

TEST REPORT

APPLICANT Zhejiang Lierda Internet of Things

Technology Co., Ltd.

PRODUCT NAME: TB25 Series Overseas Module

MODEL NAME : L-LRNTB25-97UN4, TB25-9U

BRAND NAME: lierda

FCC ID : 2AOFDL-LRNTB25

STANDARD(S) : 47 CFR Part 15 Subpart C

RECEIPT DATE : 2023-11-13

TEST DATE : 2023-11-17 to 2023-12-13

ISSUE DATE : 2023-12-27

Edited by:

Su Xiaoxian (Rapporteur)

ou xiaoxian

Approved by:

Shen Junsheng (Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

DIRECTORY

1. Summary of Test Result····································
1.1. Testing Applied Standards···································
1.2. Test Equipment List····································
1.3. Measurement Uncertainty····································
1.4. Testing Laboratory····································
2. General Description ····································
2.1. Information of Applicant and Manufacturer ·································
2.2. Information of EUT····································
2.3. Channel List of EUT·······10
2.4. Test Configuration of EUT·······1
2.5. Test Conditions ····································
2.6. Test Setup Layout Diagram·······1
3. Test Results14
3.1. Antenna Requirement ····································
3.2. Hopping Mechanism ·······14
3.3. Number of Hopping Frequency······15
3.4. Duty Cycle of Test Signal······16
3.5. Maximum Peak Conducted Output Power ······17
3.6. Maximum Average Conducted Output Power ······18
3.7. 20 dB Bandwidth19
3.8. Carried Frequency Separation······20
3.9. Time of Occupancy (Dwell time) ······2
3.10. Conducted Spurious Emissions and Band Edge······22
3.11. Conducted Emission······23
3.12. Radiated Emission······24
Annex A Test Data and Result ·······26

Change History					
Version	Date	Reason for change			
1.0 2023-12-27		First edition			

1. Summary of Test Result

No.	Section	Description	Test Date	Test Engineer	Result	Method Determination /Remark
1	15.203	Antenna Requirement	N/A	N/A	PASS	No deviation
2	15.247(a) 15.247(h)	Hopping Mechanism	N/A	N/A	PASS	No deviation
3	15.247(a)	Number of Hopping Frequency	Nov, 27, 2023	He Yuyang	PASS	No deviation
4	ANSI C63.10	Duty Cycle	Nov, 20, 2023	He Yuyang	PASS	No deviation
5	15.247(b)	Maximum Peak Conducted Output Power	Nov, 19, 2023	He Yuyang	PASS	No deviation
6	15.247(b)	Maximum Average Conducted Output Power	Nov, 19, 2023	He Yuyang	PASS	No deviation
7	15.247(a)	20dB Bandwidth	Nov, 22, 2023	He Yuyang	PASS	No deviation
8	15.247(a)	Carrier Frequency Separation	Nov, 27, 2023	He Yuyang	PASS	No deviation
9	15.247(a)	Time of Occupancy (Dwell time)	Nov, 27, 2023	He Yuyang	PASS	No deviation
10	15.247(d)	Conducted Spurious Emission	Nov, 20, 2023	He Yuyang	PASS	No deviation
11	15.207	Conducted Emission	Nov. 17, 023	Wang Deyong	PASS	No deviation
12	15.209, 15.247(d)	Radiated Emission	Dec. 13, 2023	Lin Hanbin	PASS	No deviation

Note 1: The tests were performed according to the method of measurements prescribed in ANSI C63.10-2013, KDB 558074 D01 v05r02 and DA 00-075.

Note 2: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

Note 3: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.

1.1. Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

• 47 CFR Part 15 Subpart C Radio Frequency Devices

1.2. Test Equipment List

1.2.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2023.02.27	2024.02.26
RF Cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial Cable	CB02	RF02	Morlab	N/A	N/A
SMA Connector	CN01	RF03	HUBER-SUHNER	N/A	N/A

1.2.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Receiver	MY56400093	N9038A	KEYSIGHT	2023.02.09	2024.02.08
LISN	8127449	NSLK 8127	Schwarzbeck	2023.02.21	2024.02.20
Pulse Limiter (10dB)	VTSD 9561 F-B #206	VTSD 9561-F	Schwarzbeck	2023.06.27	2024.06.26
RF Coaxial Cable (DC-100MHz)	BNC	MRE04	Qualwave	N/A	N/A

1.2.3 List of Software Used

Description	Manufacturer	Software Version	
Test System	MaiWei	2.0.0.0	
Morlab EMCR	Morlab	V1.2	
TS+ -[JS32-CE]	Tonscend	V2.5.0.0	

1.2.4 Radiated Test Equipments

Faviore and						
Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date	
Receiver	MY54130016	N9038A	Agilent	2023.06.21	2024.06.20	
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2023.07.01	2024.06.30	
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2023.07.01	2024.06.30	
Test Antenna – Horn	01774	BBHA 9120D	Schwarzbeck	2023.07.01	2024.06.30	
Test Antenna – Horn	BBHA9170 #773	BBHA9170	Schwarzbeck	2023.06.27	2024.06.26	
Preamplifier (10MHz-6GHz)	46732	S10M100L38 02	LUCIX CORP.	2023.06.26	2024.06.27	
Preamplifier (2GHz-18GHz)	61171/61172	S020180L32 03	LUCIX CORP.	2023.06.26	2024.06.27	
Preamplifier (18GHz-40GHz)	DS77209	DCLNA0118- 40C-S	Decentest	2023.07.04	2024.07.03	
RF Coaxial Cable (DC-18GHz)	MRE001	PE330	Pasternack	2023.06.27	2024.06.26	
RF Coaxial Cable (DC-18GHz)	MRE002	CLU18	Pasternack	2023.06.27	2024.06.26	
RF Coaxial Cable (DC-18GHz)	MRE003	CLU18	Pasternack	2023.06.27	2024.06.26	
RF Coaxial Cable (DC-40GHz)	22290045	QA360-40-K K-0.5	Qualwave	2023.07.04	2024.07.03	
RF Coaxial Cable (DC-40GHz)	22290046	QA360-40-K KF-2	Qualwave	2023.07.04	2024.07.03	
RF Coaxial Cable (DC-18GHz)	22120181	QA500-18-N N-5	Qualwave	2023.07.04	2024.07.03	
Notch Filter	N/A	WRCG-2400- 2483.5-60SS	Wainwright	N/A	N/A	
Anechoic Chamber	N/A	9m*6m*6m	CRT	2022.05.10	2025.05.09	

1.3. Measurement Uncertainty

Test Items	Uncertainty	Remark
Number of Hopping Frequency	±5%	Confidence levels of 95%
Peak Output Power	±2.22dB	Confidence levels of 95%
Bandwidth	±5%	Confidence levels of 95%
Carrier Frequency Separation	±5%	Confidence levels of 95%
Time of Occupancy (Dwell time)	±5%	Confidence levels of 95%
Conducted Spurious Emission	±2.77dB	Confidence levels of 95%
Restricted Frequency Bands	±5%	Confidence levels of 95%
Radiated Emission	±2.95dB	Confidence levels of 95%
Conducted Emission	±2.44dB	Confidence levels of 95%

1.4. Testing Laboratory

Laboratory Nama	Shanzhan Marlah Communications Toohnalagy Co. Ltd.			
Laboratory Name	Shenzhen Morlab Communications Technology Co., Ltd.			
	FL.3, Building A, FeiYang Science Park, No.8 LongChang			
Laboratory Address	Road, Block 67, BaoAn District, ShenZhen, GuangDong			
	Province, P. R. China			
Telephone	+86 755 36698555			
Facsimile	+86 755 36698525			
FCC Designation Number	CN1192			
FCC Test Firm	226474			
Registration Number	226174			

