

RADIO TEST REPORT

S T S

A

Report No: STS1711176W01

Issued for

Fujian Crony Electronics Co.,Ltd.

Changxin Industrial Estate, Dongyuan Town, Quanzhou City, Fujian Province, China.

Product Name:	FRS/Public walkie talkie		
Brand Name:	CRONY		
Model Name:	T-358		
Series Model:	N/A		
FCC ID:	2AODKT-358		
Test Standard:	FCC Part 95		

Any reproduction of this document must be done in full. No single part of this document may be reproduced permission from STS, All Test Data Presented in this report is only applicable to presented test sample.

Report No.: STS1711176W01

TEST REPORT CERTIFICATION

Applicant's name	Fujian Crony Electronics Co.,Ltd.
Address	Changxin Industrial Estate, Dongyuan Town, Quanzhou City, Fujian Province, China.
Manufacture's Name:	Fujian Crony Electronics Co.,Ltd.
Address:	Changxin Industrial Estate, Dongyuan Town, Quanzhou City, Fujian Province, China.
Product description	
Product name:	FRS/Public walkie talkie
Brand name	CRONY
model Name:	T-358
Series model:	N/A
Test Standards	FCC Part 95

Test procedure.....: TIA-603-D-2010

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the IC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Date of performance of tests...... 16 Nov. 2017 ~ 24 Nov 2017

1

•

Date of Issue 27 Nov 2017

Test Result..... Pass

Testing Engineer

Technical Manager

Sean She

(Sean she) 1. hou (Hakim.hou)

Authorized Signatory :

(Vita Li)

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 3 of 38

Table of Contents

1.	SUMMARY OF TEST RESULTS	6
	1.1 TEST FACTORY	7
	1.2 MEASUREMENT UNCERTAINTY	7
2.	GENERAL INFORMATION	8
	2.1 GENERAL DESCRIPTION OF EUT	8
	2.2 DESCRIPTION OF TEST MODES	10
	2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
	2.4 DESCRIPTION OF SUPPORT UNITS	11
	2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	12
3.	FIELD STRENGTHS AND RADIATED SPURIOUS EMISSION	13
	3.1 RADIATED EMISSION LIMITS	13
	3.2 TEST PROCEDURE	14
	3.4 TEST RESULT	16
4.	SPURIOUS EMISSION ON ANTENNA PORT	18
	4.1 APPLIED PROCEDURES / LIMIT	18
	4.2 TEST PROCEDURE	18
	4.3 TEST SETUP	18
	4.4 EUT OPERATION CONDITIONS	19
5.	BANDWIDTH TEST	20
	5.1 APPLIED PROCEDURES / LIMIT	20
	5.2 TEST PROCEDURE	20
	5.3 TEST SETUP	20
	5.4 EUT OPERATION CONDITIONS	20
	5.5 TEST RESULTS	21
6.	TRANSMITTER OUTPUT POWER AND EFFECTIVE RADIATED POWER (E.R.P)	23
	6.1 APPLIED PROCEDURES / LIMIT	23
	6.2 TEST PROCEDURE	23
	6.3 TEST SETUP	24
	6.4 TEST RESULTS	24
7.	EMISSION MASK	25
	7.1 APPLIED PROCEDURES / LIMIT	25
	7.2 TEST PROCEDURE	25
	7.3 TEST SETUP	25

Page 4 of 38

Report No.: STS1711176W01

Table of Contents

7.4 EUT OPERATION CONDITIONS	25
7.5 TEST RESULT	26
8. FREQUENCY STABILITY	27
8.1 APPLIED PROCEDURES / LIMIT	27
8.2 TEST PROCEDURE	27
8.3 TEST SETUP	27
8.4 EUT OPERATION CONDITIONS	27
8.5 TEST RESULT	28
9. MODULATION LIMIT	29
9.1 APPLIED PROCEDURES / LIMIT	29
9.2 TEST PROCEDURE	29
9.3 TEST SETUP	29
9.4 TEST RESULT	30
10. AUDIO LOW PASS FILTER RESPONSE	32
10.1 APPLIED PROCEDURES / LIMIT	32
10.2 TEST PROCEDURE	32
10.3 TEST SETUP	32
10.4 TEST RESULT	33
11. AUDIO FREQUENCY RESPONSE	35
11.1 APPLIED PROCEDURES / LIMIT	35
11.2 TEST PROCEDURE	35
11.3 TEST SETUP	35
11.4 TEST SETUP	36
APPENDIX 1- PHOTOS OF TEST SETUP	38

