

FCC TEST REPORT

For CYSPO Technology (Shenzhen) Co., Ltd. Desktop wireless charger

Test Model: C3

Prepared for Address	:	CYSPO Technology (Shenzhen) Co., Ltd. 10/F, Building B, Chaxi Sanwei Second Industrial Zone, Sanwei Community, Hangcheng Shenzhen China
Prepared by Address Tel Fax Web Mail		Shenzhen LCS Compliance Testing Laboratory Ltd. 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing Street, Baoan District, Shenzhen, China (+86)755-82591330 (+86)755-82591332 www.LCS-cert.com webmaster@LCS-cert.com
Date of receipt of test sample Number of tested samples Serial number Date of Test Date of Report	:::::::::::::::::::::::::::::::::::::::	October 14, 2021 2 211013017A-1(Engineer sample), 211013017A-2(Normal sample) October 14, 2021 ~ November 15, 2021 November 15, 2021

	FCC TEST REPORT FCC CFR 47 PART 15C	
Report Reference No	: LCS211013017AEA	
Date Of Issue	November 15, 2021	
Testing Laboratory Name	Shenzhen LCS Compliance Testing La	aboratory Ltd.
Address	101, 201 Bldg A & 301 Bldg C, Juji Indus Baoan District, Shenzhen, China	trial Park Shajing Street,
Testing Location/ Procedure	Full application of Harmonised standards Partial application of Harmonised standa Other standard testing method □	
Applicant's Name	: CYSPO Technology (Shenzhen) Co., L	td.
Address	10/F, Building B, Chaxi Sanwei Second I Community, Hangcheng Shenzhen Chin	ndustrial Zone, Sanwei a
Test Specification		
Standard	FCC CFR 47 PART 15C	
Test Report Form No	LCSEMC-1.0	
TRF Originator	Shenzhen LCS Compliance Testing Lab	pratory Ltd.
Master TRF	Dated 2011-03	
Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.		
Test Item Description	Desktop wireless charger	
Trade Mark	N/A	
Test Model		
Power Supply	Input: DC 9V, 3A or DC 12V, 2A Output(Top): DC 5V, 0.6A MAX, 3W Output(Front): DC 9V, 1.67A MAX, 15W Output(Bottom): DC 5V, 1A MAX, 5W	
Result	Positive	
Compiled by:	Supervised by:	Approved by:
Lh Li	Jin Wang	Grino Linoz

Lh Li/ Administrator

Jin Wang/ Technique principal

Gavin Liang/ Manager

FCC TEST REPORT

Test Report No. :	LCS211013017AEA
-------------------	-----------------

November 15, 2021 Date of issue

Test Model	: C3
EUT	: Desktop wireless charger
Applicant	
Address	10/F, Building B, Chaxi Sanwei Second Industrial Zone, Sanwei Community, Hangcheng Shenzhen China
Telephone	
Fax	
Manufacturer	: CYSPO Technology (Shenzhen) Co., Ltd.
Address	. 10/F, Building B, Chaxi Sanwei Second Industrial Zone, Sanwei Community, Hangcheng Shenzhen China
Telephone	:/
Fax	: /
Factory	: CYSPO Technology (Shenzhen) Co., Ltd.
Address	10/F, Building B, Chaxi Sanwei Second Industrial Zone, Sanwei Community, Hangcheng Shenzhen China
Telephone	
Fax	

