

FCC SAR TEST REPORT

Report No: STS1711176H01

Issued for

Fujian Crony Electronics Co.,Ltd.

Changxin Industrial Estate, Dongyuan Town, Quanzhou City, Fujian Province, China.

Product Name:	FRS/Public walkie talkie
Brand Name:	CRONY
Model Name:	T-358
Series Model:	N/A
FCC ID:	2AODKT-358
Took Standards	IEEE 1528: 2013
Test Standard:	47CFR §2.1093
Max. Report	Face up : 0.060 W/kg
SAR (1g):	Body touch: 0.162 W/kg

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, All Test Data Presented in this report is only applicable to presented rest sample.

Test Report Certification

Applicant's name Fujian Crony Electronics Co.,Ltd.

Address Changxin Industrial Estate, Dongyuan Town, Quanzhou City,

Fujian Province, China.

Manufacture's Name Fujian Crony Electronics Co., Ltd.

Address Changxin Industrial Estate, Dongyuan Town, Quanzhou City,

Fujian Province, China.

Product description

Product name: FRS/Public walkie talkie

Brand Name.....: CRONY

Model name: T-358

Series Model..... N/A

Standards IEEE 1528:2013

47CFR §2.1093

The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test:

Date of Issue 06 Dec. 2017

Test Result..... Pass

Testing Engineer : Jan 13u

(Aaron Bu)

Technical Manager:

(John Zou)

Authorized Signatory:

(Vita Li)

Table of Contents

1.General Information	4
1.1 EUT Description	4
1.2 Test Environment	5
1.3 Test Factory	5
2.Test Standards And Limits	6
3. SAR Measurement System	7
3.1 Definition Of Specific Absorption Rate (SAR)	7
3.2 SAR System	7
4. Tissue Simulating Liquids	10
4.1 Simulating Liquids Parameter Check	10
5. SAR System Validation	12
5.1 Validation System	12
5.2 Validation Result	12
6. SAR Evaluation Procedures	13
7. EUT Test Position	14
7.1 Body mode exposure position condition	14
8. Uncertainty	15
8.1 Measurement Uncertainty	15
8.2 System validation Uncertainty	17
9. Conducted Power Measurement	19
Test Result	19
10. EUT And Test Setup Photo	20
10.1 EUT Photo	20
10.2 Setup Photo	23
11. SAR Result Summary	25
12. Equipment List	26
Appendix A. System Validation Plots	27
Appendix B. SAR Test Plots	31
Appendix C. Probe Calibration And Dipole Calibration Report	33

1.General Information 1.1 EUT Description

Equipment	FRS/Public walkie talkie							
Brand Name	CRONY	CRONY						
Model name	T-358							
Series Model	N/A							
FCC ID	2AODKT-3	58						
Model Difference	N/A							
Adapter	N/A							
Battery	Rated Volta	ge: 6V;						
Device Category	Portable							
Product stage	Production unit							
RF Exposure Environment	General Population / Uncontrolled							
Hardware Version	V1.0							
Software Version	V1.0							
Frequency Range	FRS			462.5500MHz~4				
1 11 17 18 91	FRS			467.5625MHz~4				
Channel Spacing	FRS				:.5KHz			
	FRS 25KHz							
Max. Reported	with 50%	Mode	Mode Fa		Body touch (W/kg)			
SAR(1g):	(1a): duty cycle FRS			0.060	0.162			
(-3)-		FRS		0.040	0.111			
Modulation Type:	FM							
Motor								

Note:

^{1.} The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (°C)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

Shenzhen STS Test Services Co., Ltd.