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

Page 5 of 38

Report No.: STS1711176W01

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	27 Nov 2017	STS1711176W01	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part 95				
Standard Section	Test Item	Judgment	Remark	
FCC Part 95.567	Transmitter Output Power and Effective Radiated Power (e.r.p)	PASS		
FCC Part 95.573	Authorized Bandwidth	PASS		
FCC Part 95.579	Emission Mask	PASS		
FCC Part 95.579	Transmitter Radiated Spurious Emission	PASS		
FCC Part 95.579	Spurious Emission On Antenna Port	PASS		
FCC Part 95.565	Frequency Stability	PASS		
FCC Part 95.575	Audio low pass filter response	PASS		
FCC Part 95.575	Audio Frequency Response	PASS		
FCC Part 95.575	Modulation Requirements	PASS		

NOTE: (1)"N/A" denotes test is not applicable in this Test Report

(2) All tests are according to TIA-603-D-2010

Shenzhen STS Test Services Co., Ltd.

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China CNAS Registration No.: L7649; FCC Registration No.: 625569 IC Registration No.: 12108A; A2LA Certificate No.: 4338.01;

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\ k=2$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission (9KHz-150KHz)	±2.88dB
2	Conducted Emission (150KHz-30MHz)	±2.67dB
3	RF power, conducted	±0.71dB
4	Spurious emissions, conducted	±0.63dB
5	All emissions,radiated(<1G) 30MHz-200MHz	±2.83dB
6	All emissions,radiated(<1G) 200MHz-1000MHz	±2.94dB
8	All emissions,radiated(>1G)	±3.03dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Name	FRS/Public walkie talkie			
Brand Name	CRONY	CRONY		
Model Name	T-358			
Series Model	N/A			
Model Difference	N/A			
Operation Frequency	FRS	462.5500MHz~462.7250MHz		
Range:	гко	467.5625MHz~467.7125MHz		
Modulation Type	FRS FM			
emission types	FRS 8K39F3E			
Adapter	N/A			
Battery	Battery(rating): Rated Voltage: 1.5V*4=6V			
Hardware version number	V1.0			
Software version number	V1.0			
Connecting I/O Port(s)	Please refer to the User's Manual			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. Table for filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	CRONY	T-358	Integral Antenna	N/A	1.5	Antenna

The EUT antenna is internal Antenna. No antenna other than that furnished by the responsible party shall be used with the device.

3. Channel List

Channel	Frequency	Model	Channel	Frequency	Model
1	462.5625	FRS	12	467.6625	FRS
2	462.5875	FRS	13	467.6875	FRS
3	462.6125	FRS	14	467.7125	FRS
4	462.6375	FRS	15	462.5500	FRS
5	462.6625	FRS	16	462.5750	FRS
6	462.6875	FRS	17	462.6000	FRS
7	462.7125	FRS	18	462.6250	FRS
8	467.5625	FRS	19	462.6500	FRS
9	467.5875	FRS	20	462.6750	FRS
10	467.6125	FRS	21	462.7000	FRS
11	467.6375	FRS	22	462.7250	FRS

4. Test channel

Operation Mode	Channel Separation (kHz)	Test Channel	Test Frequency (MHz)
	12.5	CH18	462.6250
FRS	25	CH11	467.6375

Shenzhen STS Test Services Co., Ltd.

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	FRS CH18 TX Mode
Mode 2	FRS CH11 TX Mode

	For Radiated Emission				
Final Test Mode	al Test Mode Description				
Mode 1	FRS CH18 TX Mode				
Mode 2	FRS CH11 TX Mode				

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During test, Keep EUT is in continuous transmission mode, Both open button and closed button have been tested, The two keys were tested to assess and only record the worst case in the report(Open botton).

E-1	
EUT	

Page 11 of 38

2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
N/A	N/A	N/A	N/A	N/A	N/A

ltem	Shielded Type	Ferrite Core	Length	Note
N/A	N/A	N/A	N/A	N/A

Note:

(1)The support equipment was authorized by Declaration of Confirmation.

(2)For detachable type I/O cable should be specified the length in cm in ^[]Length ^[] column.

Report No.: STS1711176W01

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until				
Test Receiver	R&S	ESCI	101427	2017.10.15	2018.10.14				
Bilog Antenna	TESEQ	CBL6111D	34678	2017.03.24	2018.03.23				
Horn Antenna	Schwarzbeck	BBHA 9120D(1201)	9120D-1343	2017.03.06	2018.03.05				
Loop Antenna	EMCO	6502	9003-2485	N/A	N/A				
Pre-mplifier (0.1M-3GHz)	EM	EM330	60538	2017.03.12	2018.03.11				
PreAmplifier (1G-26.5GHz)	Agilent	8449B	60538	2017.10.15	2018.10.14				
Low frequency cable	EM	R01	N/A	2017.03.12	2018.03.11				
Low frequency cable	EM	R06	N/A	2017.03.12	2018.03.11				
High frequency cable	SCHWARZBECK	AK9515H	SN-96286/9628 7	2017.03.12	2018.03.11				
Semi-anechoic chamber	Changling	966	N/A	2017.10.15	2018.10.14				
Signal Analyzer	Agilent	N9020A	MY49100060	2017.03.11	2018.03.10				
RF COMMUNICATION TEST SET	HP	N8920A	348A05658	2017.10.15	2018.10.14				

Radiation Test equipment

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

3. FIELD STRENGTHS AND RADIATED SPURIOUS EMISSION

3.1 RADIATED EMISSION LIMITS

In measuring unwanted emissions, the spectrum shall be investigated from 30 MHz or the lowest radio frequency signal generated in the equipment, whichever is lower, without going below 9 kHz, up to at least the frequency given below:

(a) If the equipment operates below 10 GHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(b) If the equipment operates at or above 10 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

Particular attention should be paid to harmonics and sub-harmonics of the carrier frequency, as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value need not be reported.

43 + 10 log (Pwatts)

Calculation: Limit (dBm) =EL-43-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is P(dBm).

Limit (dBm) = P(dBm)-43-10 log (Pwatts) = -13 dBm

Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	10th carrier harmonic

Page 14 of 38

3.2 TEST PROCEDURE

- EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and BW=100kHz,VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of thesubstitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test. The measurement results are obtained as described below:

Power(EIRP)= P_{Mea} - P_{Ag} - P_{cl} + G_a We used signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)= P_{Mea} - P_{cl} + G_a

- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi

Page 15 of 38

3.3 TEST SETUP

4.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: STS1711176W01

3.4 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	60%
Pressure :	1010hPa	Phase :	N/A
Test Mode :	Mode 1		

462.6250MHz-FRS										
Frequency	Meter	Loss	Antenna	Orrected	Corrected			RX Antenna		
	Reading		Factor	Factor	Amplitude	Limit	Margin	Polar		
(MHz)	(dBµV/m)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(H/V)		
49.248	-45.27	1.71	16.61	14.90	-30.37	-13	-17.37	Н		
49.248	-44.48	1.71	16.61	14.90	-29.58	-13	-16.58	V		
316.983	-41.54	2.89	18.23	15.34	-26.20	-13	-13.20	Н		
316.983	-40.73	2.89	18.23	15.34	-25.39	-13	-12.39	V		
925.658	-39.18	4.12	19.56	15.44	-23.74	-13	-10.74	Н		
925.658	-38.36	4.12	19.56	15.44	-22.92	-13	-9.92	V		
1388.276	-44.41	6.83	21.26	14.43	-29.98	-13	-16.98	Н		
1388.276	-43.58	6.83	21.26	14.43	-29.15	-13	-16.15	V		
2746.780	-45.17	7.95	28.35	20.40	-24.77	-13	-11.77	Н		
2746.780	-44.38	7.95	28.35	20.40	-23.98	-13	-10.98	V		
4212.597	-46.56	8.12	30.29	22.17	-24.39	-13	-11.39	Н		
4212.597	-45.76	8.12	30.29	22.17	-23.59	-13	-10.59	V		

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 17 of 38

Temperature :	26 °C	Relative Humidity :	60%
Pressure :	1010hPa	Phase :	N/A
Test Mode :	Mode 2		

467.6375MHz-FRS										
Frequency	Meter Lo	Loss	Antenna	Orrected	Corrected			RX Antenna		
	Reading		Factor	Factor	Amplitude	Limit	Margin	Polar		
(MHz)	(dBµV/m)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(H/V)		
49.705	-45.32	1.71	16.61	14.90	-30.42	-13	-17.42	Н		
49.705	-45.09	1.71	16.61	14.90	-30.19	-13	-17.19	V		
317.098	-41.53	2.89	18.23	15.34	-26.19	-13	-13.19	Н		
317.098	-41.35	2.89	18.23	15.34	-26.01	-13	-13.01	V		
935.834	-39.15	4.12	19.56	15.44	-23.71	-13	-10.71	Н		
935.834	-38.94	4.12	19.56	15.44	-23.50	-13	-10.50	V		
1403.733	-44.42	6.83	21.26	14.43	-29.99	-13	-16.99	Н		
1403.733	-44.21	6.83	21.26	14.43	-29.78	-13	-16.78	V		
2748.785	-45.17	7.95	28.35	20.40	-24.77	-13	-11.77	Н		
2748.785	-44.97	7.95	28.35	20.40	-24.57	-13	-11.57	V		
4213.216	-46.56	8.12	30.29	22.17	-24.39	-13	-11.39	Н		
4213.216	-46.37	8.12	30.29	22.17	-24.20	-13	-11.20	V		

Page 18 of 38

4. SPURIOUS EMISSION ON ANTENNA PORT

4.1 APPLIED PROCEDURES / LIMIT

43 + 10 log (Pwatts) Calculation: Limit (dBm) =EL-43-10log10 (TP) Notes: EL is the emission level of the Output Power expressed in dBm, In this application, the EL is P(dBm). Limit (dBm) = P(dBm)-43-10 log (Pwatts) = -13 dBm 4.2 TEST PROCEDURE

1. The EUT was modulated by 2.5kHz sine wave audio signal; the level of the audio signal employed is 16dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5kHz and 5kHz).

2. Spectrum set as follow:

Centre frequency = fundamental frequency, span=50kHz,

RBW=100Hz, VBW=300Hz, Sweep = auto, Detector function = peak, Trace = max hold

3. Set 99% Occupied Bandwidth and 26dB Occupied Bandwidth

4. Measure and record the results in the test report.

4.3 TEST SETUP

Shenzhen STS Test Services Co., Ltd.

Page 19 of 38

4.4 EUT OPERATION CONDITIONS TX mode.

						c c.			
	10/30/11 AMNov 24, 2017	ALIGNALITO	.	SENSEDU		yzer - Swept SA	pe	mt Spec	Agiler
Marker	TRACE 1 2 3 4 5 6	Type: Log-Pwr	Avg	SENSE, POL	MHz	390000000	1 462	rker	Mar
Select Marker	DET P N N N N	loid:>100/100	n Avgj	Trig: Free Rui Atten: 40 dB	PNO: Fast 🖵 IFGain:Low		1 402	inter	mai
 	r1 462.39 MHz 14.408 dBm	Mk				28.50 dBm	Rei	dB/div	10 dl
Normal								5 0	18.5 8.50
	-13 00 dBm								-1.50
Delta						$\langle \rangle^2$		5	-11.5
	anala da ana ang kang kang kang kang kang kang	Hand and the states of the	when the second	and an an an and an and and	\sim $\sqrt{3}$	matural		5	-31.5 -41.5
Fixed▷								5	-51.5 -61.5
Ofi	Stop 5.000 GHz 333 ms (1001 pts)	Sweep 8.	FUNCTION	3.0 MHz	#VBW	Hz	MHz N 1.0 P	urt 30 es Bl	Star #Re
Properties►		FUNCTION WIDTH	FUNCTION	14.408 dBm -24.169 dBm -40.631 dBm	62.39 MHz 24.60 MHz 04 29 GHz	46 92 1.80	1 f 1 f 1 f	N N N	1 2 3 4 5
More 1 of 2	~								7 8 9 10 11
		STATUS							MSG

CH18

Page 20 of 38

5. BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

FRS:

The authorized bandwidth for an FRS unit is 12.5 kHz..

5.2 TEST PROCEDURE

1. The EUT was modulated by 2.5kHz sine wave audio signal; the level of the audio signal employed is 16dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5kHz and 5kHz).

2. Spectrum set as follow:

Centre frequency = fundamental frequency, span=50kHz,

RBW=100Hz, VBW=300Hz, Sweep = auto, Detector function = peak, Trace = max hold 3. Set 99% Occupied Bandwidth and 26dB Occupied Bandwidth

4. Measure and record the results in the test report.

5.3 TEST SETUP

5.4 EUT OPERATION CONDITIONS

TX mode.

5.5 TEST RESULTS

Operation Mode		Occupied Ba	ndwidth(KHz)		Result	
	Test Channel	99%	26dB	Limit(kHz)		
FRS	CH18	8.351	10.560	≤12.5	Pass	
FRS	CH11	8.386	10.51	≤12.5	Pass	

CH18

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

Page 22 of 38

CH11

Agile	nt Spec	trum A	nalyze	r - Occi	upied B	W																			
L)XI	L	R	F	50 Ω	AC					SEN	ISE:INT				ALI	IGN AU	ТО	05:53:	24 PI	MNov	24,2017	7	Fred	LIADCV	
Cer	nter I	Freq	467	.637	500	MHz			Cente	er Fr	eq:46	7.637	7500 N	1Hz	1~11	01/10		Radio	Std:	Non	e		Ticq	ucificy	
						#IFG	ain:Lov	∽∽	#Atter	n: 10	dB				IX	0/10		Radio I	Dev	ice: E	BTS				
10 d	B/div		Ref	20.00	dBr	n																			
10.0																							Ce	nter Fre	-n
0.00										~	<u> </u>											.	467.63	37500 Mł	-IZ
-10.0									1	^	\sim	\backslash													_
-10.0								/	7			1													
20.0														_											
-30.0							\bigwedge							\mathcal{A}											
-40.0						~	1							1	4										
-00.0	\sim	mm		ww	/~~~	~~~										Contraction of the second	7	\sim	\sim	w	~~~				
-80.0																									
-70.0																								CF Ste	эp
Cer	nter 4	467.6	MH2	z														5	Spa	ın 5	0 kHz	Aut	0	5.000 kł Ma	-Iz an
#Re	es BV	V 1 k	Hz						#	ŸВ	WЗ	kH:	z					Swee	p	61.7	73 ms		-		
c	Ccu	oie	d Ba	andv	widt	h																	Fr	ea Offs	et
		••••				8.3	86	k⊦	Ιz															01	Ηz
Т	rans	mit	Freq	Erro	or			99	Hz		OB	N F	ow	ər			99	.00 %	5						
x	dB	Band	dwid	th			10.5	51 k	Hz		x dl	в				-2	26.0	00 dB	5						
MSG																STA	TUS								-

Shenzhen STS Test Services Co., Ltd.

6. TRANSMITTER OUTPUT POWER AND EFFECTIVE RADIATED POWER (E.R.P)

6.1 APPLIED PROCEDURES / LIMIT

FRS:

The maximum permissible transmitted ERP of the equipment under any operating conditions shall not exceed 0.5 W

6.2 TEST PROCEDURE

- 1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and BW=100kHz,VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of thesubstitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=P_{Mea}- P_{Ag} - P_{cl} + G_a

We used signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)= P_{Mea} - P_{cl} + G_a

- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi

Page 24 of 38

6.3 TEST SETUP

^{6.4} TEST RESULTS

Operation	Test	polarity	Measured ERP	Limit	Result	
Mode	Channel		(dBm)	(dBm)	rtoout	
	0.140	Horizontal	16.654	33.01	Pass	
FRS	CH18	Vertical	17.792	33.01	Pass	
-50	0.144	Horizontal	15.939	27.00	Pass	
FRS	CH11	Vertical	17.182	27.00	Pass	

Page 25 of 38

7. EMISSION MASK

7.1 APPLIED PROCEDURES / LIMIT

FRS:

a. 25 dB, measured with a bandwidth of 300 Hz, in the band 6.25 kHz to 12.5 kHz removed from the channel centre frequency;

b. 35 dB, measured with a bandwidth of 300 Hz, in the band 12.5 kHz to 31.25 kHz removed from the channel centre frequency; and

c. 43 dB + 10 \log_{10} (transmitter power in watts) dB, measured with a bandwidth of 30 kHz for frequencies beyond 31.25 kHz removed from the channel centre frequency.

7.2 TEST PROCEDURE

1. Connect the equipment as illustrated

2. Spectrum set as follow:

Centre frequency = fundamental frequency, span=125kHz for 12.5kHz channel spacing,

RBW=300Hz, VBW=1000Hz, Sweep = auto,

Detector function = peak, Trace = max hold

3. Key the transmitter, and set the level of the unmodulated carrier to a full scale reference line. This is the 0dB reference for the measurement

4. Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of rated system deviation(Rated system deviation is 2.5 kHz for 12.5kHz channel spacing). The input level shall be established at the frequency of maximum response of the audio modulating circuit. Transmitters employing digital modulation techniques that bypass the limiter and the audio low-pass filter shall be modulated as specified by the manufacturer

5. Measure and record the results in the test report

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS

TX mode.

7.5 TEST RESULT

Agilent Spectrum Annov L RF SO & AC Marker 1 462.637200000 MHz PNO: Close IFGain:Low nt Spectrum Analyzer - Swept SA lov 24, 2017 Peak Search Avg Type: Log-Pwr Avg|Hold: 29/100 RACE 1 2 3 4 5 1 TYPE M WWWWWW DET P N N N N Trig: Free Run Atten: 40 dB Mkr1 462.637 2 MHz 12.799 dBm Next Peak 10 dB/div Log Ref 30.00 dBm Next Pk Right 20. 10.0 Next Pk Lef 0.00 M Marker Delta -20.1 30. Mkr→CF -40.1 -50.1 Mkr→RefLv holowanteronality 11444 hours MAM WWW W More Span 100.0 kHz Sweep 1.026 s (1001 pts) Center 462.63750 MHz #Res BW 300 Hz 1 of 2 #VBW 3.0 kHz STATUS

CH18

CH11

Page 27 of 38

8. FREQUENCY STABILITY

8.1 APPLIED PROCEDURES / LIMIT

The carrier frequency stability shall be better than ±5 ppm

8.2 TEST PROCEDURE

1. The frequency stability shall be measured with variation of ambient temperature from -30 $^\circ\!C$ to +50 $^\circ\!C$

2. For battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.

3. Vary primary supply voltage from 3.06V to 4.14V.

4. The EUT was set in the climate chamber and connected to an external DC power supply. The RF output was directly connected to Spectrum Analyzer The coupling loss of the additional cables was recorded and taken in account for all the measurements. After temperature stabilization (approx. 20 min for each stage), the frequency for the lower, the middle and the highest frequency range was recorded. For Frequency stability Vs. Voltage the EUT was connected to a DC power supply and the voltage was adjusted in the required ranges. The result was recorded

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

TX mode.

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

Page 28 of 38

Report No.: STS1711176W01

8.5 TEST RESULT

FRS							
Test conditions		Frequency error (ppm)	Limit (ppm)	Result			
Voltage(V)	Voltage(V) Temp(℃)						
	-30	0.53					
	-20	0.76					
	-10	0.63					
	0	0.62					
6.0	10	0.95	0.5	Pass			
	20	0.87	±2.5				
	30	0.77					
	40	0.46					
	50	0.6					
5.1	20	0.96					
6.9 20		0.92					

FRS							
Test conditions		Frequency error (ppm)	Limit (ppm)	Result			
Voltage(V)	Voltage(V) Temp(℃)						
	-30	0.59					
	-20	0.74					
	-10	0.63					
	0	0.59					
6.0	10	0.93	.05	Pass			
	20	0.92	±2.5				
	30	0.83					
	40	0.48					
	50	0.95					
5.1	20	0.81					
6.9	20	0.84					

Page 29 of 38

9. MODULATION LIMIT

9.1 APPLIED PROCEDURES / LIMIT

FRS:

The peak frequency deviation shall not exceed ±2.5 kHz

9.2 TEST PROCEDURE

1. Connect the equipment as illustrated.

2. Adjust the transmitter per the manufacturer's procedure for full rated system deviation

3. Set the test receiver to measure peak positive deviation. Set the audio bandwidth for \leq 0.25 Hz

to \geq 15,000 Hz. Turn the de-emphasis function off

4. Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation, this level is as a reference (0dB) and vary the input level from –20 to +20dB.

5. Measure both the instantaneous and steady-state deviation at and after the time of increasing the audio input level

6. Repeat step 4-5 with input frequency changing to 300Hz, 1004Hz, 1500Hz and 2500Hz in sequence.

9.3 TEST SETUP

9.4 TEST RESULT

	FRS CH18										
Modulation		Peak frequency	deviation (kHz	:)							
Level (dB)	300Hz	1004Hz	1500Hz	2500Hz	Limit (kHz)	Result					
-20	0.159	0.201	0.241	0.417							
-15	0.088	0.317	0.462	0.956							
-10	0.137	0.551	0.874	1.595							
-5	0.256	0.987	1.649	1.943							
0	0.429	1.386	1.949	2.155	±2.5	Pass					
5	0.381	1.693	2.058	2.228							
10	0.452	1.852	2.203	2.279							
15	0.511	2.027	2.168	2.318							
20	0.744	2.143	2.274	2.352							

=

Page 31 of 38

Report No.: STS1711176W01

	FRS CH11										
Modulation	I	Peak frequency	deviation (kHz	<u>:)</u>							
Level (dB)	300Hz	1004Hz	1500Hz	2500Hz	Limit (kHz)	Result					
-20	0.095	0.251	0.233	0.443							
-15	0.061	0.327	0.458	0.818							
-10	0.131	0.612	0.896	1.565							
-5	0.148	1.084	1.599	2.069							
0	0.433	1.432	2.071	2.151	±2.5	Pass					
5	0.462	1.631	2.172	2.183							
10	0.514	1.84	2.189	2.246							
15	0.646	1.877	2.23	2.161							
20	0.772	2.126	2.225	2.229							

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: 0755-36886288
 Fax: 0755-36886277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 32 of 38

10. AUDIO LOW PASS FILTER RESPONSE

10.1 APPLIED PROCEDURES / LIMIT

The filter must be between the modulation limiter and the modulated stage of the transmitter. At any frequency (f in kHz) between 3 and 20 kHz, the filter must have an attenuation of at least 60 log10 (f/3) dB greater than the attenuation at 1 kHz. Above 20 kHz, it must have an attenuation of at least 50 dB greater than the attenuation at 1 kHz

10.2 TEST PROCEDURE

1. Configure the EUT as shown in figure

2. Apply a 1000 Hz tone from the audio signal generator and adjust the level per manufacturer's specifications. Record the dB level of the 1000 Hz tone as LEV_{REF} .

3. Set the audio signal generator to the desired test frequency between 3000 Hz and the upper low pass filter limit. Record the dB level at the test frequency as LEV_{FREQ}

4. Calculate the audio frequency response at the test frequency as:

low pass filter response = LEV_{FREQ} - LEV_{REF}

10.3 TEST SETUP

Page 33 of 38

Report No.: STS1711176W01

10.4 TEST RESULT

Operation	Audio Frequency	Response Attenuation	Lingit	Decult	
Channel	(Hz)	(dB)	Limit	Result	
	1000	-2.62	0		
	3000	-3.49	0		
	4000	-6.58	-7.5		
	5000	-11.64	-13.3		
	6000	-17.84	-18.1		
	8000	-22.47	-25.6		
	10000	-29.43	-31.4		
	15000	-39.6	-41.9	Pass	
CH18	20000	-55.37	-50		
	30000	-60.52	-50		
	40000	-61.12	-50		
	50000	-61.36	-50		
	60000	-60.98	-50		
	70000	-61.61	-50		
	80000	-61.18	-50		
	90000	-60.2	-50		
	100000	-67.2	-50		

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 34 of 38

Report No.: STS1711176W01

Operation	Audio Frequency	Response Attenuation	Limit	Result
Channel	(Hz)	(dB)		
	1000	-3.58	0	
	3000	-3.98	0	
	4000	-4.48	-7.5	
	5000	-12.49	-13.3	
	6000	-17.33	-18.1	
	8000	-24.15	-25.6	
	10000	-30.45	-31.4	Pass
	15000	-40.57	-41.9	
CH11	20000	-55.45	-50	
	30000	-60.3	-50	
	40000	-61.38	-50	
	50000	-61.19	-50	
	60000	-61.37	-50	
	70000	-61.2	-50	
	80000	-61.2	-50	
	90000	-60.29	-50	
	100000	-61.12	-50	

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: 0755-36886288
 Fax: 0755-36886277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 35 of 38

11. AUDIO FREQUENCY RESPONSE

11.1 APPLIED PROCEDURES / LIMIT

FCC Part 95.637(a), FCC Part 2.1047(a):

Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

Frequency - Hz

An additional 6 dB per octave attenuation is allowed from 2500 Hz to 3000 Hz in equipment operating in the 25 MHz to 869 MHz range

11.2 TEST PROCEDURE

- 1. Configure the EUT as shown in figure
- 2. Adjust the audio input for 20% of rated system deviation at 1kHz using this level as a reference.
- 3. Vary the Audio frequency from 300Hz to 3 kHz and record the frequency deviation.
- 4. Audio Frequency Response =20log10 (VFREQ/VREF).

11.3 TEST SETUP

11.4 TEST SETUP

CH18									
Audio Frequency (Hz)	Audio Frequency Response (dB)	Audio Frequency (Hz)	Audio Frequency Response (dB)						
100	-20.22	2100	12.47						
200	-16.34	2200	13.47						
300	-9.36	2300	14.76						
400	-7.92	2400	16.18						
500	-6.88	2500	17.20						
600	-5.56	2600	18.41						
700	-4.22	2700	19.67						
800	-3.19	2800	21.01						
900	-1.76	2900	22.23						
1000	-0.74	3000	23.42						
1200	1.55	3500	6.89						
1400	3.89	4000	-1.71						
1600	6.29	4500	-10.35						
1800	8.66	5000	-16.56						
2000	11.04								

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

CH11									
Audio Frequency (Hz)	Audio Frequency Response (dB)	Audio Frequency (Hz)	Audio Frequency Response (dB)						
100	-20.06	2100	12.75						
200	-16.03	2200	13.59						
300	-9.26	2300	14.90						
400	-7.74	2400	16.49						
500	-6.67	2500	17.48						
600	-5.35	2600	18.49						
700	-3.89	2700	19.76						
800	-3.02	2800	21.18						
900	-1.48	2900	22.39						
1000	-0.68	3000	23.67						
1200	1.82	3500	7.04						
1400	4.00	4000	-1.49						
1600	6.66	4500	-10.29						
1800	8.89	5000	-16.43						
2000	11.19								

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

Page 38 of 38

APPENDIX 1- PHOTOS OF TEST SETUP

* * * * * END OF THE REPORT * * * * *

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com