Test Result Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	November 15, 2021	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	. 6
1.1 Description of Device (EUT)	
1.2 Support equipment List	
1.3 External I/O Cable	6
1.4 Description of Test Facility	6
1.5 Statement of the Measurement Uncertainty	
1.6 Measurement Uncertainty	
1.7 Description of Test Modes	
2. TEST METHODOLOGY	
2.1 EUT Configuration	
2.2 EUT Exercise 2.3 General Test Procedures	
2.3 General Test Procedures	
2.3.2 Radiated Emissions	
2.4. Test Sample	
3. SYSTEM TEST CONFIGURATION	
3.1 Justification	
3.2 EUT Exercise Software	
3.3 Special Accessories	
3.4 Block Diagram/Schematics	9
3.5 Equipment Modifications	
3.6 Test Setup	9
4. SUMMARY OF TEST EQUIPMENT	10
5. SUMMARY OF TEST RESULT	11
6. POWER LINE CONDUCTED MEASUREMENT	12
7. RADIATED EMISSION MEASUREMENT	15
7.1. Block Diagram of Test Setup	
7.2. Radiated Emission Limit	16
7.3. EUT Configuration on Measurement	16
7.4. Operating Condition of EUT	16
7.5. Measuring Setting	
7.6. Test Procedure	
7.7. Test Results	18
8. 20 DB BANDWIDTH MEASUREMENT	23
8.1. Block Diagram of Test Setup	23
8.2. Test Procedure	
8.3. Test Results	
9. PHOTOGRAPHS OF TEST SETUP	25
10. EXTERNAL PHOTOGRAPHS OF THE EUT	25
11. INTERNAL PHOTOGRAPHS OF THE EUT	25

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT	: Desktop wireless charger
Test Model	: C3
Power Supply	Input: DC 9V, 3A or DC 12V, 2A Output(Top): DC 5V, 0.6A MAX, 3W Output(Front): DC 9V, 1.67A MAX, 15W Output(Bottom): DC 5V, 1A MAX, 5W
Hardware Version	: /
Software Version	:/
Software Version Wireless Charging	:/
Wireless Charging Operating	

1.2 Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
SAMSUNG	Phone	Galaxy S9	R28M12LA7D1	SDOC
HONOR	Mobile phone	V30Pro	66B0219C25014679	SDOC
HONOR	Mobile phone	V30Pro	PKT0220825009413	SDOC
	ADAPTER	THX- 120050KB		SDOC

Note: The adapter is supplied by lab and only use tested.

1.3 External I/O Cable

I/O Port Description	Quantity	Cable
Type-C Port	1	N/A

1.4 Description of Test Facility

NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024 CAB identifier is CN0071. CNAS Registration Number is L4595. Test Firm Registration Number: 254912

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5 Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6 Measurement Uncertainty

Test Item	Frequency Range	Uncertainty	Note
	9KHz~30MHz	3.10dB	(1)
	30MHz~200MHz	2.96dB	(1)
Radiation Uncertainty :	200MHz~1000MHz	3.10dB	(1)
	1GHz~26.5GHz	3.80dB	(1)
	26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty :	150kHz~30MHz	1.63dB	(1)
Power disturbance :	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7 Description of Test Modes

Equipment under test was operated during the measurement under the following conditions:

Charging and communication mode

Modulation Type: CW (Continuous Wave)

The transfer system includes three coils that is able to detect receiver device and allow coupling only one coils.

Test Modes(Output):

Antenna 1	Wireless Charging Output with Antenna 1
Antenna 2	Wireless Charging Output with Antenna 2

Antenna 3 Wireless Charging Output with Antenna 3

obile Phone (Battery Status: <1%) Record
obile Phone (Battery Status: <50%) Pre-tested
obile Phone (Battery Status: 100%) Pre-tested
Nobile Phone (Battery Status: <1%) Pre-tested
Nobile Phone (Battery Status: <50%) Pre-tested
Nobile Phone (Battery Status: 100%) Pre-tested
\ \

For AC conducted emission, pre-test at both AC 120V/60Hz and AC 240V/50Hz, recorded worst case; For AC conducted emission, pre-test at both AC Power Supply from power adapter modes, recorded worst case.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013 and FCC CFR PART 15C 15.207.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the normal operating mode for Hopping Numbers and Dwell Time test and a continuous transmits mode for other tests.

According to its specifications, the EUT must comply with the requirements of the Section 15.207 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz and 1.5 m above ground plane above 1GHz. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

2.4. Test Sample

The application provides 2 samples to meet requirement;

Sample Number	Description
Sample 1(211013017A-1)	Engineer sample – continuous transmit
Sample 2(211013017A-2)	Normal sample – Intermittent transmit

3.1 Justification

The system was configured for testing in a normal condition.