Add.: 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road,

Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

CNAS Registration No.: L7649 FCC Registration No.: 625569 IC Registration No.: 12108A A2LA Certificate No.: 4338.01

2.Test Standards And Limits

	Otaliaalas Alia Ellilits	
No.	Identity	Document Title
1	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
2	Health Canada's Safety Code 6	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3KHz to 300 GHz - Safety Code 6 (2009)
3	RSS 102 Issue 5,March 2015	Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
4	KDB 447498 D01 v06	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
5	KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	KDB 865664 D02 v01r02	RF Exposure Reporting

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg

3. SAR Measurement System

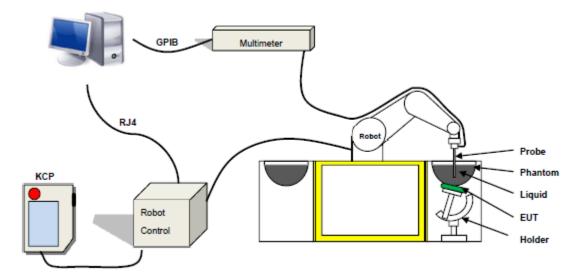
3.1 Definition Of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue,

ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 45/15 EPGO281 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter: 2.5 mm
- Length of Individual Dipoles: 2 mm
- Maximum external diameter: 8 mm
- Distance between dipole/probe extremity: 8 mm (repeatability better than +/- 1mm)
- Probe linearity: 0±2.60%(0.11dB)
- Axial Isotropy: < 0.25 dB
- Spherical Isotropy: < 0.25 dB
- Calibration range: 450 MHz to 6 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure-MVG COMOSAR Dosimetric E field Dipole

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

Figure-SN 32/14 SAM115

Figure-SN 32/14 SAM116

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

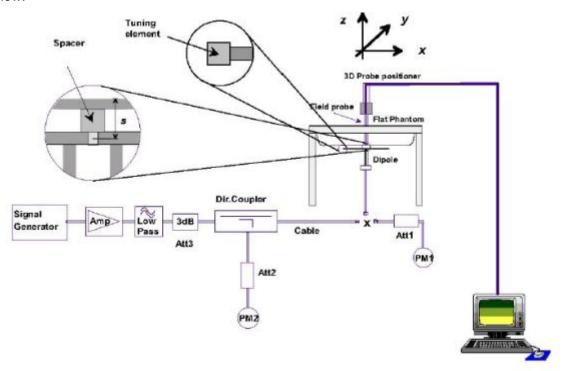
Frequency	Bactericide	DGBE	HEC	NaCl	Sucrose	1,2-Propan ediol	X100	Water	Conductivity	Permittivity
(MHz)	%	%	%	%	%	%	%	%	σ	εr
450	0.19		0.98	3.95	56.32			38.56	0.85	43.4
750	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
835	/	/	/	0.79		64.81	/	34.40	0.97	41.8
900	/	/	1	0.79	1	64.81	/	34.40	0.97	41.8
1800	/	13.84	1	0.35	/	1	30.45	55.36	1.38	41.0
1900	/	13.84	1	0.35	/	/	30.45	55.36	1.38	41.0
2000	1	7.99	1	0.16	/	/	19.97	71.88	1.55	41.1
2450	1	7.99	/	0.16	1	1	19.97	71.88	1.88	40.3
2600	1	7.99	1	0.16	1	1	19.97	71.88	1.88	40.3

Tissue dielectric parameters for head and body phantoms							
Frequency	3	ir	σ S/m				
	Head	Body	Head	Body			
300	45.3	58.2	0.87	0.92			
450	43.5	56.7	0.87	0.94			
900	41.5	55.0	0.97	1.05			
1450	40.5	54.0	1.20	1.30			
1800	40.0	53.3	1.40	1.52			
2450	39.2	52.7	1.80	1.95			
3000	38.5	52.0	2.40	2.73			
5800	35.3	48.2	5.27	6.00			