2. General Description

2.1. Information of Applicant and Manufacturer

Applicant	Zhejiang Lierda Internet of Things Technology Co., Ltd.				
Annlicont Address	Room 1402, building 1, No. 1326, Wenyi West Road, Cangqian				
Applicant Address	street, Yuhang District, Hangzhou, Zhejiang, China				
Manufacturer	Zhejiang Lierda Internet of Things Technology Co., Ltd.				
Manufacturar Address	Room 1402, building 1, No. 1326, Wenyi West Road, Cangqian				
Manufacturer Address	street, Yuhang District, Hangzhou, Zhejiang, China				

2.2. Information of EUT

Product Name:	TB25 Series Overseas Module
Sample No.:	1#
Hardware Version:	V01.00
Software Version:	Rev01
Equipment Type:	FHSS
Modulation Type:	LoRa
Operating Frequency Range:	902MHz - 928MHz
Antenna Type:	External Antenna
Antenna Gain:	2.22dBi

Note 1: According to the certificate holder, they declare that for model number:

L-LRNTB25-97UN4, TB25-9U have the same hardware and software, only different in model name, the main test model name is TB25-9U, all parameters remain the same, only the result for TB25-9U was recorded in this report.

Note 2: We use the dedicated software to control the EUT continuous transmission.

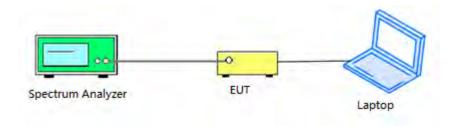
Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

2.3. Channel List of EUT

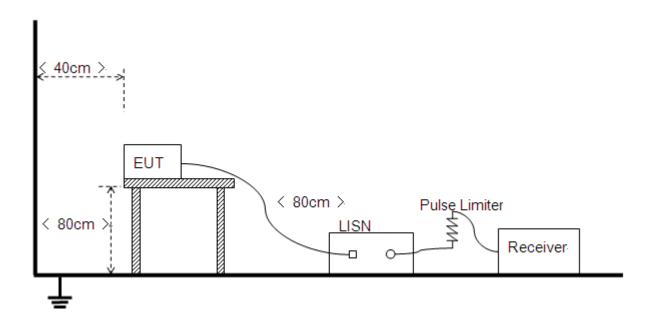
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	902.3	33	908.7	65	915.1	97	921.5
2	902.5	34	908.9	66	915.3	98	921.7
3	902.7	35	909.1	67	915.5	99	921.9
4	902.9	36	909.3	68	915.7	100	922.1
5	903.1	37	909.5	69	915.9	101	922.3
6	903.3	38	909.7	70	916.1	102	922.5
7	903.5	39	909.9	71	916.3	103	922.7
8	903.7	40	910.1	72	916.5	104	922.9
9	903.9	41	910.3	73	916.7	105	923.1
10	904.1	42	910.5	74	916.9	106	923.3
11	904.3	43	910.7	75	917.1	107	923.5
12	904.5	44	910.9	76	917.3	108	923.7
13	904.7	45	911.1	77	917.5	109	923.9
14	904.9	46	911.3	78	917.7	110	924.1
15	905.1	47	911.5	79	917.9	111	924.3
16	905.3	48	911.7	80	918.1	112	924.5
17	905.5	49	911.9	81	918.3	113	924.7
18	905.7	50	912.1	82	918.5	114	924.9
19	905.9	51	912.3	83	918.7	115	925.1
20	906.1	52	912.5	84	918.9	116	925.3
21	906.3	53	912.7	85	919.1	117	925.5
22	906.5	54	912.9	86	919.3	118	925.7
23	906.7	55	913.1	87	919.5	119	925.9
24	906.9	56	913.3	88	919.7	120	926.1
25	907.1	57	913.5	89	919.9	121	926.3
26	907.3	58	913.7	90	920.1	122	926.5
27	907.5	59	913.9	91	920.3	123	926.7
28	907.7	60	914.1	92	920.5	124	926.9
29	907.9	61	914.3	93	920.7	125	927.1
30	908.1	62	914.5	94	920.9	126	927.3
31	908.3	63	914.7	95	921.1	127	927.5
32	908.5	64	914.9	96	921.3	128	927.7

Note 1: The black bold channels were selected for test.

2.4. Test Configuration of EUT

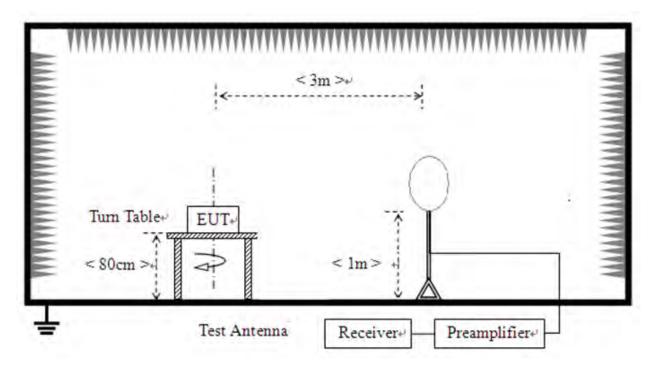

Test mode is used to control the EUT under the maximum power level during test.

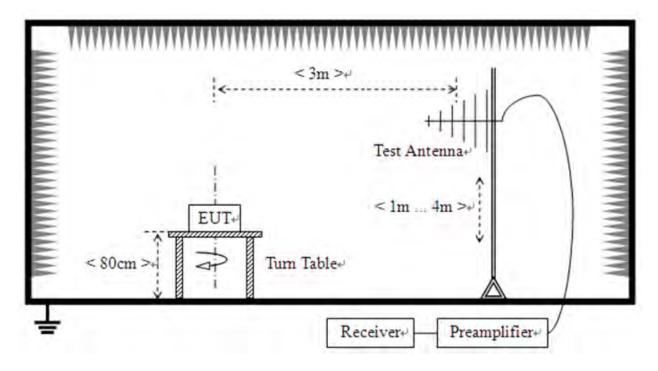
2.5. Test Conditions


Temperature (°C)	15-35
Relative Humidity (%)	30-60
Atmospheric Pressure (kPa)	86-106

2.6. Test Setup Layout Diagram

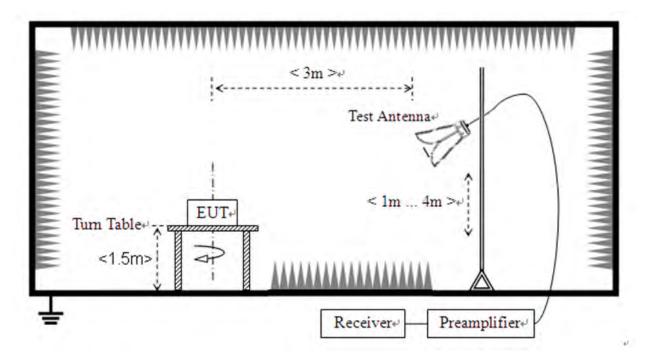
2.6.1.Conducted Measurement


2.6.2.Conducted Emission Measurement



2.6.3. Radiation Measurement

1) For radiated emissions from 9kHz to 30MHz


2) For radiated emissions from 30MHz to1GHz

3) For radiated emissions above 1GHz

3. Test Results

3.1. Antenna Requirement

3.1.1.Requirement

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional

radiator shall be considered sufficient to comply with the provisions of this section.