3.2 EUT Exercise Software

N/A.

3.3 Special Accessories

No.	Equipment	Manufacturer	Model No.	Serial No.	Length	shielded/ unshielded	Notes
3	/	/	/	/	/	/	/

3.4 Block Diagram/Schematics

Please refer to the related document.

3.5 Equipment Modifications

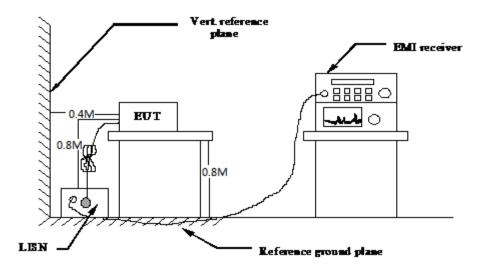
Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6 Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2021-06-21	2022-06-20
2	SPECTRUM ANALYZER	R&S	FSP40	100503	2020-11-17	2021-11-16
3	3m Full Anechoic Chamber	MRDIANZI	FAC-3M	MR009	2021-09-25	2022-09-24
4	Positioning Controller	MF	MF7082	MF78020803	2021-06-21	2022-06-20
5	EMI Test Software	Farad	EZ	/	N/A	N/A
6	EMI Test Receiver	R&S	ESR 7	101181	2021-06-21	2022-06-20
7	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2021-07-25	2024-07-24
8	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2021-07-25	2024-07-24
9	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2021-07-01	2024-06-30
10	EMI Test Receiver	R&S	ESPI	101840	2021-06-21	2022-06-20
11	Artificial Mains	R&S	ENV216	101288	2021-06-21	2022-06-20
12	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-0032	2021-06-21	2022-06-20


5. SUMMARY OF TEST RESULT

	FCC Rules	Description of Test	Test Sample	Result
	§15.213	20 dB Bandwidth	Sample 1	Compliant
	§15.209	Radiated Spurious Emissions	Sample 1	Compliant
ĺ	§15.207(a)	AC Conducted Emissions	Sample 1	Compliant

Remark: The measurement uncertainty is not included in the test result. N/A – Not Applicable!!!

6. POWER LINE CONDUCTED MEASUREMENT

6.1. Block Diagram of Test Setup

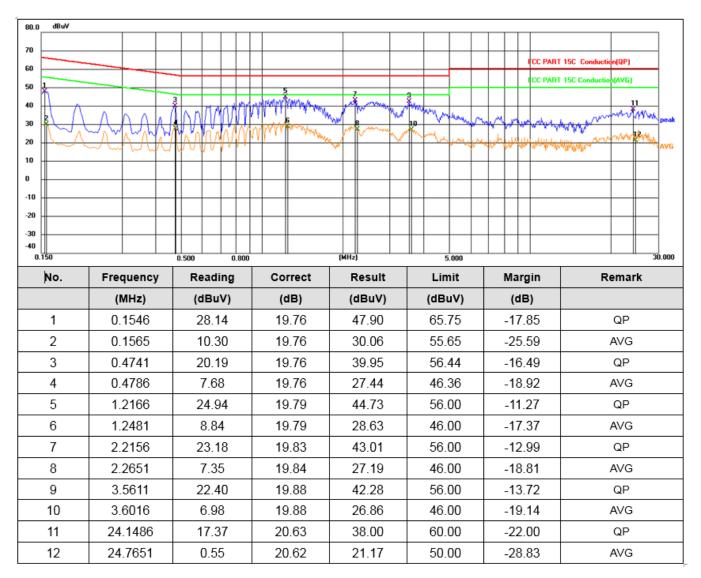
6.2. Standard Applicable

According to §15.207: For all the consumer devices which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limits (d	lBμV)
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

