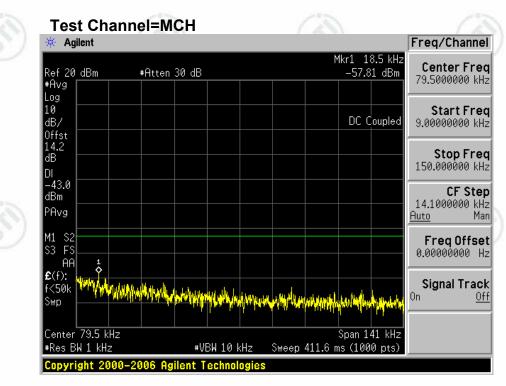
#VBW 3 MHz










1.1.1.2





#### Report No. : EED32J00245402



| 🔆 Agilent                       |                                   |                              |                   |                                          |                          |                 | Freq/Channel                                        |
|---------------------------------|-----------------------------------|------------------------------|-------------------|------------------------------------------|--------------------------|-----------------|-----------------------------------------------------|
| Ref 20 dBm<br>#Avg              | #Atten                            | 30 dB                        |                   |                                          | Mkr1 2<br>-63.4          | 10 kHz<br>4 dBm | Center Freq<br>15.0750000 MHz                       |
| Log<br>10<br>dB/<br>Offst       |                                   |                              |                   |                                          | DC C                     | oupled          | Start Freq<br>150.000000 kHz                        |
| 14.4<br>dB<br>DI                |                                   |                              |                   |                                          |                          |                 | <b>Stop Freq</b><br>30.0000000 MHz                  |
| -33.0<br>dBm<br>PAvg            |                                   |                              |                   |                                          |                          |                 | <b>CF Step</b><br>2.98500000 MHz<br><u>Auto</u> Man |
| M1 S2<br>S3 FS<br>AA            |                                   |                              |                   |                                          |                          |                 | FreqOffset<br>0.00000000 Hz                         |
| £(f): 1<br>FTun<br>Swp          | rtfilealquart.verdeyt-firelastaqu | ynthenny antheannthaefellada | 41141Jan1-1a11.14 | an a | ntu direkteriy           | ythan ylannoon  | Signal Track<br><sup>On <u>Off</u></sup>            |
| Center 15.08 M<br>#Res BW 10 kH |                                   | #VBW 30                      | ) kHz Si          | Sp<br>weep 902.2 m                       | )<br>oan 29.0<br>ns (100 |                 |                                                     |
| Copyright 20                    | 00-2006 Ag                        | ilent Techn                  | ologies           |                                          |                          |                 |                                                     |











Mkr2 399.9 MHz -32.08 dBm

Freq/Channel

**Center Freq** 

Start Freq

Stop Freq 1.00000000 GHz

CF Step 97.0000000 MHz

Man

<u>0ff</u>

**CF** Step

Man

<u>0ff</u>

515.000000 MHz

30.0000000 MHz

FreqOffset 0.00000000 Hz

Signal Track

<u>Auto</u>

0n

Span 970 MHz

Span 8 GHz

Sweep 24.57 ms (8190 pts)

Sweep 2.997 ms (1000 pts)

### Report No. : EED32J00245402

-36-

#Avg Log

10

dB/

0ffst 14 dB

PAvg

Μ1

\$3 F۵ AA £(f):

FTun

Swp

Center 515.0 MHz #Res BW 1 MHz

Center 5.000 GHz

#Res BW 1 MHz

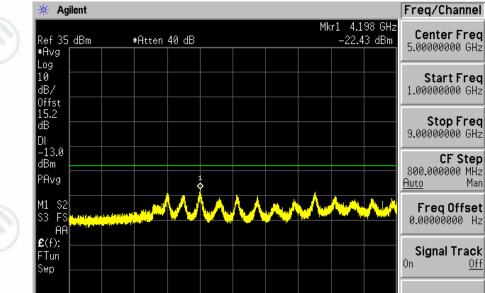
DI –13.0 dBm

Agilent

#Atten 40 dB

2 0

Copyright 2000-2006 Agilent Technologies


Ref 35 dBm

### Page 28 of 61





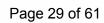




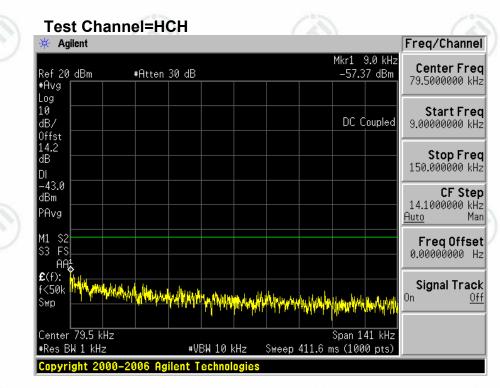

#VBW 3 MHz

#VBW 3 MHz








1.1.1.3





#### Report No. : EED32J00245402



|                                   | 12                                   | 12 /2                                           |
|-----------------------------------|--------------------------------------|-------------------------------------------------|
| 🔆 Agilent                         |                                      | Freq/Channel                                    |
| Ref 20 dBm<br>#Avg                | #Atten 30 dB                         | Mkr1 150 kHz<br>-62.68 dBm<br>15.0750000 MHz    |
| _og<br>10<br>dB/<br>Offst         |                                      | DC Coupled Start Freq                           |
| 14.4<br>dB<br>DI                  |                                      | Stop Freq           30.0000000 MHz              |
| -33.0<br>dBm<br>PAvg              |                                      | CF Step<br>2.98500000 MHz<br><u>Auto</u> Man    |
| 11 S2<br>53 FS<br>AA              |                                      | Freq Offset<br>0.00000000 Hz                    |
| €(f): 1<br>FTun<br>Swp            | ศ)สราคสะติเหตรา/โรมปฏิสาราชสร้างกระจ | Signal Track                                    |
| Center 15.08 MH<br>#Res BW 10 kHz | z<br>#VBW 30                         | Span 29.85 MHz<br>kHz Sweep 902.2 ms (1000 pts) |
|                                   | -2006 Agilent Techno                 |                                                 |











Mkr2 958.2 MHz

1

-31.73 dBm

Freq/Channel

**Center Freq** 

Start Freq

Stop Freq 1.00000000 GHz

CF Step 97.0000000 MHz

Man

<u>0ff</u>

**CF** Step

Man

<u>0ff</u>

515.000000 MHz

30.0000000 MHz

FreqOffset 0.00000000 Hz

Signal Track

<u>Auto</u>

0n

2

Span 970 MHz

Sweep 2.997 ms (1000 pts)

Sweep 24.57 ms (8190 pts)

### Report No. : EED32J00245402

-36-

#Avg

Log 10

dB/

0ffst 14 dB

PAvg

M1 S2

\$3 F۵ AA £(f):

FTun

Swp

Center 515.0 MHz #Res BW 1 MHz

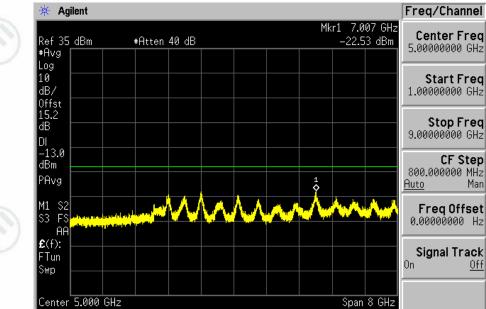
#Res BW 1 MHz

Copyright 2000-2006 Agilent Technologies

DI –13.0 dBm

Agilent

#Atten 40 dB


Ref 35 dBm

#### Page 30 of 61









#VBW 3 MHz

#VBW 3 MHz



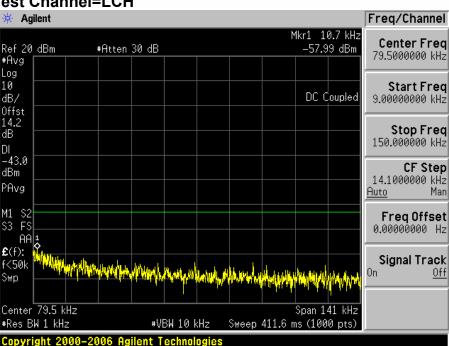


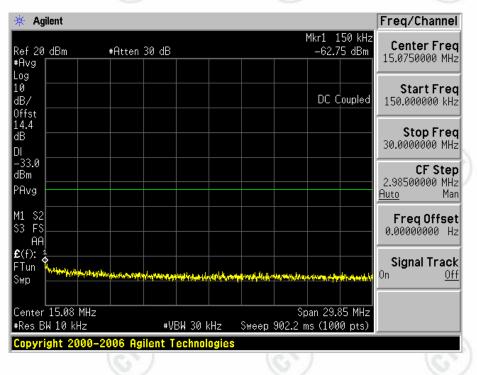











Page 31 of 61













Hotline: 400-6788-333







¢

#VBW 3 MHz



Mkr1 503.8 MHz -31.05 dBm

Freq/Channel

**Center Freq** 

Start Freq

Stop Freq 1.00000000 GHz

CF Step 97.0000000 MHz

Man

<u>0ff</u>

**CF** Step

Man

<u>0ff</u>

515.000000 MHz

30.0000000 MHz

FreqOffset 0.00000000 Hz

Signal Track

<u>Auto</u>

0n

Span 970 MHz

Sweep 2.997 ms (1000 pts)