3.1.2.Test Result

The EUT has an external antenna coupled with the RP-SMA connector. Please refer to the EUT photos.

3.2. Hopping Mechanism

3.2.1.Requirement

the transmitted signals.

According to FCC section 15.247(a)(1), a frequency hopping spread spectrum system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with

According to FCC section 15.247(h), the incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping

frequencies by multiple transmitters is not permitted.

The hopping mechanism of the EUT is based on the protocol that "LoRaWAN".

MORLAB

3.2.2.Test Result

3.3. Number of Hopping Frequency

3.3.1.Requirement

According to FCC section 15.247(a)(1)(i), frequency hopping systems operating in the 902MHz to 928MHz bands shall use at least 50 hopping frequencies if the 20dB bandwidth of the hopping channel is less than 250KHz; or at least 25 hopping frequencies if the 20dB bandwidth of the hopping channel is 250KHz or greater.

3.3.2.Test Procedures

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation

RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW
Sweep = auto
Detector function = peak
Trace = max hold
Allow the trace to stabilize

3.3.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.3.4.Test Result

Refer to Annex A.1 in this report.

3.4. Duty Cycle of Test Signal

3.4.1.Requirement

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be used to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration(T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can then be used if the measurement/sweep time of the analyzer can be set such that it does not exceed T at any time that data are being acquired (i.e.,no transmitter OFF-time is to be considered).

When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternative procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle (D). Within this sub clause, the duty cycle refers to the fraction of time over which the transmitter is ON and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than ±2%; otherwise, the duty cycle is considered to be non constant.

3.4.2.Test Result

Refer to Annex A.2 in this report.

3.5. Maximum Peak Conducted Output Power

3.5.1.Requirement

According to FCC section 15.247(b)(2), for frequency hopping systems that operates in the 902MHz to 928MHz band employing at least 50 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt, and 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels.

3.5.2.Test Procedures

KDB 558074 Section 8.3.1 was used in order to prove compliance.

3.5.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.5.4.Test Result

Refer to Annex A.3 in this report.

3.6. Maximum Average Conducted Output Power

3.6.1.Requirement

According to FCC section 15.247(b)(2), for frequency hopping systems that operates in the 902MHz to 928MHz band employing at least 50 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt, and 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels.

3.6.2.Test Procedures

KDB 558074 Section 8.3.2 was used in order to prove compliance.

3.6.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.6.4.Test Result

Refer to Annex A.4 in this report.

3.7.20 dB Bandwidth

3.7.1.Requirement

According to FCC section 15.247(a)(1), the 20 dB bandwidth is known as the 99% emission bandwidth, or 20 dB bandwidth (10*log1% = 20 dB) taking the total RF output power.

3.7.1.Test Procedures

Use the following spectrum analyzer settings:

Span = between 2 to 5 times the OBW, centered on the test channel

RBW= 1% to 5% of the OBW

VBW ≥ 3 x RBW

Sweep = auto

Detector function = peak

Trace = max hold

3.7.2.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.7.3.Test Result

Refer to Annex A.5 in this report.

3.8. Carried Frequency Separation

3.8.1.Requirement

According to FCC section 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

3.8.2.Test Procedures

The EUT must have its hopping function enabled. According to DA 00-705, use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span

Video (or Average) Bandwidth (VBW) ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

3.8.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.8.4.Test Result

Refer to Annex A.6 in this report.

3.9. Time of Occupancy (Dwell time)

3.9.1.Requirement

According to FCC §15.247(a) (1) (i), frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

3.9.2.Test Procedures

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in 10 second scan, to enable resolution of each occurrence. The average time of occupancy in the specified 20 second period is equal to (# of pulses in 20s) * pulse width.

3.9.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.9.4.Test Result

Refer to Annex A.7 in this report.

3.10. Conducted Spurious Emissions and Band Edge

3.10.1.Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

3.10.2.Test Procedures

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz
VBW ≥ RBW
Sweep = auto
Detector function = peak
Trace = max hold
Allow the trace to stabilize.

3.10.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.10.4.Test Result

Refer to Annex A.8 and A.9 in this report.

3.11. Conducted Emission

3.11.1.Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50\mu\text{H}/50\Omega$ line impedance stabilization network (LISN).

Free	F., D., (MIII-)	Conducted Limit (dBμV)				
	Frequency Range (MHz)	Quai-peak	Average			
	0.15 - 0.50	66 to 56	56 to 46			
	0.50 - 5	56	46			
	5 - 30	60	50			

Note:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

3.11.2.Test Procedures

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

3.11.3.Test Setup Layout

Refer to chapter 2.6.2 in this report.

3.11.4.Test Result

Refer to Annex A.10 in this report.

3.12. Radiated Emission

3.12.1.Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 - 1.705	24000/F(kHz)	30		
1.705 - 30.0	30	30		
30 - 88	100	3		
88 - 216	150	3		
216 - 960	200	3		
Above 960	500	3		

Note1: For above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.

Note2:For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK).In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table).

3.12.2.Test Procedures

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 30MHz, the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9kHz-90 kHz, 110kHz-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

For measurements below 1GHz the resolution bandwidth is set to 100kHz for peak detection measurements or 120kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1GHz the resolution bandwidth is set to 1MHz, the video band width is set to 3MHz for peak measurements and as applicable for average measurements.

The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions. For measurements above 1 GHz, keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

3.12.3.Test Setup Layout

Refer to chapter 2.6.3 in this report.

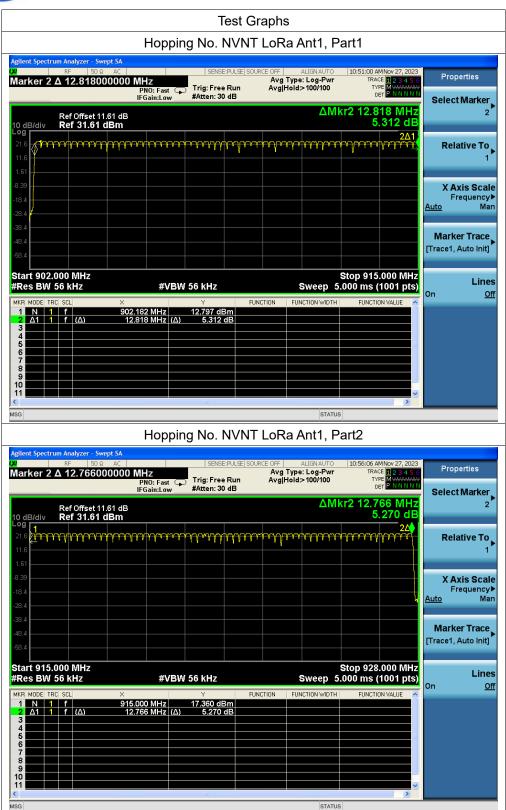
3.12.4.Test Result

Refer to Annex A.11 in this report.

Shenzhen Morlab Communications Technology Co., Ltd.