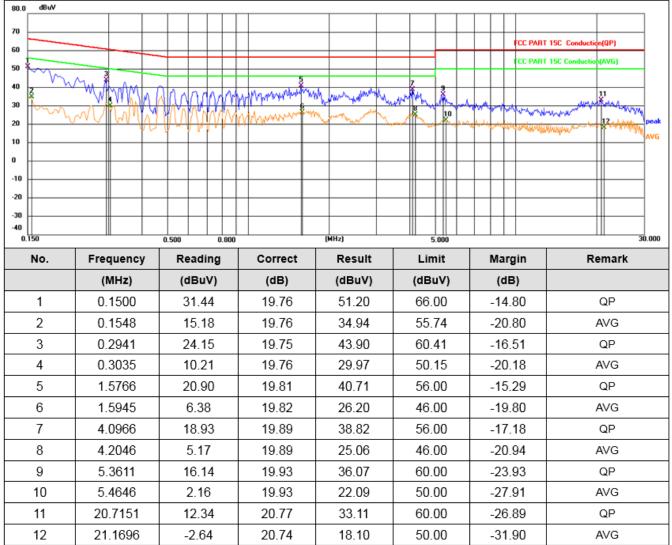
* Decreasing linearly with the logarithm of the frequency

6.3 Test Results

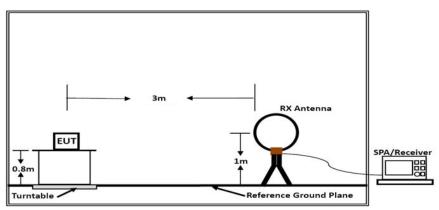

PASS

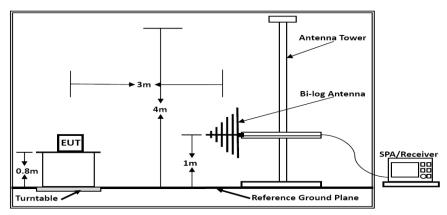
The test data please refer to following page.

Temperature	22.7°C	Humidity	53.7%
Test Engineer	Monkey Li	Configurations	Transmit

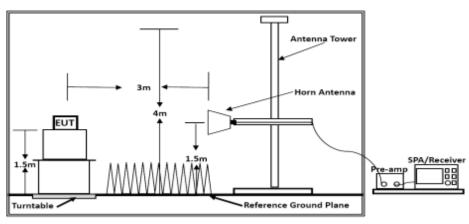

AC Power Line Conducted Emission (Power input to adapter @ AC 120V/60Hz (Worst Case))

Line


Neutral


***Note: Pre-scan all modes and recorded the worst case results in this report. Margin=Reading level + Correct - Limit

7. RADIATED EMISSION MEASUREMENT


7.1. Block Diagram of Test Setup

Below 30MHz

Below 1GHz

Above 1GHz

7.2. Radiated Emission Limit

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

7.3. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

(1) Setup the EUT as shown in Section 7.1.

(2) Let the EUT work in worst test mode (Mode 1) and measure it.

7.5. Measuring Setting

The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP/Average
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP/Average
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

7.6. Test Procedure

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

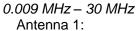
Final measurement:

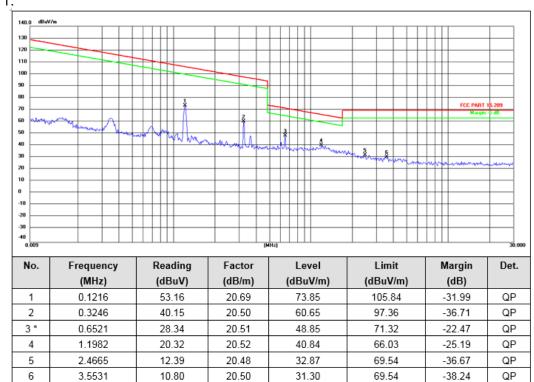
--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

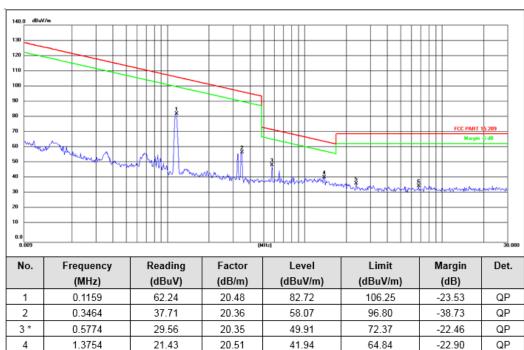

7.7. Test Results


PASS.

