

FCC PART 15.407 ISED RSS-247, ISSUE 2 DYNAMIC FREQUENCY SELECTION

TEST REPORT

For

Brava Home Inc.

312 Chestnut Street,

Redwood City, CA 94063, USA

FCC ID: 2AOGABRAVAONE IC: 24108-BRAVAONE

Report Type: Product Type:

Original Report Convection Oven

Vincent Licata

Prepared By: Test Engineer

Report Number: R18062910-DFS

Report Date: 2018-08-21

Jin Yang

Reviewed By: RF Lead

Bay Area Compliance Laboratories Corporation (BACL) 1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA

Vio 15

Tel: (408) 732-9162 Fax: (408) 732-9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

1 6	SENERAL DESCRIPTION	4
1.1 1.2 1.6	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
2 E	CUT TEST CONFIGURATION	8
2.1 2.2 2.3 2.4 2.5 2.6	JUSTIFICATION EUT EXERCISE SOFTWARE EQUIPMENT MODIFICATIONS LOCAL SUPPORT EQUIPMENT SUPPORT EQUIPMENT INTERFACE PORTS AND CABLES	
3 S	UMMARY OF TEST RESULTS	9
	APPLICABLE STANDARDS	
4.1 4.2 4.3 4.4 4.5 4.6	DFS REQUIREMENT DFS MEASUREMENT SYSTEM SYSTEM BLOCK DIAGRAM CONDUCTED METHOD RADIATED METHOD TEST PROCEDURE	
5 T	EST RESULTS	17
5.1 5.2 5.3 5.4 5.5	DESCRIPTION OF EUT	17 17 18
6 C	CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME	20
6.1 6.2	TEST PROCEDURE TEST RESULTS	
7 N	NON-OCCUPANCY TIME	24
8 A	NNEX A (INFORMATIVE) - A2LA ELECTRICAL TESTING CERTIFICATE	25

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	R18062910-DFS	Original Report	-	

1 General Description

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of *Brava Home Inc.*, and their product model; Brava one, FCC ID: 2AOGABRAVAONE, IC: 24108-BRAVAONE, or the "EUT" as referred to in this report. The EUT is a countertop smart convection oven with Wi-Fi for household use.

1.2 Objective

This report is prepared on behalf of *Brava Home Inc.* in accordance with FCC CFR47 §15.407 (h), RSS247 Issue 2 and KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02

The objective is to determine compliance with FCC rules for Channel Closing Transmission Time, and Channel Move time in Client Mode without Radar detection function

1.3 Related Submittal(s)/Grant(s)

FCC 15.247 Report: R18062910-247 DTS FCC 15.407 Report: R18062910-407

1.4 Test Methodology

FCC CFR 47 Part2, Part15.407 (h)

KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02

COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION

1.5 Test Facility Registrations

BACLs test facilities that are used to perform Radiated and Conducted Emissions tests are currently recognized by the Federal Communications Commission as Accredited with NIST Designation Number US1129.

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently registered with Industry Canada under Registration Numbers: 3062A-1, 3062A-2, and 3062A-3.

BACL is a Chinese Taipei Bureau of Standards Metrology and Inspection (BSMI) validated Conformity Assessment Body (CAB), under Appendix B, Phase I Procedures of the APEC Mutual Recognition Arrangement (MRA). BACL's BSMI Lab Code Number is: SL2-IN-E-1002R

BACL's test facilities that are used to perform AC Line Conducted Emissions, Telecommunications Line Conducted Emissions, Radiated Emissions from 30 MHz to 1 GHz, and Radiated Emissions from 1 GHz to 6 GHz are currently recognized as Accredited in accordance with the Voluntary Control Council for Interference [VCCI] Article 15 procedures under Registration Number A-0027.

1.6 Test Facility Accreditations

Bay Area Compliance Laboratories Corp. (BACL) is:

A- An independent, 3rd-Party, Commercial Test Laboratory accredited to ISO/IEC 17025:2005 by A2LA (Test Laboratory Accreditation Certificate Number 3279.02), in the fields of: Electromagnetic Compatibility and Telecommunications. Unless noted by an Asterisk (*) in the Compliance Matrix (See Section 3 of this Test Report), BACL's ISO/IEC 17025:2005 Scope of Accreditation includes all of the Test Method Standards and/or the Product Family Standards detailed in this Test Report..