Tel: 86-755-36698555

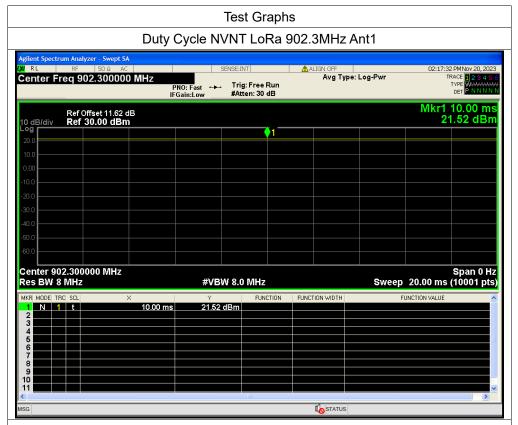
Http://www.morlab.cn

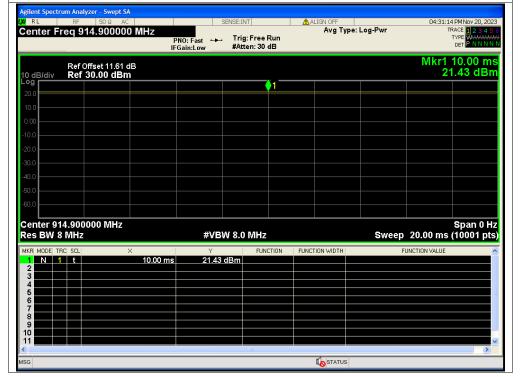


Annex A Test Data and Result

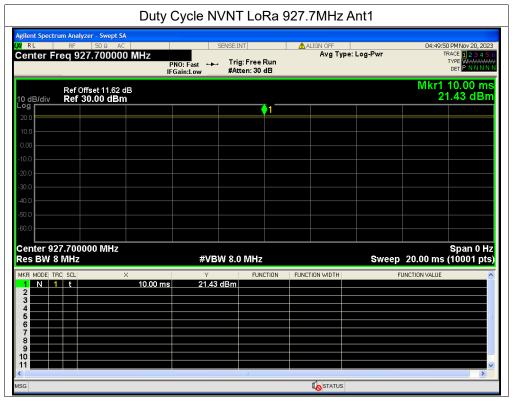
A.1. Number of Hopping Frequency

Condition	Mode	Antenna Hopping Number		Limit	Verdict	
NVNT	LoRa	Ant1	128	50	Pass	




A.2. Duty Cycle of Test Signal

Condition	dition Mode Frequency (MHz)		Mode Frequency (MHz) Antenna Duty Cycle (Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	LoRa	902.3	Ant1	100	0	0	
NVNT	LoRa	914.9	Ant1	100	0	0	
NVNT	LoRa	927.7	Ant1	100	0	0	



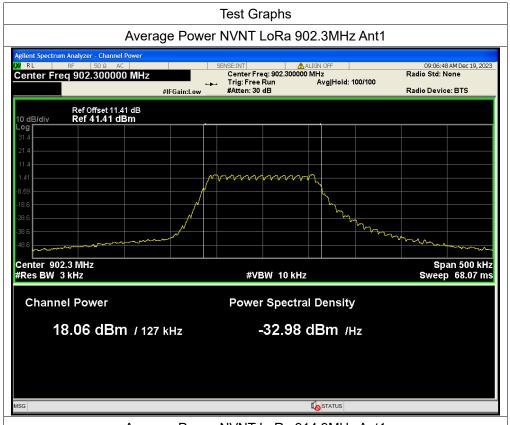
Duty Cycle NVNT LoRa 914.9MHz Ant1

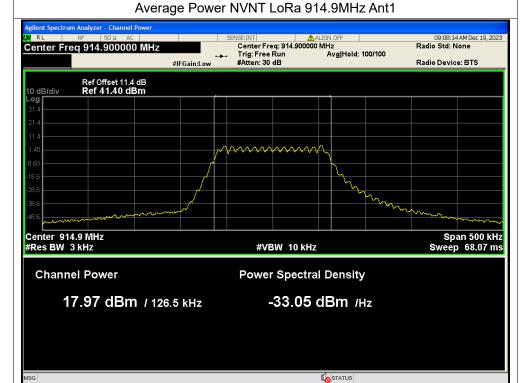
A.3. Maximum Peak Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Conducted Power (dBm)	Total Conducted Power (W)	Limit (dBm)	Verdict
NVNT	LoRa	902.3	Ant1	18.12	0	18.12	0.06486	30	Pass
NVNT	LoRa	914.9	Ant1	18	0	18	0.0631	30	Pass
NVNT	LoRa	927.7	Ant1	17.94	0	17.94	0.06223	30	Pass

Test Graphs Peak Power NVNT LoRa 902.3MHz Ant1 LESA AC SENSE:INT ALIGN OFF 09:06:55 AM AVG Type: Log-Pwr TRACE Avg T

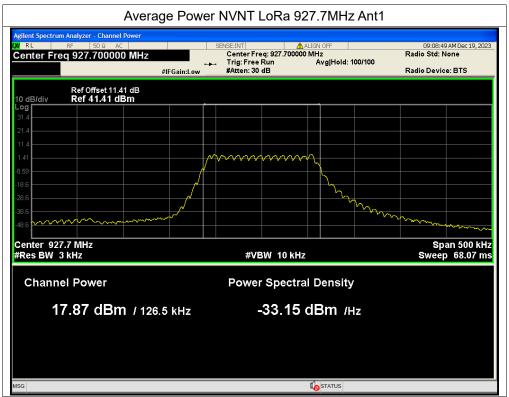
Peak Power NVNT LoRa 914.9MHz Ant1

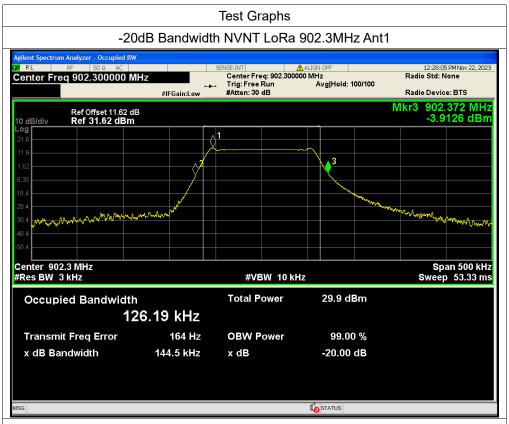




A.4. Maximum Average Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Conducted Power (dBm)	Total Conducted Power (W)	Limit (dBm)	Verdict
NVNT	LoRa	902.3	Ant1	18.06	0	18.06	0.06397	30	Pass
NVNT	LoRa	914.9	Ant1	17.97	0	17.97	0.06266	30	Pass
NVNT	LoRa	927.7	Ant1	17.87	0	17.87	0.06124	30	Pass

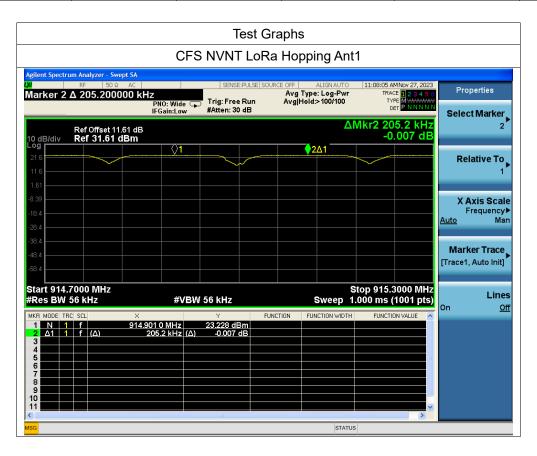




A.5. 20 dB Bandwidth

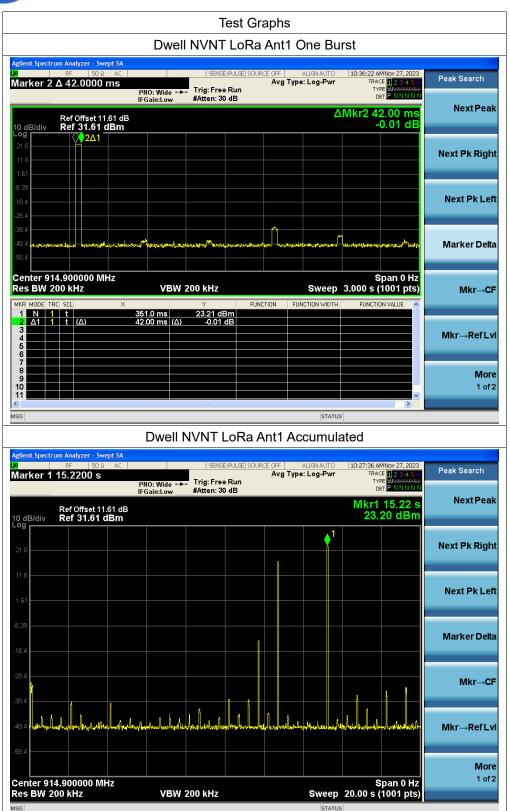
Condition	Mode Frequency (M		Antenna	-20 dB Bandwidth (MHz)
NVNT	LoRa	902.3	Ant1	0.145
NVNT	LoRa	914.9	Ant1	0.143
NVNT	LoRa	927.7	Ant1	0.143

-20dB Bandwidth NVNT LoRa 914.9MHz Ant1



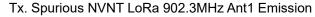
A.6. Carried Frequency Separation

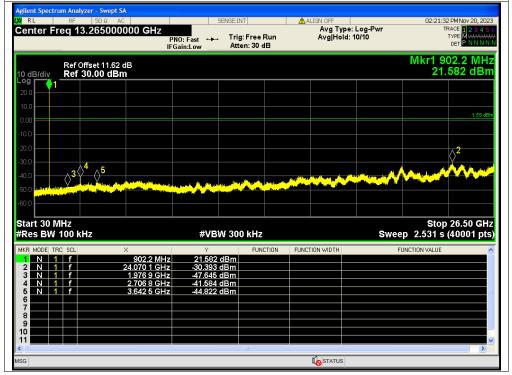
Condition	Mode	Antenna	HFS (MHz)	Limit (MHz)	Verdict
NVNT	LoRa	Ant1	0.2052	0.145	Pass



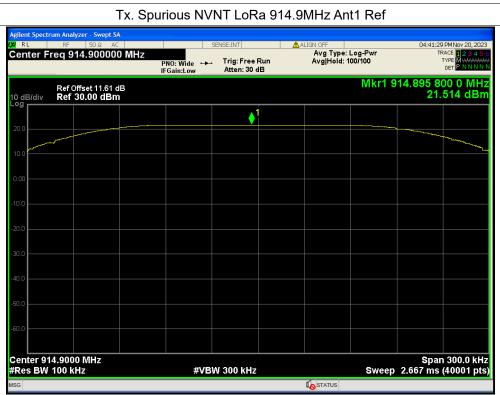
A.7. Time of Occupancy (Dwell time)

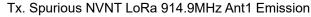
Condition	Mode	Frequency (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	LoRa	902.3	Ant1	42	42	1	20000	400	Pass

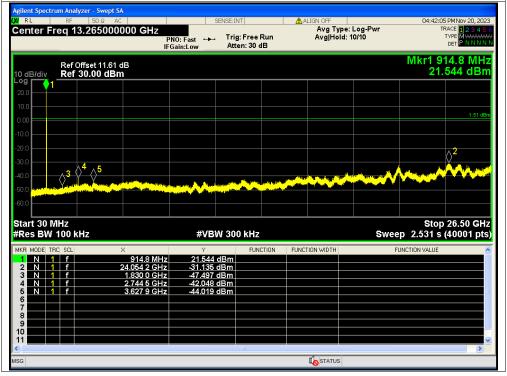


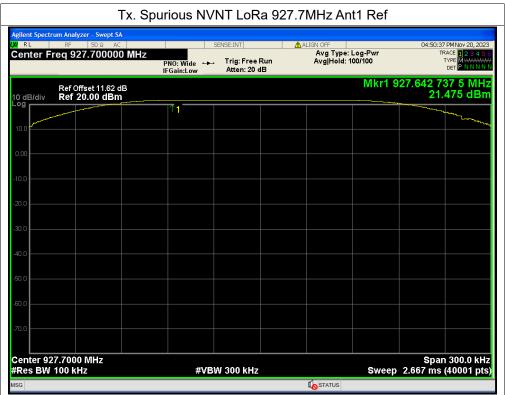

A.8. Conducted Spurious Emissions

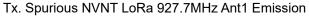
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	LoRa	902.3	Ant1	-51.94	-20	Pass
NVNT	LoRa	914.9	Ant1	-52.64	-20	Pass
NVNT	LoRa	927.7	Ant1	-61.75	-20	Pass

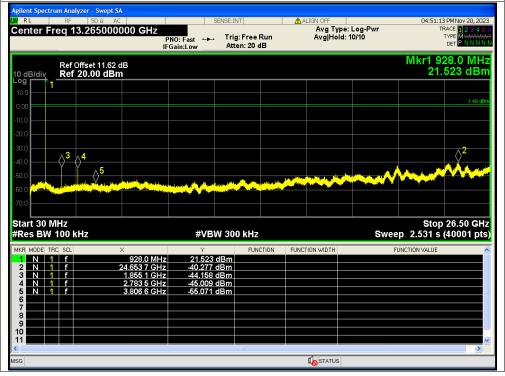

Test Graphs Tx. Spurious NVNT LoRa 902.3MHz Ant1 Ref Aglent Spectrum Analyzer - Swept SA DEST SE SO DE AG SENSE BIT ALLIEN CF 022057 PM New 20, 2023 Center Freq 902.300000 MHz PHO: Wide Trig: Free Run Atten: 30 dB Ref Offset 11.62 dB Ref 30.00 dBm Ref 3



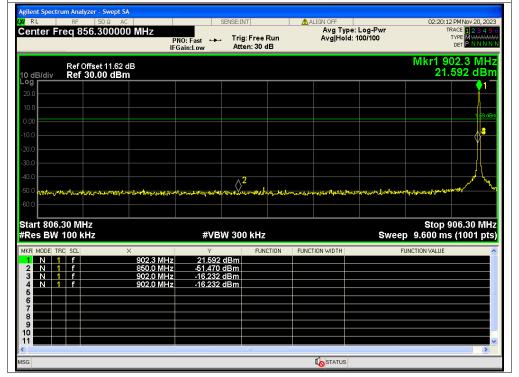


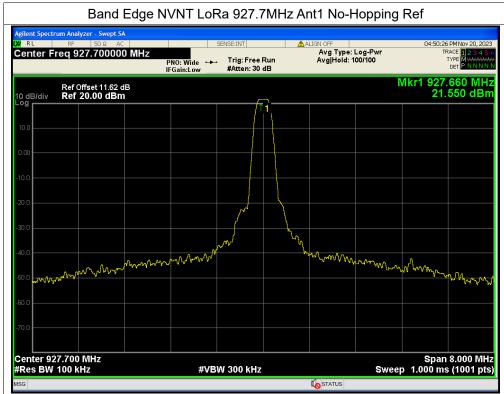




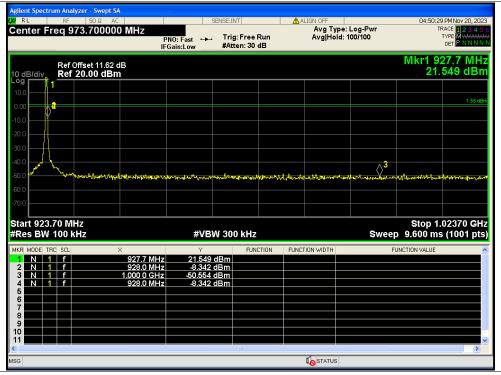


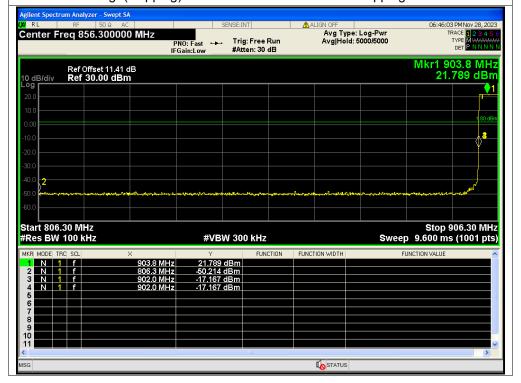
A.9. Band Edge


Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	LoRa	902.3	Ant1	No-Hopping	-37.82	-20	Pass
NVNT	LoRa	927.7	Ant1	No-Hopping	-29.89	-20	Pass
NVNT	LoRa	902.3	Ant1	Hopping	-38.96	-20	Pass
NVNT	LoRa	927.7	Ant1	Hopping	-44.76	-20	Pass


Band Edge NVNT LoRa 902.3MHz Ant1 No-Hopping Emission

STATUS

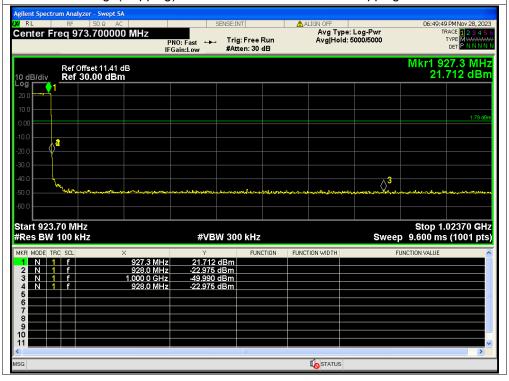




Test Graphs

Band Edge(Hopping) NVNT LoRa 902.3MHz Ant1 Hopping Ref

Band Edge(Hopping) NVNT LoRa 902.3MHz Ant1 Hopping Emission



Band Edge(Hopping) NVNT LoRa 927.7MHz Ant1 Hopping Emission

A.10. Conducted Emission

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Set RBW=9kHz, VBW=30kHz. Refer to recorded points and plots below.

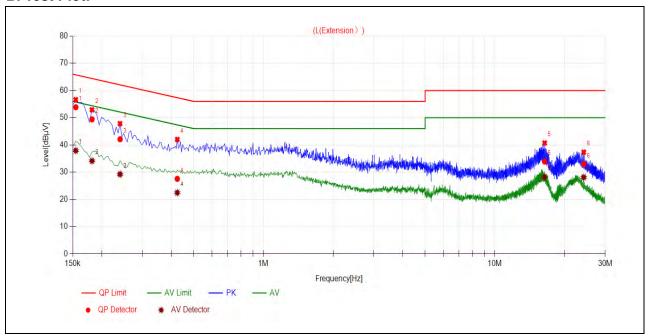
Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hz were considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.

A. Test Setup:

Test Mode: <u>EUT +PC Adapter + PC + 915M TX</u>

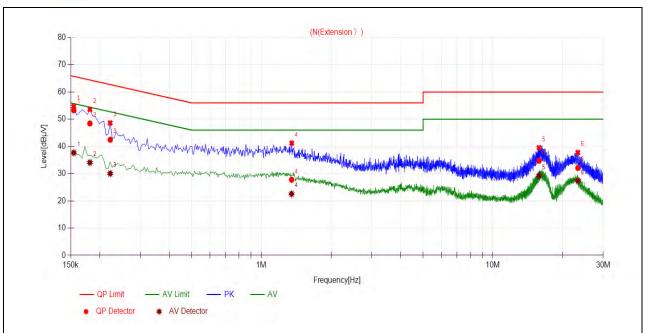
Test voltage: AC 120V/60Hz

The measurement results are obtained as below:


 $E [dB\mu V] = U_R + L_{Cable loss} [dB] + A_{Factor}$

U_R: Receiver Reading

A_{Factor}: Voltage division factor of LISN


B. Test Plot:

(L Phase)

No. Fre.	Fre. Emission Level (dBµV)		Limit (dBμV)	Power-line	Verdict	
''	(MHz)	Quai-peak	Average	Quai-peak	Average		voraiot
1	0.1545	53.86	37.91	65.76	55.76		PASS
2	0.1816	49.42	34.15	64.41	54.41		PASS
3	0.2401	42.11	29.23	62.09	52.09	Line	PASS
4	0.4243	27.54	22.46	57.36	47.36	Line	PASS
5	16.4246	33.89	28.17	60.00	50.00		PASS
6	24.2499	32.99	28.11	60.00	50.00		PASS

(N Phase)

No. Fre.	\ ' ' /		Limit (dBμV)	Power-line	Verdict	
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.1546	53.30	37.66	65.75	55.75		PASS
2	0.1814	48.44	34.08	64.42	54.42		PASS
3	0.2220	42.47	30.06	62.75	52.75	Moutral	PASS
4	1.3503	27.77	22.56	56.00	46.00	Neutral	PASS
5	15.8499	34.76	29.24	60.00	50.00		PASS
6	23.3160	32.09	27.40	60.00	50.00		PASS

A.11. Radiated Emission

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak (or average) limit, it is unnecessary to perform an quasi-peak measurement (or average).

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

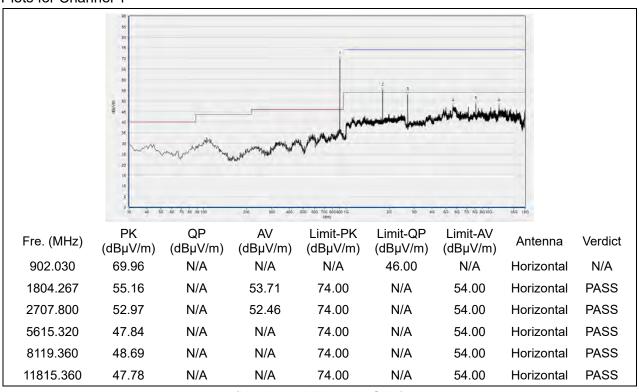
A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

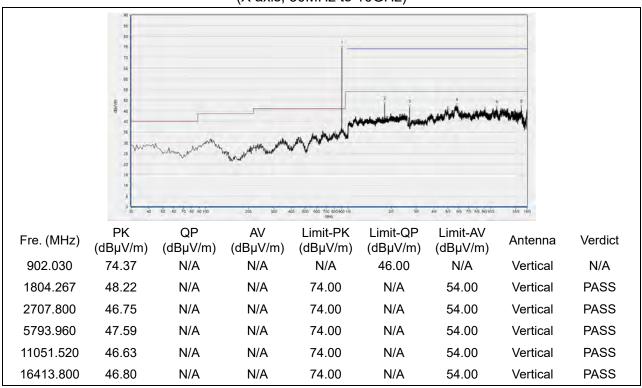
Note1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Note2: For the frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

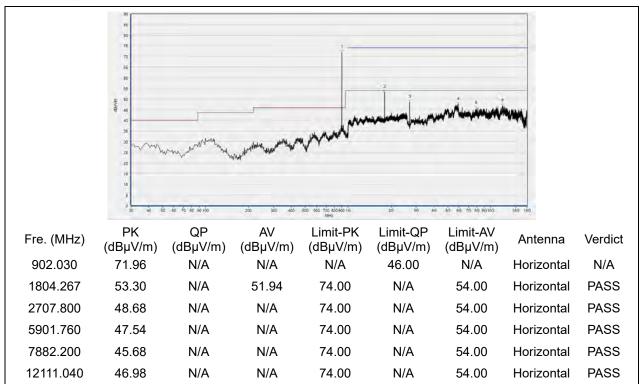
Note3: For the frequency, which started from 18GHz to 10th harmonic of the highest frequency, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

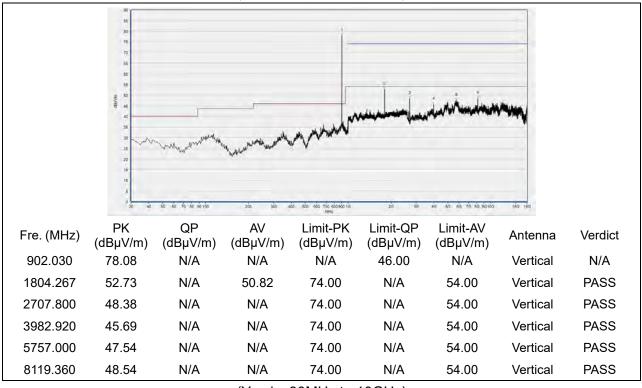

Field strength of fundamental:

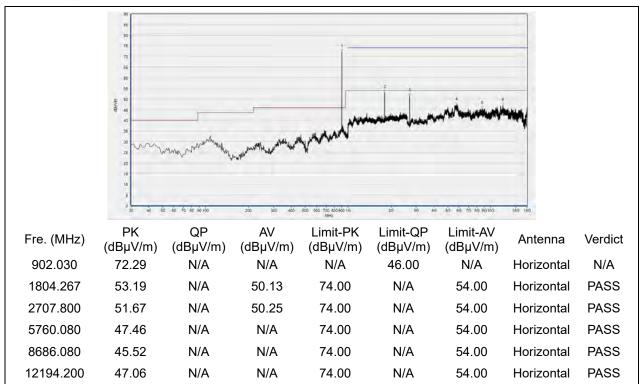
Frequency (MHz)	Reading_Peak (dB µ V/m)	Antenna Factor (dB)	Path Loss (dB)	Final_Peak (dB µ V/m)	Antenna Polarity	Axis Direction
927.7	84.42	22.2	6.75	113.37	Horizontal	X
927.7	77.27	22.2	6.75	106.22	Vertical	X
927.7	83.19	22.2	6.75	112.14	Horizontal	Υ
927.7	83.97	22.2	6.75	112.92	Vertical	Υ
927.7	85.33	22.2	6.75	114.28	Horizontal	Z
927.7	79.70	22.2	6.75	108.65	Vertical	Z

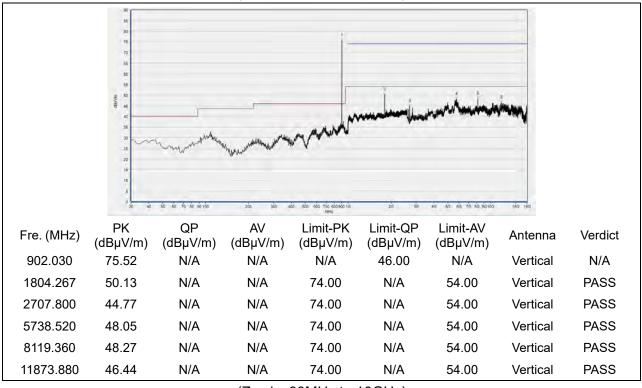

The field strength(the lowest) of fundamenta is more than 20dB higher than the unwanted emissions, in accordance with FCC part 15.215(b).

Plots for Channel 1

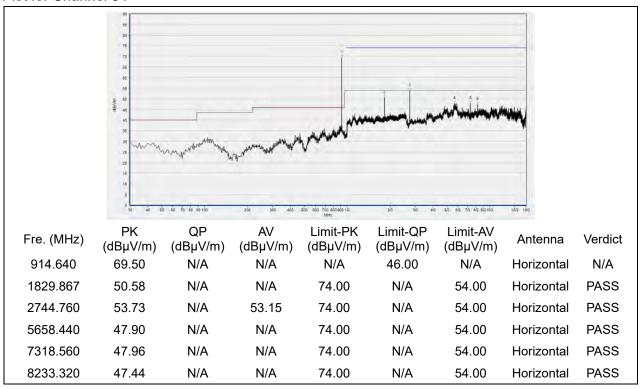

(X axis, 30MHz to 10GHz)


(X axis, 30MHz to 10GHz)

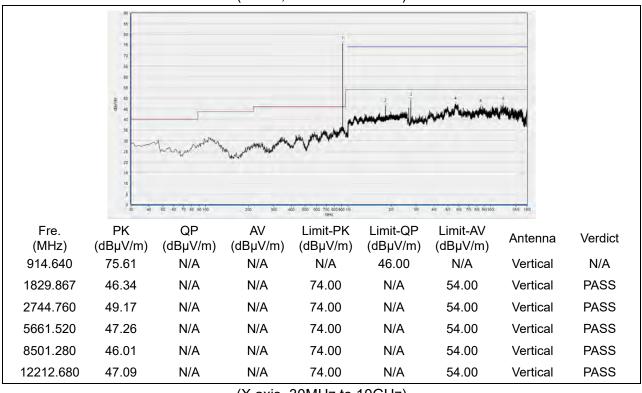

(Y axis, 30MHz to 10GHz)


(Y axis, 30MHz to 10GHz)

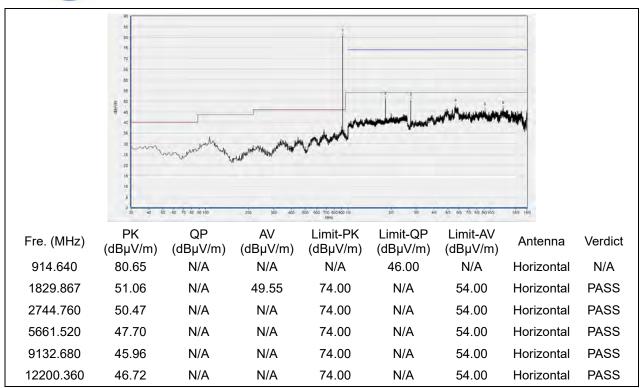
(Z axis, 30MHz to 10GHz)

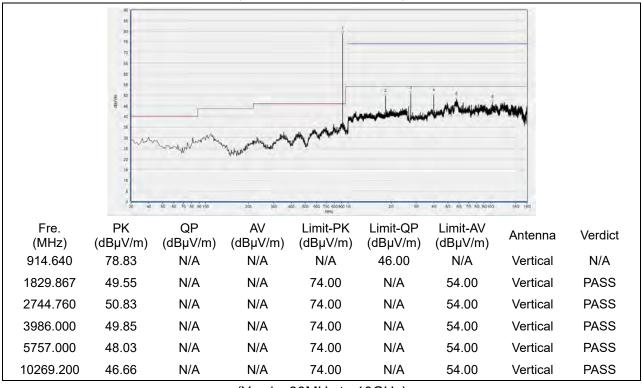


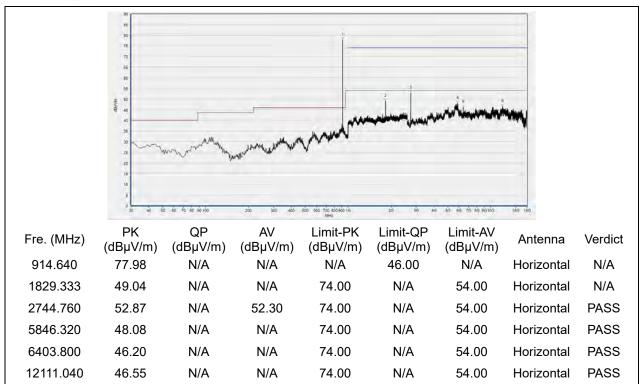
(Z axis, 30MHz to 10GHz)

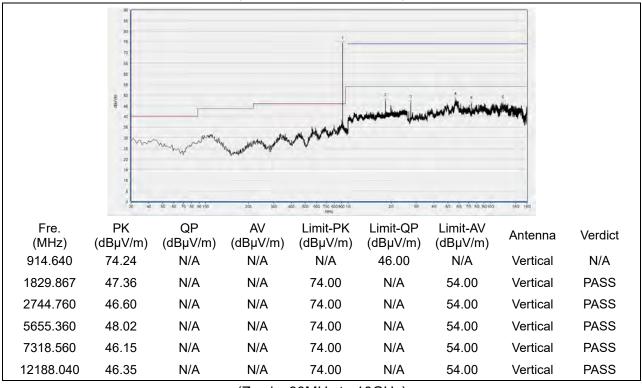


Plot for Channel 64

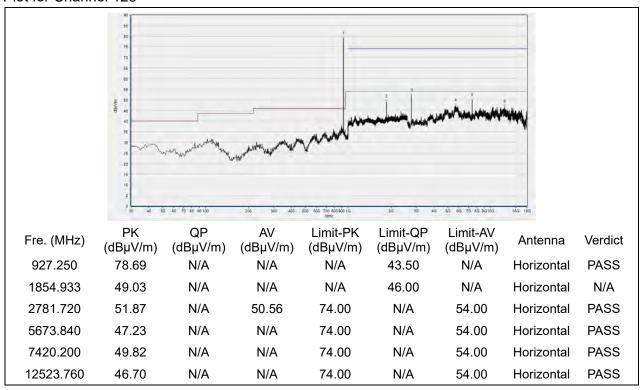

(X axis, 30MHz to 10GHz)


(X axis, 30MHz to 10GHz)

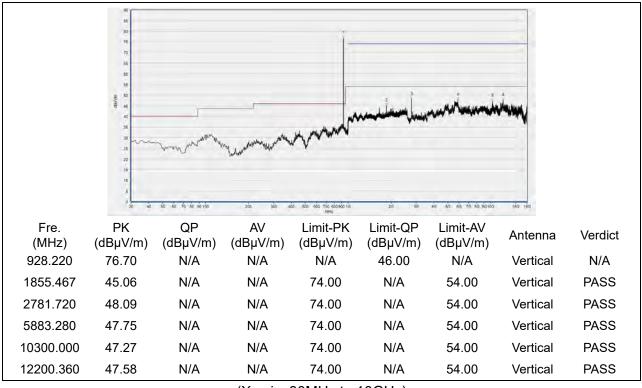

(Y axis, 30MHz to 10GHz)


(Y axis, 30MHz to 10GHz)

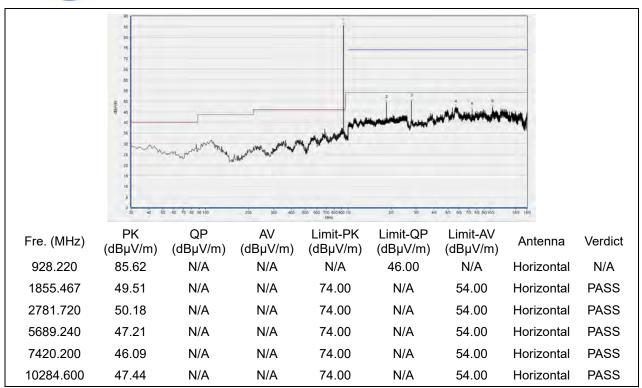
(Z axis, 30MHz to 10GHz)

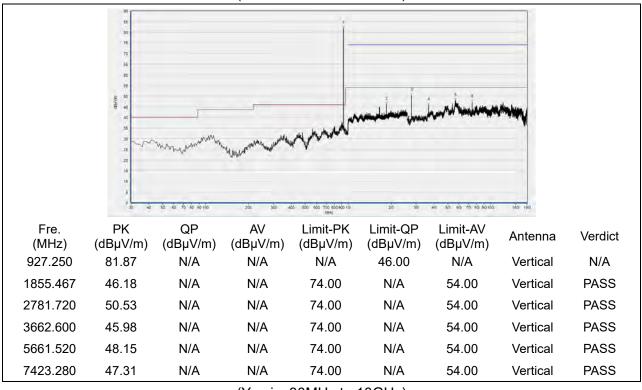


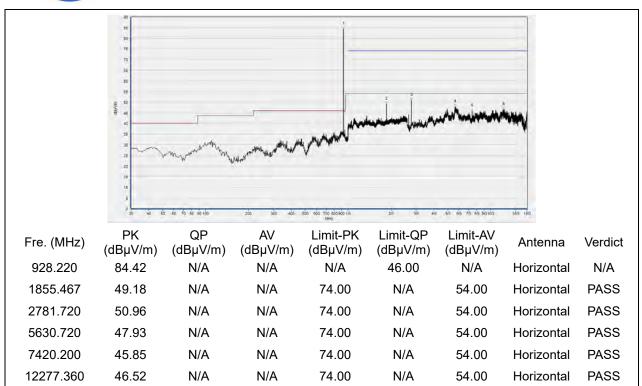
(Z axis, 30MHz to 10GHz)

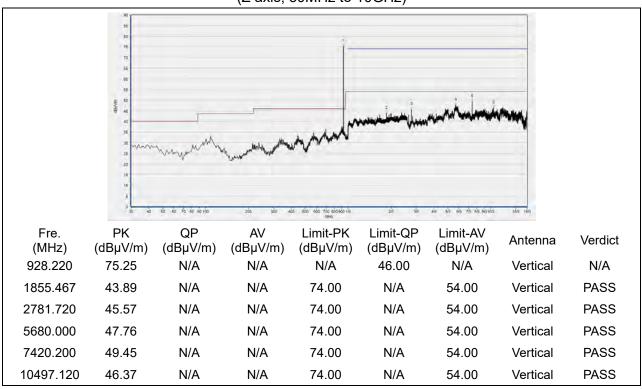


Plot for Channel 128


(X axis, 30MHz to 10GHz)


(X axis, 30MHz to 10GHz)


(Y axis, 30MHz to 10GHz)


(Y axis, 30MHz to 10GHz)

(Z axis, 30MHz to 10GHz)

(Z axis, 30MHz to 10GHz)

—— END OF REPORT

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525
E-mail: service@morlab.cn