Only report the worst test data (Mode 1) in test report;

The test data please refer to following page:

Temperature	23.7°C	Humidity	52.3%
Test Engineer	Monkey Li	Configurations	Transmit



5

6

2.3684

6.7988

38.00

36.43

69.54

69.54

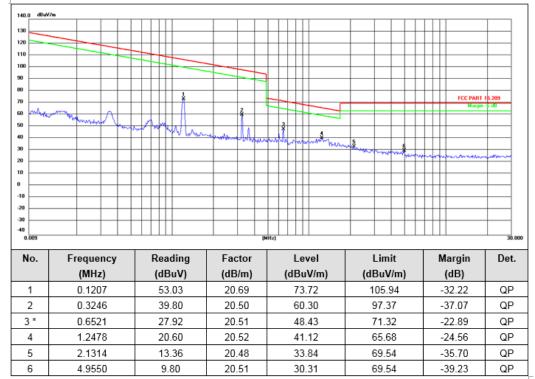
QP

QP

-31.54

-33.11

17.59


15.88

20.41

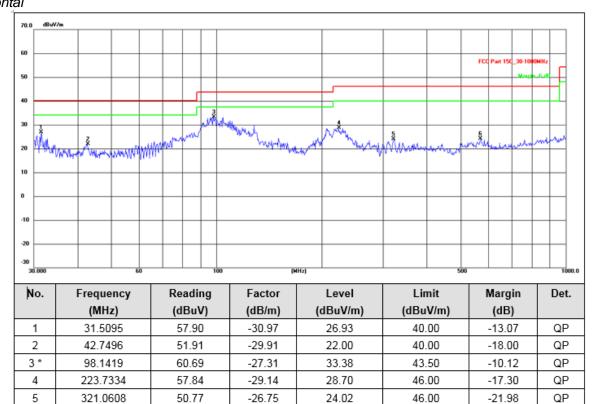
20.55

Antenna 3:

Remark: 1). Measured at antenna position 0 degree and 90 degree, recorded worst case at 0 degree. 2). Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Shenzhen LCS Compliance Testing Laboratory Ltd. FCC ID: 2AODN-C3 Report No.: LCS211013017AEA

Horizontal

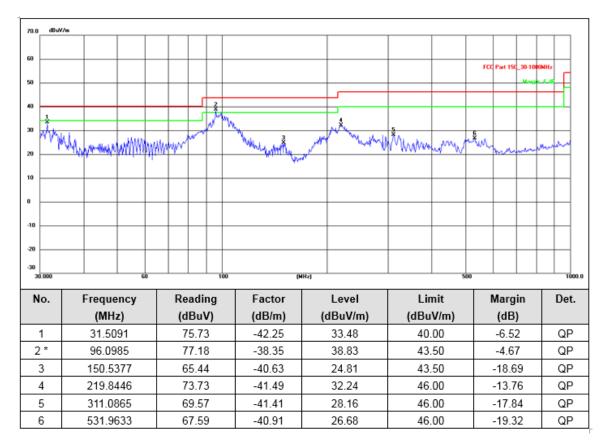

6

570.6100

46.46

-22.29

24.17



46.00

-21.83

QP



1). Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

2). Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

8. 20 DB BANDWIDTH MEASUREMENT

8.1. Block Diagram of Test Setup

8.2. Test Procedure

Use the following spectrum analyzer settings:

Span = Auto

RBW = 100Hz

VBW = 100Hz

Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

8.3. Test Results

	Test Result Of 99% and 20dB Bandwidth Measurement		
	Test Frequency 20dB Bandwidth Limit		Limit
	(MHz)	(kHz)	(KHz)
Antenna 1	0.1481	0.371	Non-Specified
Antenna 2	0.1275	0.287	Non-Specified
Antenna 3	0.1758	0.245	Non-Specified

Result: Pass

Please refer to the following page for test plot.