BACL's ISO/IEC 17025:2005 Scope of Accreditation includes a comprehensive suite of EMC Emissions, EMC Immunity, Radio, RF Exposure, Safety and wireline Telecommunications test methods applicable to a wide range of product categories. These product categories include Central Office Telecommunications Equipment [including NEBS - Network Equipment Building Systems], Unlicensed and Licensed Wireless and RF devices, Information Technology Equipment (ITE); Telecommunications Terminal Equipment (TTE); Medical Electrical Equipment; Industrial, Scientific and Medical Test Equipment; Professional Audio and Video Equipment; Industrial and Scientific Instruments and Laboratory Apparatus; Cable Distribution Systems, and Energy Efficient Lighting.

B- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3279.03) to certify

- For the USA (Federal Communications Commission):
 - 1- All Unlicensed radio frequency devices within FCC Scopes A1, A2, A3, and A4;
 - 2- All Licensed radio frequency devices within FCC Scopes B1, B2, B3, and B4;
 - 3- All Telephone Terminal Equipment within FCC Scope C.
- For the Canada (Industry Canada):
 - 1 All Scope 1-Licence-Exempt Radio Frequency Devices;
 - 2 All Scope 2-Licensed Personal Mobile Radio Services;
 - 3 All Scope 3-Licensed General Mobile & Fixed Radio Services;
 - 4 All Scope 4-Licensed Maritime & Aviation Radio Services;
 - 5 All Scope 5-Licensed Fixed Microwave Radio Services
 - 6 All Broadcasting Technical Standards (BETS) in the Category I Equipment Standards List.
- For Singapore (Info-Communications Development Authority (IDA)):
 - All Line Terminal Equipment: All Technical Specifications for Line Terminal Equipment Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2
 - 2. All Radio-Communication Equipment: All Technical Specifications for Radio-Communication Equipment Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2
- For the Hong Kong Special Administrative Region:
 - 1 All Radio Equipment, per KHCA 10XX-series Specifications;
 - 2 All GMDSS Marine Radio Equipment, per HKCA 12XX-series Specifications;
 - 3 All Fixed Network Equipment, per HKCA 20XX-series Specifications.
- For Japan:
 - 1 MIC Telecommunication Business Law (Terminal Equipment):
 - All Scope A1 Terminal Equipment for the Purpose of Calls;
 - All Scope A2 Other Terminal Equipment
 - 2 Radio Law (Radio Equipment):
 - All Scope B1 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 1 of the Radio Law
 - All Scope B2 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 2 of the Radio Law
 - All Scope B3 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 3 of the Radio Law

C- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3279.01) to certify Products to USA's Environmental Protection Agency (EPA) ENERGY STAR Product Specifications for:

- 1 Electronics and Office Equipment:
 - for Telephony (ver. 3.0)
 - for Audio/Video (ver. 3.0)
 - for Battery Charging Systems (ver. 1.1)
 - for Set-top Boxes & Cable Boxes (ver. 4.1)
 - for Televisions (ver. 6.1)
 - for Computers (ver. 6.0)
 - for Displays (ver. 6.0)
 - for Imaging Equipment (ver. 2.0)
 - for Computer Servers (ver. 2.0)
- 2 Commercial Food Service Equipment
 - for Commercial Dishwashers (ver. 2.0)
 - for Commercial Ice Machines (ver. 2.0)
 - for Commercial Ovens (ver. 2.1)
 - for Commercial Refrigerators and Freezers
- 3 Lighting Products
 - For Decorative Light Strings (ver. 1.5)
 - For Luminaires (including sub-components) and Lamps (ver. 1.2)
 - For Compact Fluorescent Lamps (CFLs) (ver. 4.3)
 - For Integral LED Lamps (ver. 1.4)
- 4 Heating, Ventilation, and AC Products
 - for Residential Ceiling Fans (ver. 3.0)
 - for Residential Ventilating Fans (ver. 3.2)
- 5 Other
- For Water Coolers (ver. 3.0)

D- A NIST Designated Phase-I and Phase-II Conformity Assessment Body (CAB) for the following economies and regulatory authorities under the terms of the stated MRAs/Treaties:

- Australia: ACMA (Australian Communication and Media Authority) APEC Tel MRA -Phase I;
- Canada: (Innovation, Science and Economic development Canada ISEDC) Foreign Certification Body FCB – APEC Tel MRA -Phase I & Phase II;
- Chinese Taipei (Republic of China Taiwan):
 - o BSMI (Bureau of Standards, Metrology and Inspection) APEC Tel MRA -Phase I;
 - o NCC (National Communications Commission) APEC Tel MRA -Phase I;
- European Union:
 - o EMC Directive 2014/30/EU US-EU EMC & Telecom MRA CAB (NB)
 - o Radio Equipment (RE) Directive 2014/53/EU US-EU EMC & Telecom MRA CAB (NB)
 - Low Voltage Directive (LVD) 2014/35/EU
- Hong Kong Special Administrative Region: (Office of the Telecommunications Authority OFTA) APEC Tel MRA -Phase I & Phase II
- Israel US-Israel MRA Phase I
- Republic of Korea (Ministry of Communications Radio Research Laboratory) APEC Tel MRA -Phase I
- Singapore: (Infocomm Media Development Authority IMDA) APEC Tel MRA -Phase I & Phase II;
- Japan: VCCI Voluntary Control Council for Interference US-Japan Telecom Treaty VCCI Side Letter-
- USA:
 - o ENERGY STAR Recognized Test Laboratory US EPA
 - Telecommunications Certification Body (TCB) US FCC;

- o Nationally Recognized Test Laboratory (NRTL) US OSHA
- Vietnam: APEC Tel MRA -Phase I;

2 EUT Test Configuration

2.1 Justification

The EUT was configured for testing according to FCC Part 15.407(h), RSS 247 Issue 2 and KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02

2.2 EUT Exercise Software

The test firmware used was Putty and Lab tool provided by *Brava Home Inc.*, the software is comply with the standard requirements being tested against.

2.3 Equipment Modifications

N/A

2.4 Local Support Equipment

Manufacturer Description		Model	Serial Number	
Dell	Laptop	Latitude E6410	3CKRAQ1	
Netgear	Router	XR500	5B81835F01882	

2.5 Support Equipment

Manufacturer	Description	Model
FTDI Ltd.	Debug Board	FT4232H Mini Module

2.6 Interface Ports and Cables

Description	Length (m)	То	From
Serial Cables	< 1 m	Debug Board	EUT
USB A-Male to Mini-B	< 1 m	Laptop	Debug Board

3 Summary of Test Results

The following result table represents the list of measurements required under the CFR47 §47 Part15.407 (h), and KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02.

Items	Description of Test	Results	
Detection Bandwidth	UNII Detection Bandwidth	N/A ¹	
Performance	Initial Channel Availability Check Time (CAC)	N/A ¹	
Requirements Check	Radar Burst at the Beginning of the CAC	N/A ¹	
Cneck	Radar Burst at the End of the CAC	N/A ¹	
	Channel Move Time	Compliant	
In-Service Monitoring	Channel Closing Transmission Time	Compliant	
	Non-Occupancy Period	Compliant	
Radar Detection	Statistical Performance Check	N/A ¹	

¹ Test item is not required for Client Device without radar detection

4 Applicable Standards

4.1 DFS Requirement

FCC CFR47 §15.407 (h), RSS-247 Issue 2 and KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02

Table 1: Applicability of DFS requirements prior to use of a channel

	Operational Mode			
Requirement	Master	Client (Without radar detection)	Client (With radar detection)	
Non-Occupancy Period	Yes	Not Required	Yes	
DFS Detection Threshold	Yes	Not Required	Yes	
Channel Availability Check Time	Yes	Not Required	Not Required	
U-NII Detection Bandwidth	Yes	Not Required	Yes	

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode		
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not Required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not Required	

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value (See Notes 1, 2 and 3)
EIRP≥ 200 milliwatt	-64 dBm
EIRP< 200 milliwatt and power spectral density < 10dBm/MHz	-62 dBm
EIRP< 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911D01.

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the UNII 99% transmission power bandwidth. See Note 3.

- **Note 1:** Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.
- **Note 2:** The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
- **Note 3:** During the *U-NII Detection Bandwidth* detection test, radar type 0 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 5: Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (Microseconds)	PRI (Microseconds)	Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup $ \left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{1}{9 \cdot 10^6} \right) \cdot \left(\frac{19 \cdot 10^6}{PRI_{\mu \text{sec}}} \right) \cdot \right\} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
		adar Types 1-4)		80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Table 6: Long Pulse Radar Test Signal

Radar Type	Bursts	Chirp Width (MHz)	PRI (usec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