LIQUID MEASUREMENT RESULTS

Doto	Ambient condition		Head Simulating Liquid		Parameters	Target	Measured	Deviation	Limited
Date	Temp. [°C]	Humidity [%]	Frequency	Temp. [°C]	•	raigei	Measured	[%]	[%]
2017-12-05	22.5	55	450 MHz	22.1	Permittivity:	43.50	43.42	-0.17	± 5
2017-12-03	05 22.5 55 4	450 IVID2 22.1		Conductivity	0.87	0.88	1.32	± 5	

Date		oient dition Humidity [%]	Body Simulating Liquid Frequency Temp. [°C1		Parameters	Target	Measured	Deviation [%]	Limited [%]
2017 12 05			450 MHz	[-,	Permittivity:	56.7	55.02	-2.97	± 5
2017-12-05	22.5 55 450 M	450 MHz 22.1		Conductivity	0.94	0.98	4.26	± 5	



5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %.

Freq.(MHz)	Power(mW)	Tested Value (W/Kg)	Normalized SAR (W/kg)	Target(W/Kg)	Tolerance(%)	Date
450 Head	100	0.457	4.57	4.58	-0.22	2017-12-05
450 Body	100	0.460	4.60	4.58	0.44	2017-12-05

Note: The tolerance limit of System validation ±10%.

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps: The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the FRS/Public walkie talkie and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan:

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR -distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r01 quoted below.

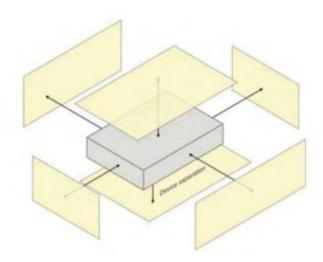
When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

7. EUT Test Position

This EUT was tested in Front Face and Rear Face.

Body-worn Position Conditions:

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative *test separation distance* configuration may be used to support both SAR conditions. When the *reported* SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.



7.1 Body mode exposure position condition

For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing function, the relevant hand and body exposure condition are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surface and edges with a transmitting antenna located within 25 mm form that surface or edge.

When form factor of a handset is smaller than 9cm x 5cm, a test separation distance of 5mm (instead of 10mm)is required for testing hotspot mode. When the separate distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration(surface).

8. Uncertainty

8.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

NO	Source	Tol(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	1gUi	10gUi	Veff
Meas	urement System□								
1	Probe calibration	5.8	N	1	1	1	5.8	5.8	8
2	Axial isotropy	3.5	R	√3	(1-cp) ^{1/2}	(1-cp) ^{1/2}	1.43	1.43	8
3	Hemispherical isotropy	5.9	R	√3	√C _p	$\sqrt{C_{ m p}}$	2.41	2.41	8
4	Boundary effect	1.0	R	√3	1	1	0.58	0.58	8
5	Linearity	4.7	R	√3	1	1	2.71	2.71	8
6	System Detection limits	1.0	R	√3	1	1	0.58	0.58	8
7	Readout electronics	0.5	N	1	1	1	0.50	0.50	8
8	Response time	0	R	√3	1	1	0	0	8
9	Integration time	1.4	R	√3	1	1	0.81	0.81	8
10	Ambient noise	3.0	R	√3	1	1	1.73	1.73	8
11	Ambient reflections	3.0	R	√3	1	1	1.73	1.73	8
12	Probe positioner mech. restrictions	1.4	R	√3	1	1	0.81	0.81	80
13	Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	80
14	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	80
Test s	ample related								
15	Device positioning	2.6	N	1	1	1	2.6	2.6	11

				Page 16 of 33 Repo		ort No.: STS1711176H01			
		ı	T	ı	T	ı		ı	
16	Device holder	3	N	1	1	1	3.0	3.0	7
17	Drift of output power	5.0	R	√3	1	1	2.89	2.89	8
Phantom and set-up									
18	Phantom uncertainty	4.0	R	√3	1	1	2.31	2.31	8
19	Liquid conductivity (target)	2.5	N	1	0.78	0.71	1.95	1.78	5
20	Liquid conductivity (meas)	4	N	1	0.23	0.26	0.92	1.04	5
21	Liquid Permittivity (target)	2.5	N	1	0.78	0.71	1.95	1.78	8
22	Liquid Permittivity (meas)	5.0	N	1	0.23	0.26	1.15	1.30	8
Comb	Combined standard RSS			U	$C_C = \sqrt{\sum_{i=1}^n C_i^2 U}$	2 i	10.63%	10.54%	
Expar (P=95	nded uncertainty %)	$U = k U_C$, k=2 21.26% 21.08%							

8.2 System validation Uncertainty

		ı				Т	ı		1
NO	Source	Tol(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	1gUi	10gUi	Veff
Meas	urement System□								
1	Probe calibration	5.8	N	1	1	1	5.8	5.8	&
2	Axial isotropy	3.5	R	√3	(1-cp) ^{1/2}	(1-cp) ^{1/2}	1.43	1.43	8
3	Hemispherical isotropy	5.9	R	√3	$\sqrt{C_p}$	√Cp	2.41	2.41	8
4	Boundary effect	1.0	R	√3	1	1	0.58	0.58	8
5	Linearity	4.7	R	√3	1	1	2.71	2.71	8
6	System Detection limits	1.0	R	√3	1	1	0.58	0.58	8
7	Modulation response	0	N	1	1	1	0	0	8
8	Readout electronics	0.5	N	1	1	1	0.50	0.50	8
9	Response time	0	R	√3	1	1	0	0	8
10	Integration time	1.4	R	√3	1	1	0.81	0.81	8
11	Ambient noise	3.0	R	√3	1	1	1.73	1.73	8
12	Ambient reflections	3.0	R	√3	1	1	1.73	1.73	8
13	Probe positioner mech. restrictions	1.4	R	√3	1	1	0.81	0.81	8
14	Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	8
15	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	8
Dipole	•								
16	Deviation of experimental source from	4	N	1	1	1	4.00	4.00	8

				Page 18	of 33	Repo	ort No.: S	STS17111	76H01
17	Input power and SAR drit measurement	5	R	√3	1	1	2.89	2.89	∞
18	Dipole Axis to liquid Distance	2	R	√3	1	1			8
Phant	Phantom and set-up								
19	Phantom uncertainty	4.0	R	√3	1	1	2.31	2.31	∞
20	Uncertainty in SAR correction for deviation(in	2.0	N	1	1	0.84	2	1.68	∞
21	Liquid conductivity (target)	2	N	1	1	0.84	2.00	1.68	80
22	Liquid conductivity (temperature uncertainty)	2.5	N	1	0.78	0.71	1.95	1.78	5
23	Liquid conductivity (meas)	4	N	1	0.23	0.26	0.92	1.04	5
24	Liquid Permittivity (target)	2.5	N	1	0.78	0.71	1.95	1.78	8
25	Liquid Permittivity (temperature uncertainty)	2.5	N	1	0.78	0.71	1.95	1.78	5
26	Liquid Permittivity (meas)	5.0	N	1	0.23	0.26	1.15	1.30	80
Comb	nined standard		RSS	u	$V_C = \sqrt{\sum_{i=1}^n C_i^2 U_i}$	2	10.15%	10.05%	

 $U=k\ U_{\scriptscriptstyle C}$,k=2

20.29%

20.10%

Expanded uncertainty (P=95%)

9. Conducted Power Measurement

Test Result

Modulation	Channel	Test	Transn	Tune up Power	
Туре	Separation	Channel	Rated High power level High		High power level
			(dBm)	(Watts)	(dBm)
EN4	12.5KHz	CH18	19.292	0.085	20
FM	25KHz	CH11	18.682	0.074	19

10. EUT And Test Setup Photo

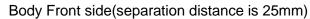
10.1 EUT Photo

Back side

Top side

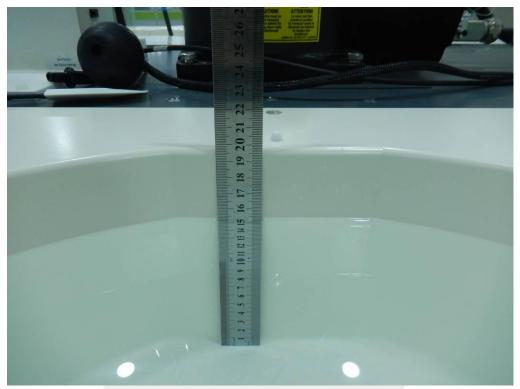
Bottom side

Left side



Right side

10.2 Setup Photo



Body Back side(separation distance is 0mm)

Liquid depth (15 cm)

11. SAR Result Summary

Summary of Measurement Result

	Cummary or modean orners recount							
Phantom Configurations	Frequency	Power Drift(%)	SAR 1g with 100% duty cycle (W/Kg)	SAR 1g with 50% duty cycle (W/Kg)	Scaling Factor	Scaling SAR (W/Kg)	Limit (W/Kg)	Meas. No.
Face up (2.5 cm Separation)	462.6250MHz	2.05	0.102	0.051	1.177	0.060	1.6	1
Face up (2.5 cm Separation)	467.6375MHz	-2.61	0.074	0.037	1.076	0.040	1.6	/
Back touch (direct)	462.6250MHz	1.13	0.276	0.138	1.177	0.162	1.6	2
Back touch (direct)	467.6375MHz	1.08	0.206	0.103	1.076	0.111	1.6	/

Note:

- When devices that are designed to operate on the body of users using lanyards and straps, or without requiring additional body-worn accessories, must be tested for SAR compliance using a conservative minimum test separation distance ≤ 5 mm to support compliance refer to KDB447498.
- 2. Except when area scan based 1-g SAR estimation applies, a zoom scan measurement is required at the highest peak SAR location determined in the area scan to determine the 1-g SAR. When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR refer to KDB865664D01v01r04.

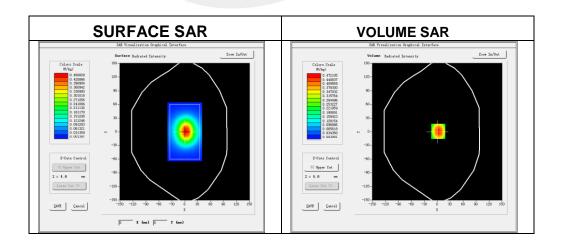
12. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
450MHz Dipole	MVG	SID450	SN 30/14 DIP0G450-330	2017.08.15	2020.08.14
E-Field Probe	MVG	SSE2	SN 45/15 EPGO281	2017.02.04	2018.02.03
Dielectric Probe Kit	MVG	SCLMP	SN 32/14 OCPG67	2017.12.03	2018.12.02
Antenna	MVG	ANTA3	SN 07/13 ZNTA52	N/A	N/A
Phantom1	MVG	SAM	SN 32/14 SAM115	2014.09.01	N/A
Phantom2	MVG	SAM	SN 32/14 SAM116	2014.09.01	N/A
Phone holder	MVG	N/A	SN 32/14 MSH97	2014.09.01	N/A
Laptop holder	MVG	N/A	SN 32/14 LSH29	2014.09.01	N/A
Network Analyzer	Agilent	8753ES	US38432810	2017.03.16	2018.03.15
Multi Meter	Keithley	Multi Meter 2000	4050073	2017.10.15	2018.10.14
Signal Generator	Agilent	N5182A	MY50140530	2017.10.15	2018.10.14
Wireless Communication Test Set	Agilent	8960-E5515C	MY48360751	2017.10.15	2018.10.14
Power Amplifier	DESAY	ZHL-42W	9638	2017.10.15	2018.10.14
Power Meter	R&S	NRP	100510	2017.10.15	2018.10.14
Power Meter	Agilent	E4418B	GB43312526	2017.10.15	2018.10.14
Power Sensor	R&S	NRP-Z11	101919	2017.10.15	2018.10.14
Power Sensor	Agilent	E9301A	MY41497725	2017.10.15	2018.10.14
9dB Attenuator	Agilent	99899	DC-18GHz	2017.05.10	2018.05.09
11dB Attenuator	Agilent	8494B	DC-18GHz	2017.05.10	2018.05.09
110dB Attenuator	Agilent	8494B	DC-18GHz	2017.05.10	2018.05.09
Dual Directional Coupler	Agilent	SHWPDI- 1080S	N/A	2017.05.09	2018.05.08
Temperature & Humitidy	MiEO	HH660	N/A	2017.10.18	2018.10.17

Appendix A. System Validation Plots

System Performance Check Data (450MHz Head)

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

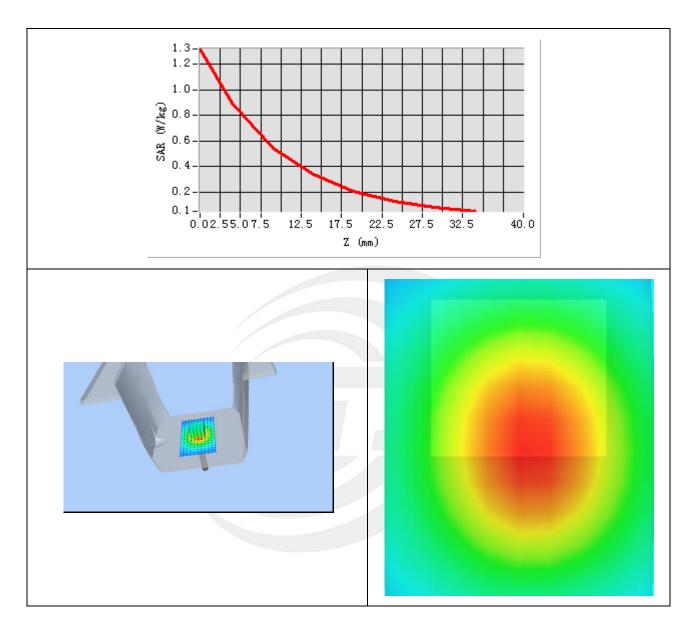

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017-12-05

Measurement duration: 14 minutes 13 seconds

Experimental conditions.

Probe				
Phantom	Validation plane			
Device Position	-			
Band	450MHz			
Channels	-			
Signal	CW			
Frequency (MHz)	450MHz			
Relative permittivity	43.42			
Conductivity (S/m)	0.88			
Power drift (%)	2.17			
Probe	SN 45/15 EPGO281			
ConvF:	1.76			
Crest factor:	1:1			

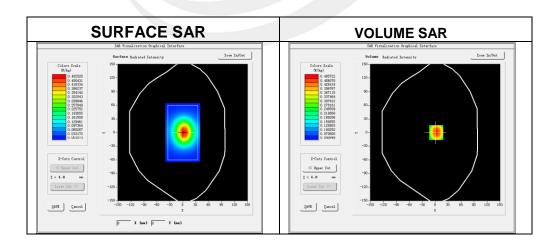

Maximum location: X=3.00, Y=0.00

SAR 10g (W/Kg)	0.308524
SAR 1g (W/Kg)	0.457228

Z Axis Scan

System Performance Check Data (450MHz Body)

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

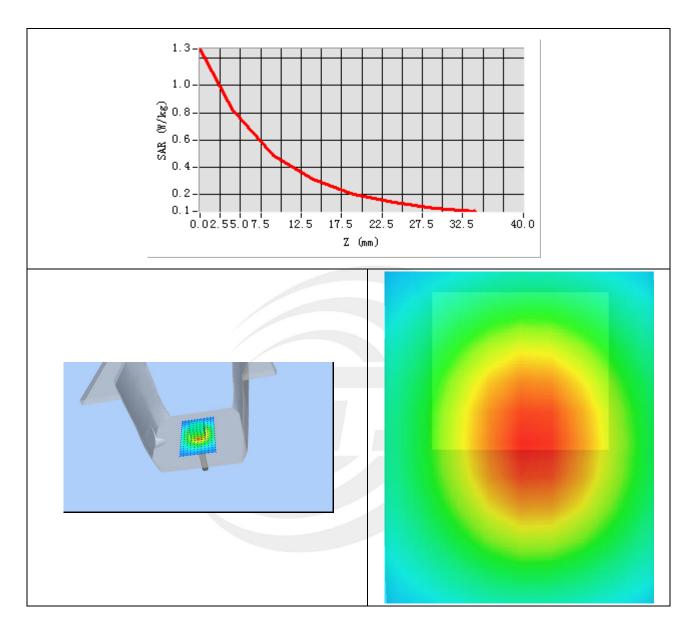

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2017-12-05

Measurement duration: 14 minutes 13 seconds

Experimental conditions.

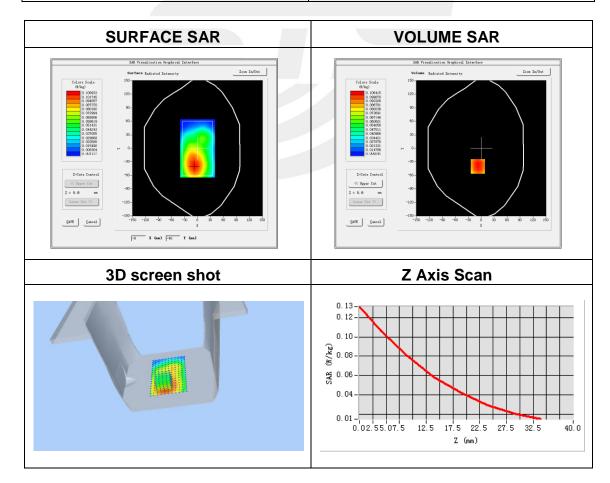
Probe			
Phantom	Validation plane		
Device Position	-		
Band	450MHz		
Channels	-		
Signal	CW		
Frequency (MHz)	450MHz		
Relative permittivity	55.02		
Conductivity (S/m)	0.98		
Power drift (%)	1.31		
Probe	SN 45/15 EPGO281		
ConvF:	1.81		
Crest factor:	1:1		



Maximum location: X=3.00, Y=1.00

SAR 10g (W/Kg)	0.311082
SAR 1g (W/Kg)	0.460375

Z Axis Scan


Appendix B. SAR Test Plots

Plot 1: DUT: FRS/Public walkie talkie; EUT Model: T-358

2017-12-05
SN 45/15 EPGO281
1.76
dx=8mm dy=8mm, h= 5.00 mm
5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Validation plane
Face up (2.5 cm Separation)
Crest factor: 1.0
462.6250
43.50
0.87
2.05

Maximum location: X=-8.00, Y=-40.00 SAR Peak: 0.13 W/kg

SAR 10g (W/Kg)	0.072756
SAR 1g (W/Kg)	0.102426



Plot 2: DUT: FRS/Public walkie talkie; EUT Model: T-358

Test Date	2017-12-05
Probe	SN 45/15 EPGO281
ConvF	1.81
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Back touch (direct)
Signal	Crest factor: 1.0
Frequency (MHz)	462.6250
Relative permittivity (real part)	56.70
Conductivity (S/m)	0.94
Variation (%)	1.13

Maximum location: X=16.00, Y=15.00 SAR Peak: 0.47 W/kg

SAR 10g (W/Kg)	0.147935
SAR 1g (W/Kg)	0.276248

Appendix C. Probe Calibration And Dipole Calibration Report

Refer the appendix Calibration Report.