Sweep 18.18 ms (6200 pts)

### Report No. : EED32J00245402

-36-

#Avg Log 10

dB/

0ffst 14 dB

PAvg

M1

\$3 F۵ AA £(f):

FTun

Swp

Center 515.0 MHz #Res BW 1 MHz

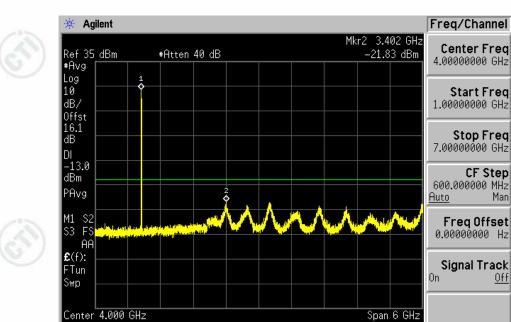
#Res BW 1 MHz

Copyright 2000-2006 Agilent Technologies

DI –13.0 dBm

Agilent

#Atten 40 dB


Ref 35 dBm

#### Page 32 of 61















#VBW 3 MHz





#Atten 40 dB



Mkr1 7.002 GHz -22.82 dBm

Span 6.6 GHz Sweep 19.94 ms (6800 pts)

Freq/Channel

**Center Freq** 

Start Freq

Stop Freq 13.6000000 GHz

Man

<u>0ff</u>

**CF** Step

Man

<u>0ff</u>

10.3000000 GHz

7.00000000 GHz

CF Step 660.000000 MHz

FreqOffset 0.00000000 Hz

Signal Track

<u>Auto</u>

0n

### Report No. : EED32J00245402

-36-

#Avg Log 10

dB/

Offst 16.1 dB

DI -13.0 dBm

PAvg

ÂÂ £(f):

Center 10.300 GHz #Res BW 1 MHz

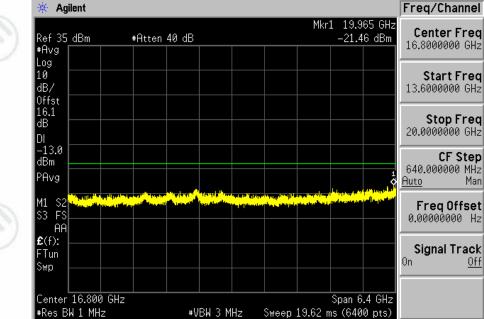
Copyright 2000-2006 Agilent Technologies

M1 S3 S2 FS

FTun

Swp

Agilent


Ref 35 dBm

### Page 33 of 61









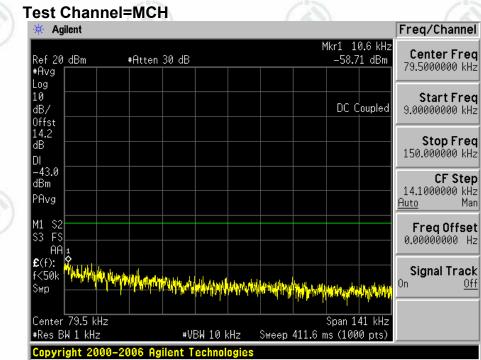
#VBW 3 MHz












1.2.1.2





#### Report No. : EED32J00245402



| 🔆 Agilent                                         |                   |                               |                    |                 |               |                     |                  | Freq/Char                         | nel               |
|---------------------------------------------------|-------------------|-------------------------------|--------------------|-----------------|---------------|---------------------|------------------|-----------------------------------|-------------------|
| Ref 20 dBm<br>#Avg                                | #Atten            | 30 dB                         |                    |                 |               | Mkr1 1<br>-61.9     | 50 kHz<br>6 dBm  | <b>Center F</b><br>15.0750000     |                   |
| _og<br>10<br>dB/<br>Offst                         |                   |                               |                    |                 |               | DC C                | oupled           | <b>Start F</b><br>150.000000      |                   |
| L4.4<br>dB<br>DI                                  |                   |                               |                    |                 |               |                     |                  | <b>Stop F</b><br>30.0000000       |                   |
| -33.0<br>dBm<br>PAvg                              |                   |                               |                    |                 |               |                     |                  | CF S<br>2.98500000<br><u>Auto</u> |                   |
| M1 S2<br>53 FS<br>AA                              |                   |                               |                    |                 |               |                     |                  | Freq Off<br>0.00000000            |                   |
| €(f): 1<br>=Tun<br>Swp                            | minoralationships | yterstaftligt to the spectrum | Nutrachander       | Minayi-akhin ya | 1             | er an the state     | khiron alay ayar | <b>Signal Tr</b><br>On            | ack<br><u>Off</u> |
|                                                   |                   | #VBW                          | 30 kHz             | Sweep           |               | oan 29.0<br>ns (100 |                  |                                   |                   |
| Center 15.08 M<br>#Res BW 10 kHz<br>Copyright 200 | Z                 |                               | 30 kHz<br>hnologie |                 | Sr<br>902.2 n |                     |                  |                                   |                   |



















Mkr1 459.2 MHz -32.23 dBm

Freq/Channel

**Center Freq** 

Start Freq

Stop Freq 1.00000000 GHz

CF Step 97.0000000 MHz

Man

<u>0ff</u>

515.000000 MHz

30.0000000 MHz

FreqOffset 0.00000000 Hz

Signal Track

<u>Auto</u>

0n

Span 970 MHz

Sweep 2.997 ms (1000 pts)

Sweep 18.18 ms (6200 pts)

### Report No. : EED32J00245402

-36-

#Avg Log 10

dB/

0ffst 14 dB

PAvg

M1 S2 S3 FS

FTun

Swp

AA £(f):

Center 515.0 MHz #Res BW 1 MHz

#Res BW 1 MHz

Copyright 2000-2006 Agilent Technologies

DI –13.0 dBm

Agilent

#Atten 40 dB

Ref 35 dBm

### Page 35 of 61









#VBW 3 MHz

1 **(** 

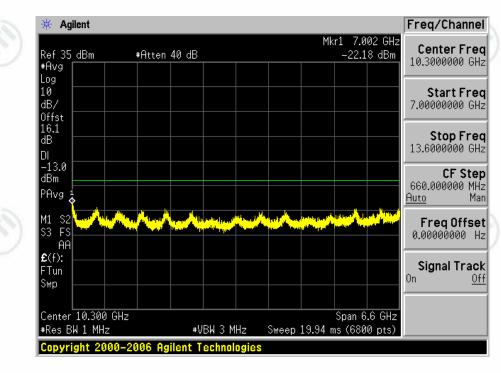
#VBW 3 MHz

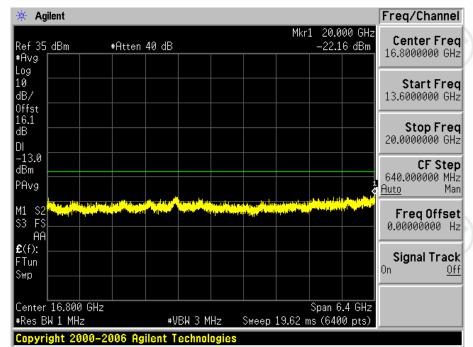


Man

<u>0ff</u>







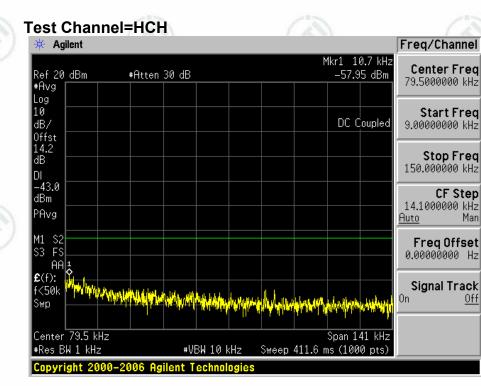


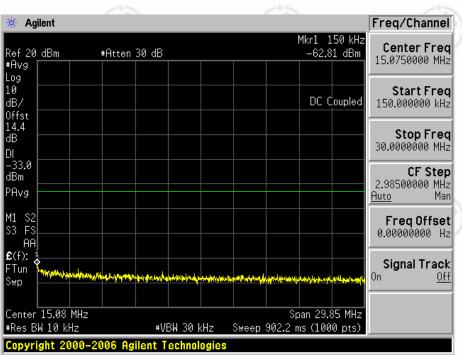

### Page 36 of 61










1.2.1.3



















Mkr1 456.3 MHz

-32.68 dBm

Freq/Channel

**Center Freq** 

Start Freq

Stop Freq 1.00000000 GHz

CF Step 97.0000000 MHz

Man

<u>0ff</u>

515.000000 MHz

30.0000000 MHz

FreqOffset 0.00000000 Hz

Signal Track

**Center Freq** 

Start Freq

Stop Freq

**CF** Step

Freq Offset

Signal Track

Man

<u>0ff</u>

<u>Auto</u>

0n

Span 970 MHz

Span 6 GHz

Sweep 18.18 ms (6200 pts)

Sweep 2.997 ms (1000 pts)

# Report No. : EED32J00245402

-36-

#Avg Log 10

dB/

offst 14 dB

PAvg

M1

\$3 F۵ AA £(f):

FTun

Swp

Center 515.0 MHz #Res BW 1 MHz

Center 4.000 GHz

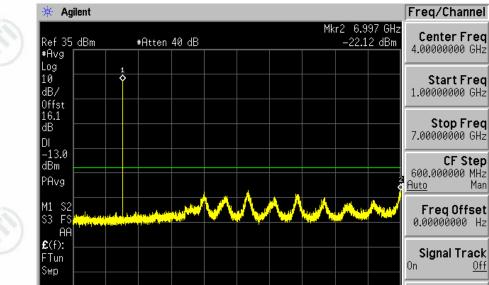
#Res BW 1 MHz

Copyright 2000-2006 Agilent Technologies

DI –13.0 dBm

Agilent

#Atten 40 dB


Ref 35 dBm

### Page 38 of 61









1

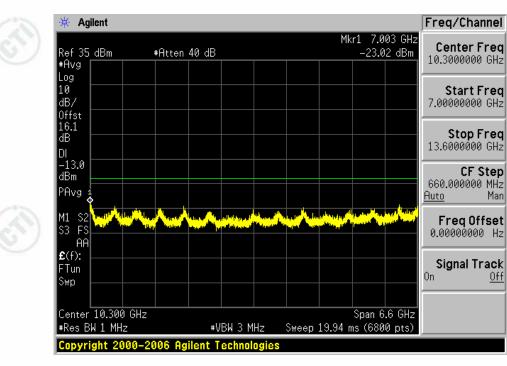
#VBW 3 MHz

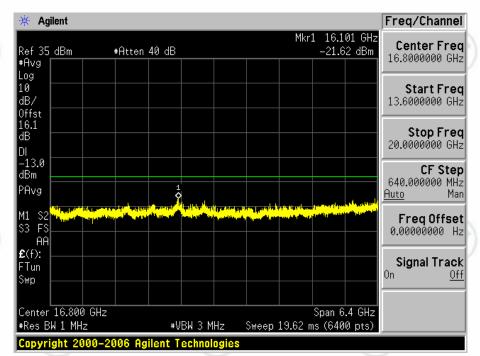









#VBW 3 MHz








## Page 39 of 61















Page 40 of 61

| Test Requirement:     | Part 2.1055                                                                                                                                                               | G                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                         | (67)                                                                                                                                                        |                                                                                                                 |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Test Method:          | TIA-603-E-2016                                                                                                                                                            | Clause 2.2.2                                                                                                                                                                                                                                                        | /                                                                                                                                                                                         | U                                                                                                                                                           |                                                                                                                 |
| Test Setup:           | Refer to section                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                             |                                                                                                                 |
| Measurement Procedure | Station Simulator<br>maximum power<br>channel and hig<br>the DC leads a<br>made for that pu<br>15 minutes befor<br>+55°C at interva<br>the base station<br>25°C the input | output was connecter.<br>The Base Station<br>setting. The tests<br>h channel).The EU<br>nd RF output cablurpose. After Opera<br>ore proceeding. The<br>s of not more than<br>.Since the EUT is for<br>voltage was reduced<br>oltage), the frequent<br>7 for details | n Simulator was s<br>were performed a<br>IT was place in the<br>e exited the char<br>te the equipment<br>te temperature wa<br>10°C The frequen<br>hand carried,batte<br>ced from 3.7V(pri | et to force the<br>at three freque<br>ne temperature<br>nber though a<br>in standby co<br>as varied fror<br>cy stability wa<br>ry powered ec<br>mary supply | EUT to i<br>encies (lo<br>e chambe<br>an openir<br>nditions f<br>n -30°C<br>s read fro<br>quipment,<br>voltage) |
| Limit:                |                                                                                                                                                                           | ation Band                                                                                                                                                                                                                                                          | Frequency                                                                                                                                                                                 | stability Limit                                                                                                                                             | (ppm)                                                                                                           |
|                       | GPRS/EDGE/V                                                                                                                                                               | (2)                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           | ±2.5ppm                                                                                                                                                     | 6                                                                                                               |
|                       | GPRS/EDGE/V                                                                                                                                                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                             |                                                                                                                 |
| Test Results:         | Pass                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                             |                                                                                                                 |
|                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                             |                                                                                                                 |
|                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                             |                                                                                                                 |
|                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                             |                                                                                                                 |
|                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                             |                                                                                                                 |
|                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                             |                                                                                                                 |
|                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                             |                                                                                                                 |

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com





## Page 41 of 61

Verdict

Limit

(ppm)

Test Data: Frequ

| Frequency    | Error vs. | Voltage:     |       |       |            |               |
|--------------|-----------|--------------|-------|-------|------------|---------------|
| (VL is 3.3V, | VN is 3.7 | V, VH is 4.2 | 2V)   |       | V          |               |
| Test         | Test      | Test         | Test  | Test  | Freq.Error | Freq.vs.rated |
| Band         | Mode      | Channel      | Temp. | Volt. | (Hz)       | (ppm)         |

| (3)    |     |                              | ΤN | VL | -14.21 | -0.017241 | ±2.5 | PASS |
|--------|-----|------------------------------|----|----|--------|-----------|------|------|
|        |     | LCH                          | TN | VN | -9.75  | -0.011830 | ±2.5 | PASS |
|        |     |                              | TN | VH | -12.27 | -0.014887 | ±2.5 | PASS |
| 1      |     |                              | TN | VL | -7.68  | -0.009180 | ±2.5 | PASS |
| GSM850 | TM2 | МСН                          | TN | VN | -8.72  | -0.010423 | ±2.5 | PASS |
|        |     |                              | TN | VH | -3.29  | -0.003933 | ±2.5 | PASS |
|        |     |                              | ΤN | VL | -1.74  | -0.002050 | ±2.5 | PASS |
|        |     | НСН                          | TN | VN | 27.31  | 0.032175  | ±2.5 | PASS |
| 60     |     | $\langle \mathbf{c} \rangle$ | TN | VH | -4.65  | -0.005478 | ±2.5 | PASS |

|   | Test<br>Band | Test<br>Mode | Test<br>Channel | Test<br>Temp. | Test<br>Volt. | Freq.Error<br>(Hz) | Freq.vs.rated<br>(ppm) | Limit<br>(ppm) | Verdict |
|---|--------------|--------------|-----------------|---------------|---------------|--------------------|------------------------|----------------|---------|
|   | 0            | 2            |                 | TN            | VL            | -31.25             | -0.016890              | ±2.5           | PASS    |
|   |              |              | LCH             | TN            | VN            | -28.80             | -0.015566              | ±2.5           | PASS    |
|   |              |              |                 | TN            | VH            | -29.06             | -0.015706              | ±2.5           | PASS    |
| a | 0            |              |                 | TN            | VL            | -36.55             | -0.019441              | ±2.5           | PASS    |
| C | GSM1900      | TM2          | МСН             | TN            | VN            | -33.06             | -0.017585              | ±2.5           | PASS    |
|   |              |              |                 | TN            | VH            | -33.51             | -0.017824              | ±2.5           | PASS    |
|   | 20           |              |                 | TN            | VL            | -30.35             | -0.015892              | ±2.5           | PASS    |
|   | 6            |              | HCH             | TN            | VN            | -29.51             | -0.015452              | ±2.5           | PASS    |
|   | Y            | 1            |                 | TN            | VH            | -30.93             | -0.016195              | ±2.5           | PASS    |





Page 42 of 61

| Frequency    | Error vs     | . Temperatu     | ire:          |              |                    | 6                      | 2              |        |
|--------------|--------------|-----------------|---------------|--------------|--------------------|------------------------|----------------|--------|
| Test<br>Band | Test<br>Mode | Test<br>Channel | Test<br>Volt. | Test<br>Temp | Freq.Error<br>(Hz) | Freq.vs.rated<br>(ppm) | Limit<br>(ppm) | Verdic |
| 0            |              |                 | VN            | -30          | -11.43             | -0.013868              | ±2.5           | PASS   |
| 2            |              | S)              | VN            | -20          | -18.34             | -0.022252              | ±2.5           | PASS   |
|              |              |                 | VN            | -10          | -18.53             | -0.022482              | ±2.5           | PASS   |
|              |              |                 | VN            | 0            | -15.30             | -0.018563              | ±2.5           | PASS   |
| GSM850       | TM2          | LCH             | VN            | 10           | -16.79             | -0.020371              | ±2.5           | PASS   |
| e            | /            |                 | VN            | 20           | -15.56             | -0.018879              | ±2.5           | PASS   |
|              |              |                 | VN            | 30           | -19.76             | -0.023975              | ±2.5           | PASS   |
|              |              | 1               | VN            | 40           | -15.82             | -0.019194              | ±2.5           | PASS   |
| (*)          |              | $(\mathcal{A})$ | VN            | 50           | -17.31             | -0.021002              | ±2.5           | PASS   |
| -            |              | $\sim$          | VN            | -30          | -7.30              | -0.008726              | ±2.5           | PASS   |
|              |              |                 | VN            | -20          | -13.62             | -0.016280              | ±2.5           | PASS   |
| 0            |              |                 | VN            | -10          | -15.37             | -0.018372              | ±2.5           | PASS   |
| 6            | 9            |                 | VN            | 0            | -9.75              | -0.011654              | ±2.5           | PASS   |
| GSM850       | TM2          | МСН             | VN            | 10           | -10.01             | -0.011965              | ±2.5           | PASS   |
|              |              |                 | VN            | 20           | -11.49             | -0.013734              | ±2.5           | PASS   |
| 6            |              |                 | VN            | 30           | -12.46             | -0.014894              | ±2.5           | PASS   |
| 2            |              | S)              | VN            | 40           | -14.85             | -0.017750              | ±2.5           | PASS   |
|              |              |                 | VN            | 50           | -8.27              | -0.009885              | ±2.5           | PASS   |
|              |              |                 | VN            | -30          | -6.52              | -0.007681              | ±2.5           | PASS   |
| G            | 0            |                 | VN            | -20          | -2.13              | -0.002509              | ±2.5           | PASS   |
| C            | 2            |                 | VN            | -10          | -7.81              | -0.009201              | ±2.5           | PASS   |
|              |              |                 | VN            | 0            | -9.94              | -0.011711              | ±2.5           | PASS   |
| GSM850       | TM2          | нсн             | VN            | 10           | -8.27              | -0.009743              | ±2.5           | PASS   |
|              |              |                 | VN            | 20           | -7.49              | -0.008824              | ±2.5           | PASS   |
| 2            |              |                 | VN            | 30           | -8.59              | -0.010120              | ±2.5           | PASS   |
|              |              |                 | VN            | 40           | -7.94              | -0.009354              | ±2.5           | PASS   |
| ولي ا        |              |                 | VN            | 50           | -10.27             | -0.012099              | ±2.5           | PASS   |











| Test<br>Band | Test<br>Mode | Test<br>Channel | Test<br>Volt. | Test<br>Temp | Freq.Error<br>(Hz) | Freq.vs.rated<br>(ppm) | Limit<br>(ppm) | Verdict |
|--------------|--------------|-----------------|---------------|--------------|--------------------|------------------------|----------------|---------|
| 20           |              |                 | VN            | -30          | -34.93             | -0.018879              | ±2.5           | PASS    |
| 2            |              | S.              | VN            | -20          | -32.80             | -0.017728              | ±2.5           | PASS    |
|              |              |                 | VN            | -10          | -10.27             | -0.005551              | ±2.5           | PASS    |
|              |              |                 | VN            | 0            | -12.40             | -0.006702              | ±2.5           | PASS    |
| GSM1900      | TM2          | LCH             | VN            | 10           | -32.48             | -0.017555              | ±2.5           | PASS    |
| Q            | 2            |                 | VN            | 20           | -38.48             | -0.020798              | ±2.5           | PASS    |
|              |              |                 | VN            | 30           | -25.51             | -0.013788              | ±2.5           | PASS    |
|              |              | 25              | VN            | 40           | -35.90             | -0.019403              | ±2.5           | PASS    |
| <u>()</u>    |              |                 | VN            | 50           | -28.15             | -0.015215              | ±2.5           | PASS    |
| 9            |              | $\sim$          | VN            | -30          | -32.54             | -0.017309              | ±2.5           | PASS    |
|              |              |                 | VN            | -20          | -34.09             | -0.018133              | ±2.5           | PASS    |
| 1            |              |                 | VN            | -10          | -28.99             | -0.015420              | ±2.5           | PASS    |
| 6            | e)           |                 | VN            | 0            | -24.02             | -0.012777              | ±2.5           | PASS    |
| GSM1900      | TM2          | МСН             | VN            | 10           | -35.84             | -0.019064              | ±2.5           | PASS    |
|              |              |                 | VN            | 20           | -30.35             | -0.016144              | ±2.5           | PASS    |
| 2            |              | (2)             | VN            | 30           | -23.50             | -0.012500              | ±2.5           | PASS    |
| 3)           |              | 6)              | VN            | 40           | -42.62             | -0.022670              | ±2.5           | PASS    |
|              |              |                 | VN            | 50           | -33.13             | -0.017622              | ±2.5           | PASS    |
|              |              |                 | VN            | -30          | -39.71             | -0.020793              | ±2.5           | PASS    |
| G            | 0            |                 | VN            | -20          | -49.01             | -0.025662              | ±2.5           | PASS    |
| C            | 2            |                 | VN            | -10          | -38.42             | -0.020117              | ±2.5           | PASS    |
|              |              |                 | VN            | 0            | -33.71             | -0.017651              | ±2.5           | PASS    |
| GSM1900      | TM2          | НСН             | VN            | 10           | -30.74             | -0.016096              | ±2.5           | PASS    |
| 1            |              |                 | VN            | 20           | -34.68             | -0.018159              | ±2.5           | PASS    |
| 2            |              |                 | VN            | 30           | -31.12             | -0.016295              | ±2.5           | PASS    |
|              |              |                 | VN            | 40           | -53.14             | -0.027825              | ±2.5           | PASS    |
|              |              |                 | VN            | 50           | -28.80             | -0.015080              | ±2.5           | PASS    |







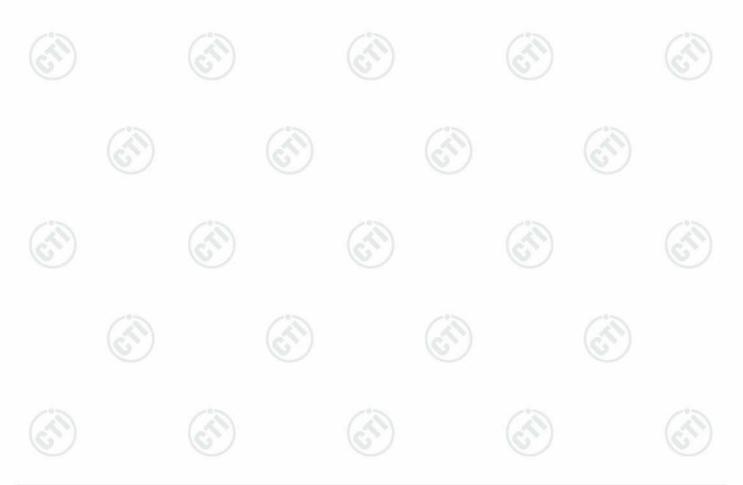




# Appendix G) Effective Radiated Power of Transmitter (ERP/EIRP)

|             |                                                                                                                                                                     |               | T =               |                |                |                                     |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|----------------|----------------|-------------------------------------|--|--|--|--|
|             | Freque                                                                                                                                                              | •             | Detector          | RBW            | VBW            | Remark                              |  |  |  |  |
|             | 30MHz-                                                                                                                                                              | 1GHz          | peak              | 120kHz         | 300kHz         | Peak                                |  |  |  |  |
| 0           | Above 7                                                                                                                                                             | 1GHz          | Peak              | 1MHz           | 3MHz           | Peak                                |  |  |  |  |
| Measurement | Below 1GHz to                                                                                                                                                       |               |                   |                | 9              | 0                                   |  |  |  |  |
| Procedure:  |                                                                                                                                                                     |               |                   |                |                | e chamber.,mount                    |  |  |  |  |
|             |                                                                                                                                                                     |               |                   |                |                | al orientation on a maximum length. |  |  |  |  |
|             |                                                                                                                                                                     |               |                   |                |                | eiver display by                    |  |  |  |  |
|             |                                                                                                                                                                     |               |                   |                |                | rotating through                    |  |  |  |  |
|             |                                                                                                                                                                     |               |                   |                |                | ed, a field strength                |  |  |  |  |
|             | measurem                                                                                                                                                            | nent was ma   | de.               |                |                | $\sim$                              |  |  |  |  |
|             |                                                                                                                                                                     |               |                   | ne EUT and th  | ne receive ant | enna in both vertica                |  |  |  |  |
|             |                                                                                                                                                                     | tal polarizat |                   |                |                |                                     |  |  |  |  |
|             |                                                                                                                                                                     |               |                   |                |                | enna. The center of                 |  |  |  |  |
|             |                                                                                                                                                                     |               |                   |                |                | r of the transmitter.               |  |  |  |  |
|             |                                                                                                                                                                     |               | oth the substitut |                |                | means of a non-                     |  |  |  |  |
|             |                                                                                                                                                                     |               |                   |                |                | a maximum reading                   |  |  |  |  |
|             |                                                                                                                                                                     |               |                   |                |                |                                     |  |  |  |  |
|             | at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 2) is obtained for this set of conditions.     |               |                   |                |                |                                     |  |  |  |  |
|             |                                                                                                                                                                     |               | he substitution   |                |                | ed.                                 |  |  |  |  |
|             |                                                                                                                                                                     |               | peated with bo    |                |                |                                     |  |  |  |  |
|             |                                                                                                                                                                     |               | by the followin   |                |                |                                     |  |  |  |  |
|             | ERP(dBn                                                                                                                                                             | n) = Pg(dBr   | n) – cable loss ( | dB) + antenn   | a gain (dBd)   |                                     |  |  |  |  |
|             | where:                                                                                                                                                              |               |                   |                |                |                                     |  |  |  |  |
|             |                                                                                                                                                                     |               | utput power inte  | o the substitu | tion antenna.  |                                     |  |  |  |  |
|             | Above 1GHz t                                                                                                                                                        |               |                   | ite element    |                | anahain Ohearbar                    |  |  |  |  |
|             | 1). Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber : up to 18GHz a measurement distance of 3 meters is used |               |                   |                |                |                                     |  |  |  |  |
|             | fully Anechoic Chamber ; up to 18GHz a measurement distance of 3 meters is used<br>Above 18GHz the distance is 1 meter.                                             |               |                   |                |                |                                     |  |  |  |  |
|             |                                                                                                                                                                     |               | by the followin   | a formula:     |                |                                     |  |  |  |  |
|             |                                                                                                                                                                     |               | ) – cable loss (  |                | a dain (dBi)   |                                     |  |  |  |  |
|             | EIRP=ERI                                                                                                                                                            |               |                   |                | gain (abi)     |                                     |  |  |  |  |
|             | where:                                                                                                                                                              |               |                   |                |                |                                     |  |  |  |  |
|             | Pg is the                                                                                                                                                           | generator o   | utput power inte  | o the substitu | tion antenna.  |                                     |  |  |  |  |
|             | 3).Test the EU                                                                                                                                                      | T in the lowe | est channel, the  | middle chan    | nel the Highe  | st channel                          |  |  |  |  |
|             |                                                                                                                                                                     |               | ents are perfor   |                |                |                                     |  |  |  |  |
|             |                                                                                                                                                                     |               | nd the X axis po  |                |                |                                     |  |  |  |  |
| 9           | Repeat above                                                                                                                                                        | procedures    | until all frequen | cies measure   | d was comple   | ete.                                |  |  |  |  |
| Limit:      | (G)                                                                                                                                                                 | 1             | (6)               | 1              | GY)            | G                                   |  |  |  |  |
|             | Mode                                                                                                                                                                | GSM 850       |                   | GS             | SM 1900        |                                     |  |  |  |  |
|             | Frequency                                                                                                                                                           | 824 - 84      | 9MHz              |                | 50 – 1910MH    |                                     |  |  |  |  |
|             | Limit                                                                                                                                                               | 38.45dBr      |                   |                | .01dBm (2W     |                                     |  |  |  |  |








Page 45 of 61

|                |                                         | G                                                                                                                                                    | SM 850                                                                                            |                                                                                                     |                                                                                                                                                                                        |                                                                                                                                                                                                                  |
|----------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Height<br>(cm) | Azimuth<br>(deg)                        | ERP<br>(dBm)                                                                                                                                         | Limit<br>(dBm)                                                                                    | Over Limit<br>(dB)                                                                                  | Result                                                                                                                                                                                 | Antenna Polaxis.                                                                                                                                                                                                 |
| 150            | 157                                     | 28.11                                                                                                                                                | 38.45                                                                                             | -10.34                                                                                              | Pass                                                                                                                                                                                   | н                                                                                                                                                                                                                |
| 150            | 211                                     | 30.15                                                                                                                                                | 38.45                                                                                             | -8.30                                                                                               | Pass                                                                                                                                                                                   | V                                                                                                                                                                                                                |
| 150            | 235                                     | 27.68                                                                                                                                                | 38.45                                                                                             | -10.77                                                                                              | Pass                                                                                                                                                                                   | н 🥑                                                                                                                                                                                                              |
| 150            | 116                                     | 29.37                                                                                                                                                | 38.45                                                                                             | -9.08                                                                                               | Pass                                                                                                                                                                                   | V                                                                                                                                                                                                                |
| 150            | 179                                     | 27.33                                                                                                                                                | 38.45                                                                                             | -11.12                                                                                              | Pass                                                                                                                                                                                   | Н                                                                                                                                                                                                                |
| 150            | 138                                     | 28.91                                                                                                                                                | 38.45                                                                                             | -9.54                                                                                               | Pass                                                                                                                                                                                   | V                                                                                                                                                                                                                |
|                | (cm)<br>150<br>150<br>150<br>150<br>150 | (cm)         (deg)           150         157           150         211           150         235           150         116           150         179 | Height<br>(cm)Azimuth<br>(deg)ERP<br>(dBm)15015728.1115021130.1515023527.6815011629.3715017927.33 | (cm)(deg)(dBm)(dBm)15015728.1138.4515021130.1538.4515023527.6838.4515011629.3738.4515017927.3338.45 | Height<br>(cm)Azimuth<br>(deg)ERP<br>(dBm)Limit<br>(dBm)Over Limit<br>(dB)15015728.1138.45-10.3415021130.1538.45-8.3015023527.6838.45-10.7715011629.3738.45-9.0815017927.3338.45-11.12 | Height<br>(cm)Azimuth<br>(deg)ERP<br>(dBm)Limit<br>(dBm)Over Limit<br>(dB)Result15015728.1138.45-10.34Pass15021130.1538.45-8.30Pass15023527.6838.45-10.77Pass15011629.3738.45-9.08Pass15017927.3338.45-11.12Pass |

|                     |                |                  | G             | SM 1900        |                    |        |                  |
|---------------------|----------------|------------------|---------------|----------------|--------------------|--------|------------------|
| Channel/fc<br>(MHz) | Height<br>(cm) | Azimuth<br>(deg) | EIRP<br>(dBm) | Limit<br>(dBm) | Over Limit<br>(dB) | Result | Antenna Polaxis. |
| )                   | 150            | 211              | 26.92         | 33.01          | -6.09              | Pass   | н (С             |
| 512/1850.2          | 150            | 130              | 27.53         | 33.01          | -5.48              | Pass   | V                |
|                     | 150            | 150              | 25.88         | 33.01          | -7.13              | Pass   | Н                |
| 661/1880.0          | 150            | 163              | 27.75         | 33.01          | -5.26              | Pass   | V                |
| 6                   | 150            | 174              | 25.53         | 33.01          | -7.48              | Pass   | (🔊) н            |
| 810/1909.8          | 150            | 179              | 26.89         | 33.01          | -6.12              | Pass   | v                |










#### Page 46 of 61

# Appendix H) Field strength of spurious radiation

| Receiver Setup: | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Detector                                                                                                                                         | RBW                                                                                             | VBW                                                                                        | Remark                                                                                                      |                                                |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                 | 0.009MHz-30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak                                                                                                                                             | 10kHz                                                                                           | 30kHz                                                                                      | Peak                                                                                                        |                                                |
|                 | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peak                                                                                                                                             | 120kHz                                                                                          | 300kHz                                                                                     | Peak                                                                                                        |                                                |
| ~               | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peak                                                                                                                                             | 1MHz                                                                                            | 3MHz                                                                                       | Peak                                                                                                        |                                                |
| Measurement     | Below 1GHz test proced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ure as below:                                                                                                                                    | 1                                                                                               | (2)                                                                                        | J                                                                                                           | (6)                                            |
| Procedure:      | <ol> <li>The EUT was powered<br/>the equipment with the<br/>manufacturer.The ante</li> <li>The disturbance of the<br/>raising and lowering fro<br/>antenna was tuned to H<br/>360° the turntable. After<br/>measurement was made</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | manufacturer s<br>nna of the trans<br>transmitter was<br>om 1m to 4m (fo<br>neights 1 meter)<br>er the fundament<br>de(the radiation             | becified ant<br>mitter was of<br>maximized<br>r the test fro<br>the receive<br>al emission      | enna in a v<br>extended to<br>on the test<br>equency of<br>antenna a<br>was maxir          | ertical orientat<br>its maximum<br>receiver displated<br>below 30MHz,<br>nd by rotating<br>nized, a field s | ion on a<br>length.<br>ay by<br>the<br>through |
|                 | <ul> <li>positioning be lower 30</li> <li>3). Steps 1) and 2) were p</li> <li>vertical and horizontal</li> <li>4). The transmitter was the the antenna was approximately a</li></ul> | erformed with th<br>polarization.<br>en removed and                                                                                              | replaced w                                                                                      | ith another                                                                                | antenna. The                                                                                                | center                                         |
| (Th             | <ul> <li>5). A signal at the disturbative radiating cable. With both polarized, the receive at the test receiver. The measured field strength</li> <li>6). The output power into the output power into</li></ul> | nce was fed to t<br>oth the substituti<br>antenna was rais<br>e level of the sig<br>n level in step 2)<br>the substitution a<br>epeated with bot | he substitution and the<br>ed and low<br>nal generat<br>is obtained<br>antenna wa<br>h antennas | tion antenna<br>receive ant<br>ered to obta<br>or was adju<br>I for this set<br>s then mea | a by means of<br>ennas horizon<br>ain a maximur<br>isted until the<br>of conditions.<br>sured.              | a non-<br>tally<br>n readir                    |
|                 | 8) Calculate power in dBm<br>ERP(dBm) = Pg(d<br>where:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dBm) – cable los                                                                                                                                 | s (dB) + ar                                                                                     | S)                                                                                         | . ,                                                                                                         |                                                |
|                 | Pg is the generate<br>Above 1GHz test proced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |                                                                                                 | SuluiUII al                                                                                |                                                                                                             |                                                |
| (Th             | <ul> <li>1)Different between above<br/>Chamber to fully Anech<br/>meters is used, Above</li> <li>2) Calculate power in dBm<br/>EIRP(dBm) = Pg(c<br/>EIRP=ERP+2.15d)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e is the test site,<br>noic Chamber ; u<br>18GHz the dista<br>by the following<br>IBm) – cable los                                               | up to 18GH:<br>ince is 1 me<br>formula:                                                         | z a measure<br>eter.                                                                       | ement distance                                                                                              | e of 3                                         |
|                 | where:<br>Pg is the generator<br>3.Test the EUT in the lowe<br>The radiation measurem<br>operation mode,And fou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | est channel, the<br>nents are perform<br>and the X axis po                                                                                       | middle chai<br>ned in X, Y<br>ositioning w                                                      | nnel the Hig<br>, Z axis pos<br>hich it is wo                                              | hest channel<br>itioning for EU<br>rse case.                                                                | C C                                            |
|                 | Repeat above procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                  | cies measu                                                                                      | red was co                                                                                 | mplete.                                                                                                     |                                                |
| Limit:          | Attenuated at least 43+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a a (D)                                                                                                                                          |                                                                                                 |                                                                                            |                                                                                                             |                                                |





| 6                  | )              | GSM 850          | 0 128channel/824.2                  | 2MHz(lowe      | est channel)       | 0      |                     |
|--------------------|----------------|------------------|-------------------------------------|----------------|--------------------|--------|---------------------|
| Frequency<br>(MHz) | Height<br>(cm) | Azimuth<br>(deg) | Spurious<br>Emission Level<br>(dBm) | Limit<br>(dBm) | Over Limit<br>(dB) | Result | Antenna<br>Polaxis. |
| 1195.049           | 149            | 14               | -55.83                              | -13.00         | -42.83             | Pass   | н                   |
| 1884.829           | 150            | 124              | -50.15                              | -13.00         | -37.15             | Pass   | н 🔍                 |
| 3299.775           | 150            | 360              | -51.18                              | -13.00         | -38.18             | Pass   | Н                   |
| 3480.968           | 150            | 359              | -51.00                              | -13.00         | -38.00             | Pass   | Н                   |
| 4117.785           | 151            | 147              | -47.65                              | -13.00         | -34.65             | Pass   | н                   |
| 7413.726           | 150            | 124              | -43.05                              | -13.00         | -30.05             | Pass   | Н                   |
| 1195.049           | 151            | 78               | -56.53                              | -13.00         | -43.53             | Pass   | V                   |
| 1646.948           | 150            | 99               | -55.98                              | -13.00         | -42.98             | Pass   | V                   |
| 2358.071           | 150            | 147              | -56.31                              | -13.00         | -43.31             | Pass   | V                   |
| 4117.785           | 149            | 154              | -49.19                              | -13.00         | -36.19             | Pass   | V                   |
| 6094.137           | 150            | 167              | -48.93                              | -13.00         | -35.93             | Pass   | V                   |
| 7432.622           | 150            | 347              | -45.33                              | -13.00         | -32.33             | Pass   | V                   |

| (3)                | 9              | GSM 850          | 190channel/836.6                    | 6MHz(mido      | lle channel)       | G      | 0                   |
|--------------------|----------------|------------------|-------------------------------------|----------------|--------------------|--------|---------------------|
| Frequency<br>(MHz) | Height<br>(cm) | Azimuth<br>(deg) | Spurious<br>Emission Level<br>(dBm) | Limit<br>(dBm) | Over Limit<br>(dB) | Result | Antenna<br>Polaxis. |
| 1195.049           | 151            | 226              | -55.13                              | -13.00         | -42.13             | Pass   | H _                 |
| 1672.296           | 150            | 21               | -55.79                              | -13.00         | -42.79             | Pass   | н (                 |
| 3507.652           | 150            | 360              | -51.05                              | -13.00         | -38.05             | Pass   | н                   |
| 4181.159           | 151            | 70               | -51.81                              | -13.00         | -38.81             | Pass   | Н                   |
| 5880.782           | 150            | 148              | -48.92                              | -13.00         | -35.92             | Pass   | н                   |
| 7527.826           | 149            | 97               | -46.80                              | -13.00         | -33.80             | Pass   | Мн                  |
| 1195.049           | 149            | 27               | -56.57                              | -13.00         | -43.57             | Pass   | V                   |
| 1630.264           | 150            | 100              | -57.62                              | -13.00         | -44.62             | Pass   | V                   |
| 3525.555           | 151            | 359              | -53.15                              | -13.00         | -40.15             | Pass   | V                   |
| 4181.159           | 150            | 20               | -48.92                              | -13.00         | -35.92             | Pass   | V                   |
| 5865.832           | 150            | 147              | -48.73                              | -13.00         | -35.73             | Pass   | v 🕓                 |
| 7527.826           | 150            | 100              | -46.32                              | -13.00         | -33.32             | Pass   | V                   |









# Page 48 of 61

| 6                  | )              | GSM 850          | 251channel/848.8                    | BMHz(highe     | est channel)       | 10     |                     |
|--------------------|----------------|------------------|-------------------------------------|----------------|--------------------|--------|---------------------|
| Frequency<br>(MHz) | Height<br>(cm) | Azimuth<br>(deg) | Spurious<br>Emission Level<br>(dBm) | Limit<br>(dBm) | Over Limit<br>(dB) | Result | Antenna<br>Polaxis. |
| 1195.049           | 151            | 351              | -55.78                              | -13.00         | -42.78             | Pass   | H (                 |
| 1711.050           | 150            | 200              | -55.09                              | -13.00         | -42.09             | Pass   | н 🔍                 |
| 3570.714           | 149            | 316              | -52.19                              | -13.00         | -39.19             | Pass   | н                   |
| 4245.509           | 149            | 100              | -51.20                              | -13.00         | -38.20             | Pass   | Н                   |
| 6017.064           | 150            | 79               | -49.00                              | -13.00         | -36.00             | Pass   | H                   |
| 7643.683           | 151            | 10               | -49.02                              | -13.00         | -36.02             | Pass   | ) н                 |
| 1195.049           | 150            | 47               | -56.90                              | -13.00         | -43.90             | Pass   | v                   |
| 1958.189           | 150            | 100              | -55.23                              | -13.00         | -42.23             | Pass   | V                   |
| 3507.652           | 149            | 360              | -52.19                              | -13.00         | -39.19             | Pass   | V                   |
| 4245.509           | 149            | 70               | -47.33                              | -13.00         | -34.33             | Pass   | V                   |
| 4594.102           | 150            | 27               | -54.86                              | -13.00         | -41.86             | Pass   | V                   |
| 6799.064           | 151            | 210              | -45.56                              | -13.00         | -32.56             | Pass   | V                   |

|                    |                | GSM190           | 0 512channel/1850.                  | 2MHz(low       | est channel)       |        |                     |
|--------------------|----------------|------------------|-------------------------------------|----------------|--------------------|--------|---------------------|
| Frequency<br>(MHz) | Height<br>(cm) | Azimuth<br>(deg) | Spurious<br>Emission Level<br>(dBm) | Limit<br>(dBm) | Over Limit<br>(dB) | Result | Antenna<br>Polaxis. |
| 1260.67            | 151            | 360              | -60.54                              | -13.00         | -47.54             | Pass   | н                   |
| 3003.173           | 150            | 121              | -55.84                              | -13.00         | -42.84             | Pass   | н (                 |
| 4343.896           | 150            | 110              | -54.48                              | -13.00         | -41.48             | Pass   | н 🤍                 |
| 5646.079           | 150            | 11               | -50.92                              | -13.00         | -37.92             | Pass   | Н                   |
| 6094.137           | 150            | 169              | -49.43                              | -13.00         | -36.43             | Pass   | Н                   |
| 7413.726           | 149            | 64               | -47.86                              | -13.00         | -34.86             | Pass   | н                   |
| 1254.268           | 150            | 278              | -60.04                              | -13.00         | -47.04             | Pass   | V                   |
| 1605.554           | 151            | 200              | -58.01                              | -13.00         | -45.01             | Pass   | V                   |
| 3480.968           | 150            | 220              | -55.59                              | -13.00         | -42.59             | Pass   | V                   |
| 5910.798           | 152            | 360              | -49.38                              | -13.00         | -36.38             | Pass   | V                   |
| 7413.726           | 149            | 359              | -44.67                              | -13.00         | -31.67             | Pass   | V                   |
| 9251.58            | 150            | 341              | -51.19                              | -13.00         | -38.19             | Pass   | V                   |









#### Page 49 of 61

| 6                  | )              | GSM1900 661channel/1880MHz(middle channel) |                                     |                |                    |        |                     |  |  |
|--------------------|----------------|--------------------------------------------|-------------------------------------|----------------|--------------------|--------|---------------------|--|--|
| Frequency<br>(MHz) | Height<br>(cm) | Azimuth<br>(deg)                           | Spurious<br>Emission Level<br>(dBm) | Limit<br>(dBm) | Over Limit<br>(dB) | Result | Antenna<br>Polaxis. |  |  |
| 1127.091           | 151            | 39                                         | -60.81                              | -13.00         | -47.81             | Pass   | н                   |  |  |
| 1319.777           | 150            | 360                                        | -59.61                              | -13.00         | -46.61             | Pass   | н (                 |  |  |
| 3010.828           | 150            | 70                                         | -55.52                              | -13.00         | -42.52             | Pass   | Н                   |  |  |
| 4617.55            | 149            | 61                                         | -54.43                              | -13.00         | -41.43             | Pass   | Н                   |  |  |
| 5986.509           | 150            | 359                                        | -48.53                              | -13.00         | -35.53             | Pass   | Н                   |  |  |
| 7527.826           | 151            | 241                                        | -47.3                               | -13.00         | -34.3              | Pass   | ) н                 |  |  |
| 1316.422           | 150            | 289                                        | -59.9                               | -13.00         | -46.9              | Pass   | v                   |  |  |
| 3010.828           | 150            | 10                                         | -55.99                              | -13.00         | -42.99             | Pass   | V                   |  |  |
| 4128.28            | 151            | 100                                        | -55.55                              | -13.00         | -42.55             | Pass   | V                   |  |  |
| 5420.742           | 150            | 110                                        | -51.99                              | -13.00         | -38.99             | Pass   | V                   |  |  |
| 6511.117           | 149            | 79                                         | -49.67                              | -13.00         | -36.67             | Pass   | V                   |  |  |
| 7527.826           | 151            | 64                                         | -48.6                               | -13.00         | -35.6              | Pass   | V                   |  |  |

|                    |                | GSM1900          | 810channel/1909.                    | 8MHz(high      | nest channel)      |        |                     |
|--------------------|----------------|------------------|-------------------------------------|----------------|--------------------|--------|---------------------|
| Frequency<br>(MHz) | Height<br>(cm) | Azimuth<br>(deg) | Spurious<br>Emission Level<br>(dBm) | Limit<br>(dBm) | Over Limit<br>(dB) | Result | Antenna<br>Polaxis. |
| 1273.572           | 151            | 79               | -60.35                              | -13.00         | -47.35             | Pass   | Н                   |
| 1506.563           | 149            | 146              | -59.27                              | -13.00         | -46.27             | Pass   | н ("                |
| 3561.636           | 150            | 100              | -55.44                              | -13.00         | -42.44             | Pass   | н 🔍                 |
| 4343.896           | 150            | 255              | -53.63                              | -13.00         | -40.63             | Pass   | Н                   |
| 6078.644           | 151            | 10               | -48.99                              | -13.00         | -35.99             | Pass   | Н                   |
| 7009.956           | 150            | 360              | -51.57                              | -13.00         | -38.57             | Pass   | ЛН                  |
| 1192.011           | 150            | 79               | -60.17                              | -13.00         | -47.17             | Pass   | V                   |
| 1646.948           | 150            | 51               | -57.71                              | -13.00         | -44.71             | Pass   | V                   |
| 3291.385           | 151            | 200              | -55.35                              | -13.00         | -42.35             | Pass   | V                   |
| 4354.967           | 150            | 249              | -54.08                              | -13.00         | -41.08             | Pass   | V                   |
| 6078.644           | 149            | 78               | -48.49                              | -13.00         | -35.49             | Pass   | V                   |
| 9562.854           | 150            | 100              | -49.51                              | -13.00         | -36.51             | Pass   | V                   |

#### Note:

1) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.







APPENDIX 1 PHOTOGRAPHS OF TEST SETUP Test model No.: TK001



Radiated spurious emission Test Setup-1(9kHz-30MHz)



Radiated spurious emission Test Setup-2(Below 1GHz)











Page 51 of 61

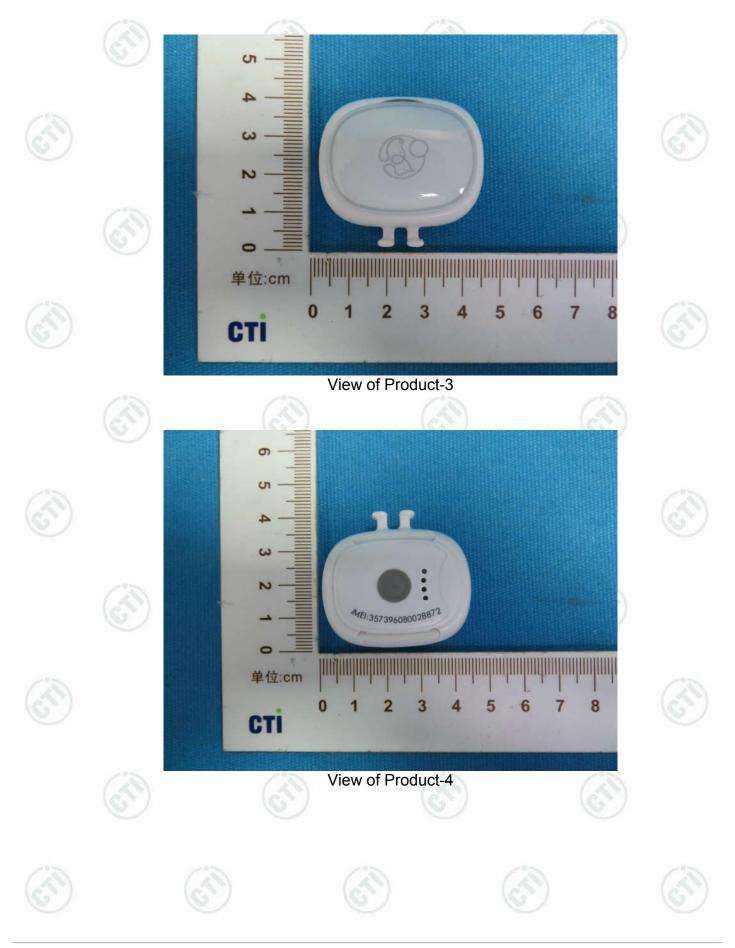








Page 52 of 61



















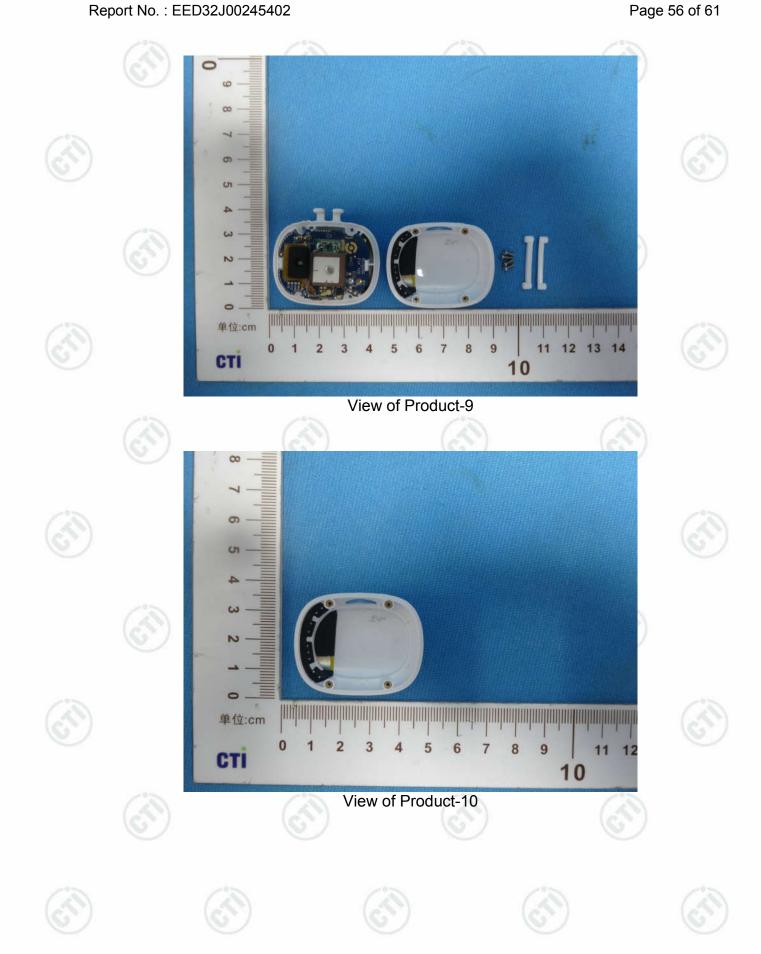












Page 55 of 61

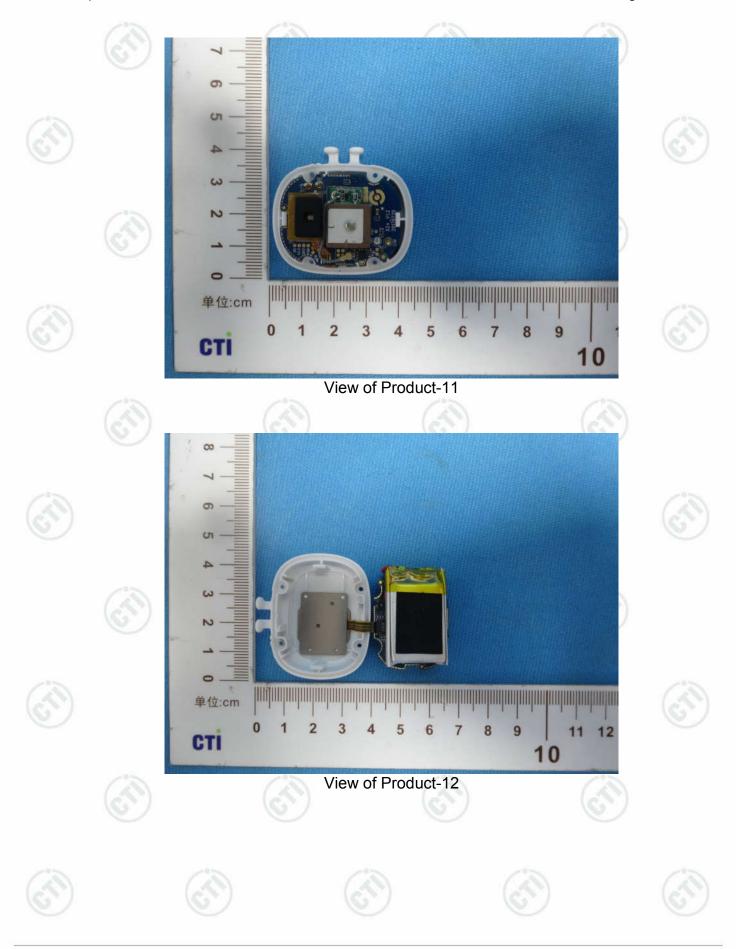








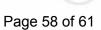


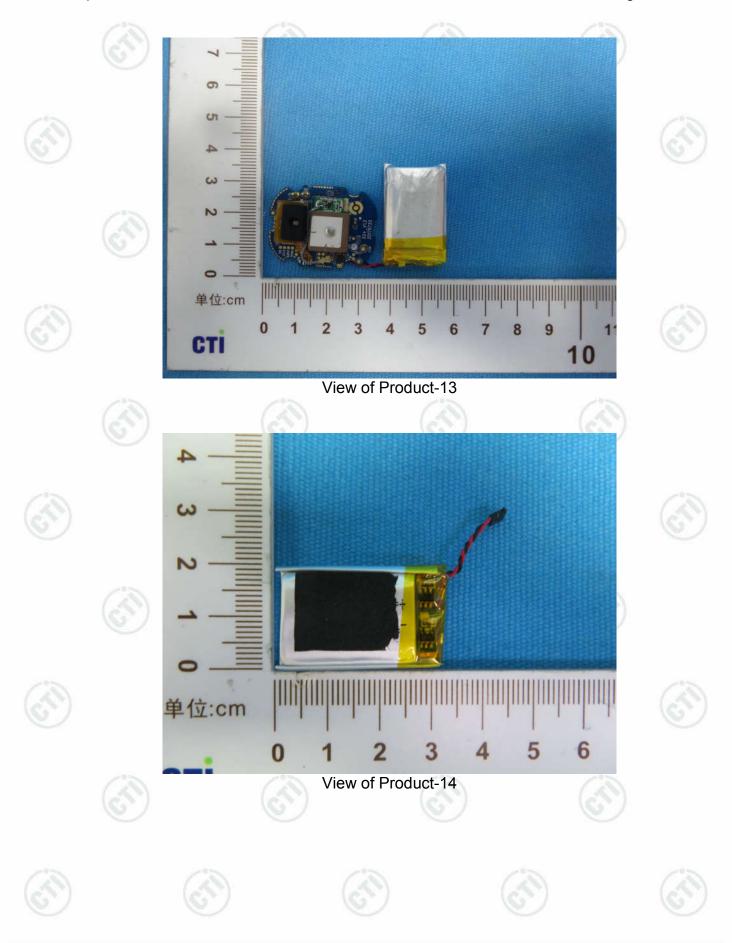

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com








Page 57 of 61

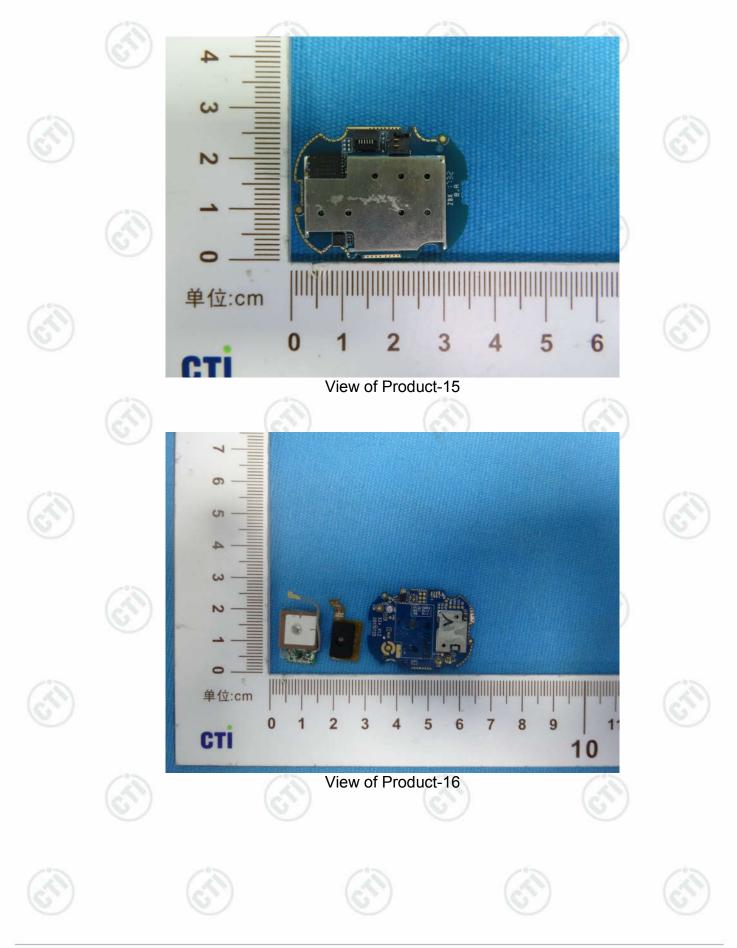










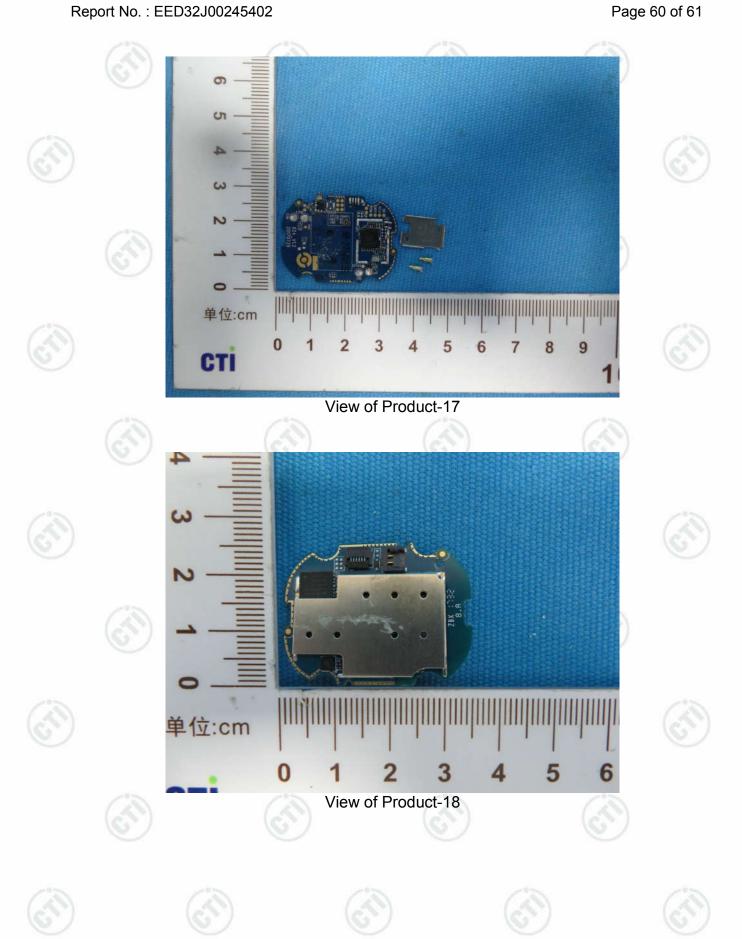










Page 59 of 61




Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com









Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com







Page 61 of 61



report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.