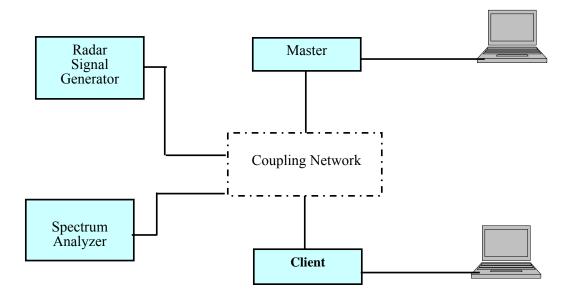
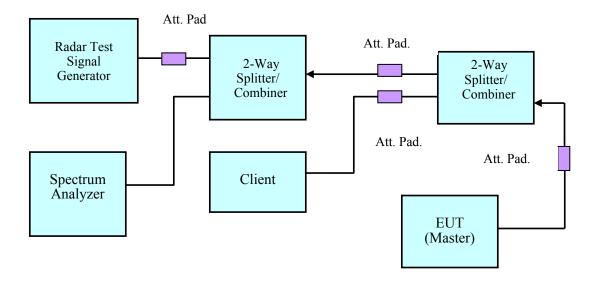
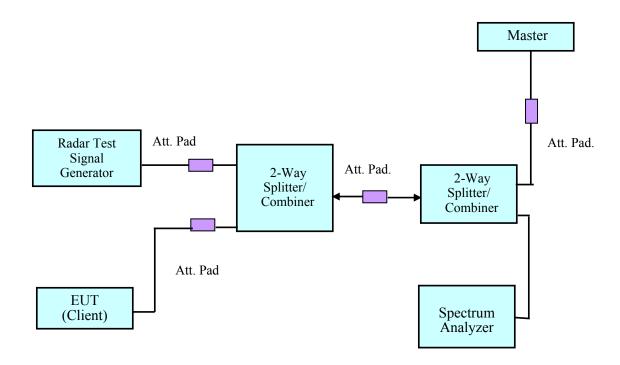
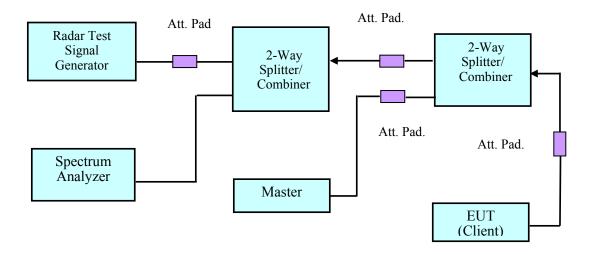

Radar Type	Pulse Width (usec)	PRI (usec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

Table 7: Frequency Hopping Radar Test Signal

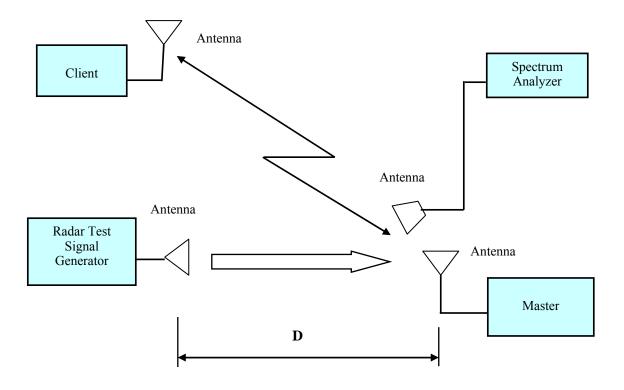

4.2 DFS Measurement System

BACL DFS measurement system consists of two subsystems: (1) The radar signal generating subsystem and (2) the traffic monitoring subsystem.


4.3 System Block Diagram


4.4 Conducted Method

Setup for Master with injection at the Master



Setup for Client with injection at the Master

Setup for Client with injection at the Client

4.5 Radiated Method

4.6 Test Procedure

A spectrum analyzer is used as a monitor that verifies the EUT's status, which includes the Channel Closing Transmission Time and the Channel Move Time. The Spectrum analyzer is used to monitor the equipment under test (EUT) does not transmit on the same channel during the Non-Occupied Period after the radar detection.

5 Test Results

5.1 Description of EUT

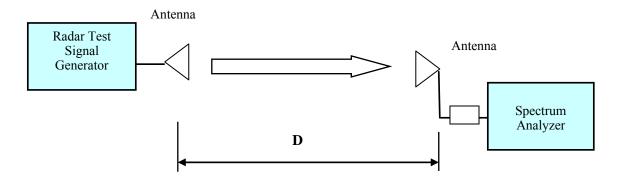
The EUT operates in 5230-5350 MHz and 5470-5725 MHz range in client Mode.

The calibrated radiated DFS detection threshold level is set to -64 dBm for the low band, and -64 dBm for the high band.

WLAN traffic is generated by streaming the data with iperf software.

Netgear XR500 Router (FCC ID: PY315100319) was used as master during testing.

5.2 Antenna Details


Antenna usage	Band of Operation (GHz)	Maximum Antenna Gain (dBi)	
Wi-Fi	2400-2500	3.0	
Wi-Fi	4900-6000	5.5	

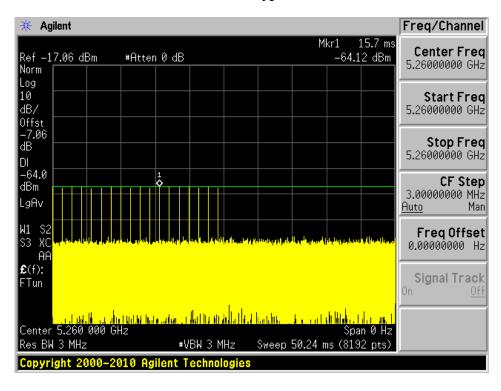
5.3 Test Equipment List and Details

Manufacturer	Equipment Description	Model	S/N	Calibration Date	Calibration Interval
National Instruments	NI PXI-1042 8-Slot chassis	PXI-1042	V08X01EE1	N/A	N/A
National Instruments	Arbitrary Waveform Generator	PXI-5421	N/A	N/A	N/A
National Instruments	RF Upconverter	PXI-5610	N/A	N/A	N/A
ASCOR	Upconverter	AS-7206	N/A	N/A	N/A
Agilent	Spectrum Analyzer	E4446A	US44300386	2018-06-01	1 year
A.R.A.	Antenna, Horn	DRG-118/A	1132	2018-02-13	2 years
EMCO	Antenna, Horn	3115	9511-4627	2018-03-28	2 years
Mini-Circuits	Splitter/Combiner	2FSC-2-10G	0349	N/A	N/A
Narda	Splitter/Combiner	4326B-2	03514	N/A	N/A
Midwest	Attenuator	290-30	N/A	N/A	N/A
Mini-Circuits	Attenuator	BW-S30W2	N/A	N/A	N/A
Redwolf	DFS test software	N/A	N/A	N/A	N/A

Statement of Traceability: BACL Corp. attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

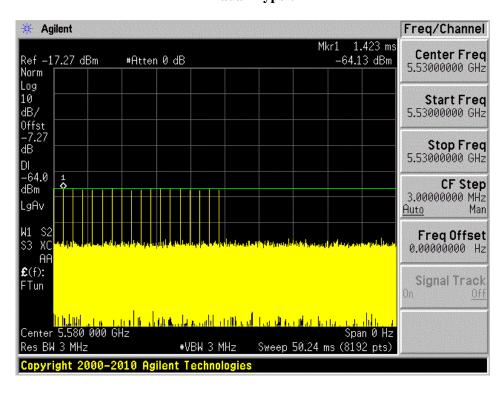
5.4 Radar Waveform Calibration

Radiated Calibration Setup Block Diagram


5.5 Test Location, Date, Personnel and Environmental Conditions

Test Date:	2018-07-31	
Test Site:	DFS Testing Site	
Temperature:	23° C	
Relative Humidity:	44 %	
Barometric Pressure:	102.1 kPa	
Test Personnel:	Vincent Licata	

Plots of Radar Waveforms


5260 MHz

Radar Type 0

5580 MHz

Radar Type 0

6 Channel Move Time and Channel Closing Transmission Time

6.1 Test Procedure

Perform one short pulse radar type defined in Table 5.

Table 5 - Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Number of Pulses	Minimum	Minimum
Type	(µsec)	(µsec)		Percentage of	Number of
3,7	(1.555)	(place)		Successful	Trials
				Detection	
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected	Roundup $ \left\{ \frac{\left(\frac{1}{360}\right)}{\left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu\text{sec}}}\right)} \right\} $	60%	30
2	1-5	in Test A 150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types 1-		12-10	80%	120
		-	and for the detection he		

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

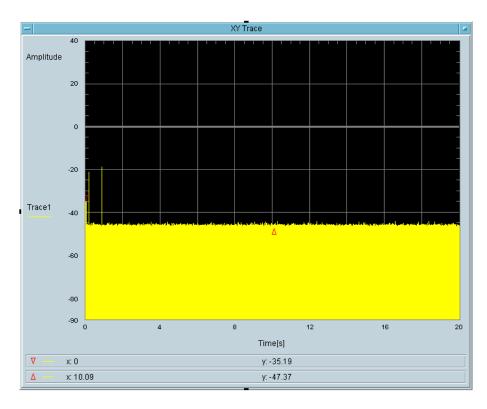
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = N * Dwell Time

N is the number of spectrum analyzer bins showing a device transmission Dwell Time is the dwell time per bin (i.e. Dwell Time = S/B, S is the sweep time and B is the number of bin, i.e.

Dwell Time is the dwell time per bin (i.e. Dwell Time = S/B, S is the sweep time and B is the number of bin, i.e 8192)

6.2 Test Results

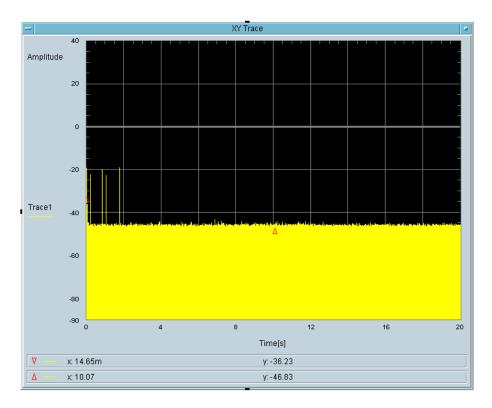

Frequency (MHz)	Bandwidth (MHz)	Radar Type	Results
5260	20	Type 0	Compliant
5580	20	Туре 0	Compliant

Please refer to the following tables and plots.

5260 MHz Bandwidth 20 MHz

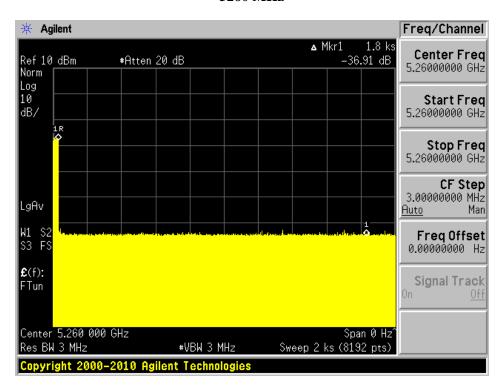
Type 0 radar channel moving and closing transmission time result:

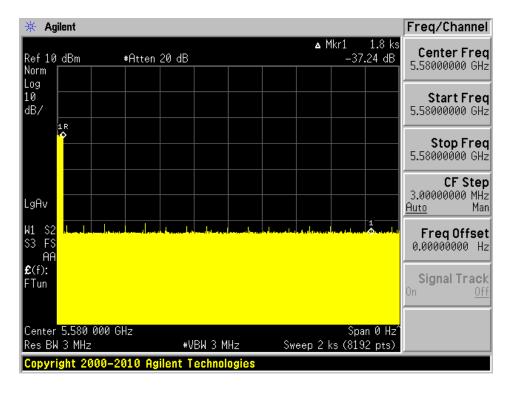
_		C	hannel Closii	Channel Move Time			
Frequency (MHz)	Radar Type	Test	Limit	Aggregate Transmission Time	Limit	Test	Limit
5260	0	17.09 ms	200 ms	2.441 ms	60 ms	< 10 s	10 s



5580 MHz Bandwidth 20 MHz

Type 0 radar channel moving and closing transmission time result:


_		C	hannel Closii	Channel Move Time			
Frequency (MHz)	Radar Type	Test	Limit	Aggregate Transmission Time	Limit	Test	Limit
5580	0	21.97 ms	200 ms	9.766 ms	60 ms	< 10 s	10 s



7 Non-Occupancy Time

5260 MHz

5580 MHz

8 Annex A (Informative) - A2LA Electrical Testing Certificate

Accredited Laboratory

A2LA has accredited

BAY AREA COMPLIANCE LABORATORIES CORP.

Sunnyvale, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005

General requirements for the competence of testing and calibration laboratories. This laboratory also meets the requirements of any additional program requirements in the Electrical field. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 30th day of August 2016.

President and CEO For the Accreditation Council Certificate Number 3297.02 Valid to September 30, 2018 Revised November 14, 2016

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

---- END OF REPORT ----