Test plot of 99% and 20 dB Bandwidth Measurement							
Agilent Spectrum Analyzer - Occupied BW		ALIGNAUTO 03:44:24PM Oct 30, 2021		Keysight Spectrum Analyzer - Occupied BW RF 50 Ω AC	SENSE:INT	ALIGN AUTO 05:09:47 PM Nov 02, 2021	
x dB -20.00 dB	Center Freq: 148.140 kHz	Radio Std: None	Meas Setup	Span 500.00 Hz	Center Freq: 127.490 Trig: Free Run	kHz Radio Std: None Avg Hold: 10/10	Span
#IFC	Trig: Free Run Avg Hold: Sain:Low #Atten: 0 dB	10/10 Radio Device: BTS	Avg/Hold Num	#1F	Gain:Low #Atten: 10 dB	Radio Device: BTS	Span
		Mkr1 148.1535 kHz	10 On Off			Mkr1 127.494 kHz	
10 dB/div Ref -30.00 dBm		-82.079 dBm		10 dB/div Ref -30.00 dBm		-49.216 dBm	
-40.0			Avg Mode	-40.0	1		
-50.0			Exp Repeat	-50.0			
-60.0				-60.0			
-70.0	▲ ¹			-70.0			Full Span
-80.0				-90.0			r un opan
-100				-100			
-110			OBWPower	-110			
-120			99.00 %	-120			
Center 148.1 kHz		Span 500 Hz		Center 127.5 kHz		Span 500 Hz	
#Res BW 100 Hz	#VBW 100 Hz	Sweep FFT		#Res BW 100 Hz	#VBW 100 H		Last Span
Occupied Bondwidth	Total Power	-82.1 dBm		Occupied Bandwidth	Total P	ower -49.1 dBm	
Occupied Bandwidth	315 Hz	-02. I GDIII		Occupied Bandwidth	290 Hz		
	315 HZ		x dB		290 82		
Transmit Freq Error	22 Hz OBW Power	99.00 %	-20.00 dB	Transmit Freq Error	0 Hz OBW P	ower 99.00 %	
x dB Bandwidth	371 Hz x dB	-20.00 dB		x dB Bandwidth	287 Hz x dB	-20.00 dB	
			More				
			1 of 2				
MSG		STATUS AC coupled: Accy u		MSG		STATUS 🔥 AC coupled: Accy	Land a station of the state of
mou.	0 4 40 4 1 4		mou	0 10 75		Inspecial < Town2	
0.1481 MHz					0.1275	MHZ	
Agilent Spectrum Analyzer - Occupied BW	craice and	LIGNAUTO 11:35:50 AMNov 15, 2021					
Center Freq 175.830 kHz	Center Freq: 175.830 kHz	Radio Std: None	Frequency				
	Gain:Low #Atten:0 dB	Radio Device: BTS					
		Mkr1 175.829 kHz					
10 dB/div Ref 20.00 dBm		-32.367 dBm					
10.0			Center Freq				
0.00			175.830 kHz				
-10.0							
-20.0	<u>_1</u>						
40.0							
-50.0							
-60.0					/		
-70.0					/		
Center 175.8 kHz		Span 300 Hz					
#Res BW 100 Hz	#VBW 100 Hz	Sweep FFT	CF Step 30 Hz				
Occupied Bandwidth	Total Power	-32.4 dBm	Auto Man				
Occupied Bandwidth	207 Hz	dear dent					
			Freq Offset				
Transmit Freq Error	0 Hz OBW Power	99.00 %	0 Hz				
x dB Bandwidth	245 Hz x dB	-20.00 dB					
					1		
0.1758 MHz					/		

9. PHOTOGRAPHS OF TEST SETUP

Please refer to separated files for Test Setup Photos of the EUT.

10. EXTERNAL PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

11. INTERNAL PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT------