

TEST REPORT

FCC PART 15 SUBPART C 15.255 & RSS 210 Annex 2

Report Reference	• No	:	CTL17	'081880	63-WF1	3
------------------	------	---	-------	----------------	--------	---

Compiled by: (position+printed name+signature)

Allen Wang (File administrators) Allen Wang
Nice Nong
Lim Nie

Tested by:

(position+printed name+signature)

Nice Nong (Test Engineer)

Approved by: (position+printed name+signature)

Ivan Xie (Manager)

Product Name: Vehicle Communicator

Model/Type reference: UV350

List Model(s)..... N/A

Trade Mark.....: Uniden

FCC ID...... 2AOCX-UV350

IC: 23378-UV350

Applicant's name Siyata Mobile Inc.

Address of applicant.....: 1001 Lenoir St Suite A, Montreal, Quebec H4C 2Z6 Canada

Test Firm...... Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Address of Test Firm

Nanshan District, Shenzhen, China 518055

Test specification:

Standard 47 CFR FCC Part 15 Subpart C 15.231 &

RSS-210 Issue 9

TRF Originator.....: Shenzhen CTL Testing Technology Co., Ltd.

Master TRF.....: Dated 2011-01

Date of Receipt.....: Sep. 27, 2017

Date of Test Date...... Sep. 28, 2017 -Nov. 24, 2017

Data of Issue.....: Nov. 25, 2017

Result..... Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Toot Donort No	CTL1708188063-WF13	Nov. 25, 2017	
Test Report No. :	C1L1/00100003-WF13	Date of issue	

Equipment under Test : Vehicle Communicator

Model /Type : UV350

Listed Models : N/A

Applicant : Siyata Mobile Inc.

Address : 1001 Lenoir St Suite A, Montreal, Quebec H4C 2Z6 Canada

Manufacturer : Siyata Mobile Inc.

Address : 1001 Lenoir St Suite A, Montreal, Quebec H4C 2Z6 Canada

Test result	Pass *

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Testing Technol

** Modified History **

Version	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2017-11-25	CTL1708188063-WF13	Tracy Qi

	Table of Contents	Page
1. SU	JMMARY	5
1.1.	Test Standards	5
1.2.	TEST DESCRIPTION	
1.3.	TEST FACILITY	6
1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
2. GE	ENERAL INFORMATION	7
2.1.	ENVIRONMENTAL CONDITIONS	
2.2.	GENERAL DESCRIPTION OF EUT	7
2.3.	EQUIPMENTS USED DURING THE TEST	
2.4.	RELATED SUBMITTAL(S) / GRANT (S)	8
2.5.	Modifications	8
3. TE	ST CONDITIONS AND RESULTS	9
3.1.	CONDUCTED EMISSION (AC MAIN)	9
3.2.	RADIATED EMISSION	
3.3.	20dB Bandwidth	
3.4.	Frequency Stability Test Data	14
4. EU	JT TEST PHOTO	16
5. FX	TERNAL AND INTERNAL PHOTOS OF THE FUT	17

1. SUMMARY

V1.0

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.225: Operation within the band 13.110–14.010 MHz

RSS-210 Issue 9: — Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.4: 2014: —American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz

1.2. Test Description

FCC PART 15 .225			
FCC Part 15.207 RSS-Gen 8.8	AC Power Conducted Emission	PASS	
FCC Part 2.1049 RSS GEN	20dB Bandwidth&99% Bandwidth	PASS	
FCC Part 15.225(a) (b) (c) RSS-210 B.6 (a) (b) (c)	In-band Emissions	PASS	
FCC Part 15.225(d)/15.207 RSS-210 B.6 (d)	Out-of-band Emissions	PASS	
FCC Part 15.225(e) RSS–210 B.6	Frequency Stability Tolerance	PASS	

Chi Testing Technolog

Remark: The measurement uncertainty is not included in the test result.

V1.0 Page 6 of 17 Report No.: CTL1708188063-WF13

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

V1.0 Page 7 of 17 Report No.: CTL1708188063-WF13

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	Vehicle Communicator	
Model/Type reference:	UV350	
Power supply:	DC 12V form battery	
NFC		
Operation frequency:	13.56MHz	
Modulation :	ASK	
No. of Channel:		
Antenna type:	Loop Antenna	

Note: For more details, please refer to the user's manual of the EUT.

2.3. Equipments Used during the Test

	-			250000000000000000000000000000000000000	
Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.1 2	2017/06/02	2018/06/01
LISN	R&S	ESH2-Z5	860014/010	2017/06/02	2018/06/01
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2017/06/02	2018/06/01
EMI Test Receiver	R&S	ESCI	103710	2017/06/02	2018/06/01
Spectrum Analyzer	Agilent	N9020	US46220290	2017/01/16	2018/01/17
Controller	EM Electronics	Controller EM 1000	N/A	2017/05/21	2018/05/20
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2017/05/19	2018/05/18
Active Loop Antenna	SCHWARZBE CK	FMZB1519	1519-037	2017/05/19	2018/05/18
Amplifier	Agilent	8349B	3008A02306	2017/05/19	2018/05/18
Amplifier	Agilent	8447D	2944A10176	2017/05/19	2018/05/18
Temperature/Humi dity Meter	Gangxing	CTH-608	02	2017/05/20	2018/05/19
High-Pass Filter	K&L	9SH10-2700/X1 2750-O/O	N/A	2017/05/20	2018/05/19

Report No.: CTL1708188063-WF13

The calibration interval was one year

2.4. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

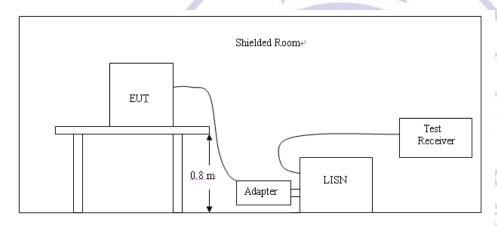
2.5. Modifications

No modifications were implemented to meet testing criteria.

V1.0 Page 9 of 17 Report No.: CTL1708188063-WF13

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emission (AC Main)


LIMIT

According to FCC CFR Title 47 Part 15 Subpart C Section 15.207 and RSS Gen 8.8, AC Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus as below:

Frequency range (MHz)	Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Not applicable to this device, which is powered by battery.

V1.0 Page 10 of 17 Report No.: CTL1708188063-WF13

3.2. Radiated Emission

Limit

- a The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters.
- b Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- c Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- d The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

	onood the general relation of modern mills in 3.0.200.					
Frequency (MHz)	Distance (Meters)	Radiated (dBuV/m)	Radiated (µV/m)			
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)			
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)			
1.705-13.110	3	69.54	30			
13.110-13.410	3	80.50	106			
13410-13.553	3	90.47	334			
13.553-13.567	3	124.00	15848			
13.567-13.710	3	90.47	334			
13.710-14.010	3	80.50	106			
14.010-30.0	3	69.54	30			
30-88	3	40.0	100			
88-216	(C) 3	43.5	150			
216-960	5 3	46.0	200			
Above 960	0 3	54.0	500			

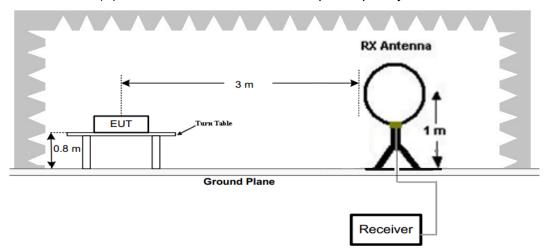
Test Procedure

- 1. The EUT was placed on 80cm wooden desk above ground plane which on a turn table.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

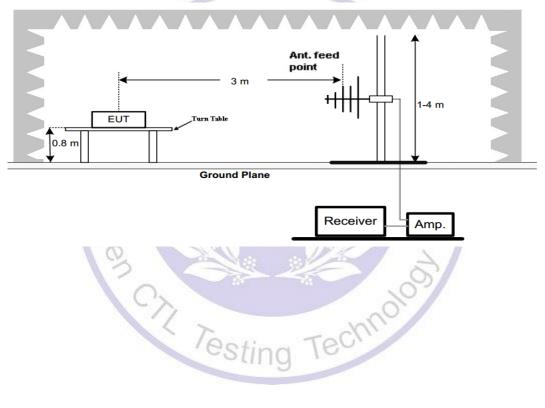
Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG


Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

For example


Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(dB)	(dB)
150.00	40	58.1	12.2	1.6	31.90	-18.1

Test Configuration

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

V1.0 Page 12 of 17 Report No.: CTL1708188063-WF13

Test Results

3.2.1 In-band Emissions

Frequency(MHz):				13.56			olarity:	HORIZONTAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	13.15	45.26	PK	80.50	35.24	40.56	5.26	-0.56	4.70
2	13.55	62.75	PK	90.47	27.72	57.96	5.36	-0.57	4.79
3	13.56	88.98	PK	124.00	35.02	84.10	5.45	-0.57	4.88
4	13.57	61.47	PK	90.47	29.00	56.33	5.49	-0.35	5.14
5	13.75	46.98	PK	80.50	33.52	41.65	5.63	-0.30	5.33

Frequency(MHz):			13.56			Po	olarity:	VERTICAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	13.15	45.12	PK	80.50	35.38	40.42	5.26	-0.56	4.70
2	13.55	62.85	PK	90.47	27.62	58.06	5.36	-0.57	4.79
3	13.56	88.96	PK	124.00	35.04	84.08	5.45	-0.57	4.88
4	13.57	61.54	PK	90.47	28.93	56.40	5.49	-0.35	5.14
5	13.75	46.27	PK	80.50	34.23	40.94	5.63	-0.30	5.33

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)
- 3. Margin value = Limit value- Emission level.
- 4. The other emission levels were very low against the limit.

3.2.2 Out-of-band Emissions

Frequency(MHz):			13.56			Po	olarity:	HORIZONTAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	27.12	38.52	PK	69.54	31.02	31.02	7.25	0.25	7.50
2	40.68	32.44	PK	40.00	7.56	23.63	8.25	0.56	8.81
3	54.24	26.98	PK	40.00	13.02	17.94	8.30	0.74	9.04
4	67.80	24.15	PK	40.00	15.85	14.62	8.55	0.98	9.53

Frequency(MHz):			13.56		Polarity:		VERTICAL		
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	27.12	39.86	PK	69.54	29.68	32.36	7.25	0.25	7.50
2	40.68	33.87	PK	40.00	6.13	25.06	8.25	0.56	8.81
3	54.24	27.64	PK	40.00	12.36	18.60	8.30	0.74	9.04
4	67.80	26.22	PK	40.00	13.78	16.69	8.55	0.98	9.53

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)
- 3. Margin value = Limit value- Emission level.
- 4. The other emission levels were very low against the limit.

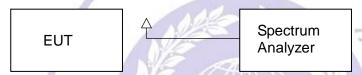
V1.0 Page 13 of 17 Report No.: CTL1708188063-WF13

3.3. 20dB Bandwidth & 99% Occupied Bandwidth

Limit

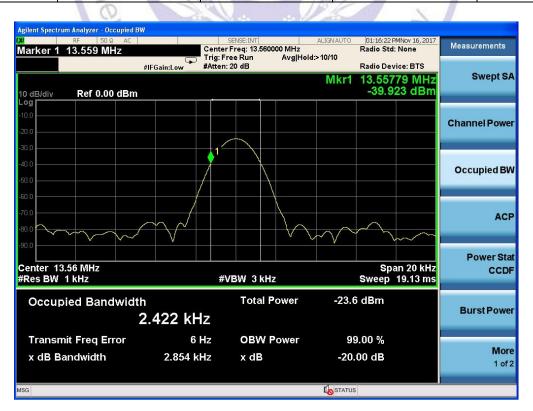
N/A

Test Procedure


The 20dB bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

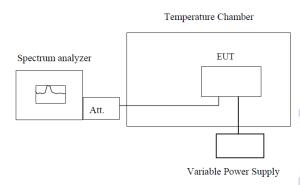
The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth


Use the 99% power bandwidth function of the instrument to measure the Occupied Bandwidth and recoded.

Test Configuration

Test Results

Modulation	Frequency(MHz)	20dB bandwidth (KHz)	99%dB bandwidth (KHz)	Result
ASK	13.56	2.854	2.422	Pass



3.4. Frequency Stability Test Data

LIMIT

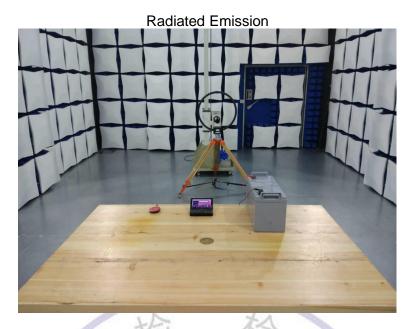
The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency.
- 5. Turn EUT off and set the chamber temperature to –20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.
- 7. Reduce the input voltage to specified extreme voltage variation (+/- 15%) or endpoint, record the maximum frequency change.


TEST RESULTS

	Refere	ence Frequency: 13.5	56MHz	
Voltage (V)	Temperature (°C)	Frequency (MHz)	Frequency Deviation(Hz)	Deviation (%)
	+20(Ref)	13.560085	85	0.000627%
	-20	13.560089	89	0.000656%
	-10	13.560099	99	0.000730%
	0	13.560079	79	0.000583%
12.00	+10	13.560064	64	0.000472%
12.00	+20	13.560078	78	0.000575%
	+25	13.560098	98	0.000723%
	+30	13.560101	101	0.000745%
	+40	13.560057	57	0.000420%
	+50	13.560076	76	0.000560%
13. 80	+20	13.560048	48	0.000354%
10.20	+20	13.560071	71	0.000524%

Report No.: CTL1708188063-WF13

4. EUT TEST PHOTO

5. External and Internal Photos of the EUT

Reference to the test report photo documents.

