

RADIO TEST REPORT

Report No.: SHATBL2210021W03

Applicant:

Third Reality, Inc

Address:

NO.9 Nanxu Road, RunZhou District, Zhenjiang, Jiangsu, China

Product Name : Smart Hub Gen2

Brand Name : N/A

Model Name : 3RSH04027BWZ

Series Model : N/A

FCC ID : 2AOCT-3RSH04027BWZ

Test Standard : FCC Part15.247

"Shanghai ATBL Technology Co., Ltd." hereby certifies that according to actual testing conditions. The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards or regulations, ATBL shall not assume any responsibility. The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material. This report will be void without authorized signature or special seal for testing report. Do not copied without authorization.

Tel:+86(0)21-51298625 Web:www.atbl-lab.com Email:atbl@atbl-lab.com

Page 2 of 44

Report No.: SHATBL2210021W03

GENERAL DESCRIPTION

Applicant's Name...... Third Reality, Inc.

Address...... NO.9 Nanxu Road, RunZhou District, Zhenjiang, Jiangsu, China

Manufacture's Name...... Third Reality, Inc.

Address...... NO.9 Nanxu Road, RunZhou District, Zhenjiang, Jiangsu, China

Product Description

Product Name.....: Smart Hub Gen2

Brand Name N/A

Model Name.....: 3RSH04027BWZ

Series Model...... N/A

Test Standards..... FCC Part15.247

Test Procedure...... ANSI C63.10-2013

This device described above has been tested by ATBL, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ATBL, this document may be altered or revised by ATBL, personal only, and shall be noted in the revision of the document.

Date of receipt of test item...... 2022-11-25

Date (s) of performance of tests...... 2022-11-01 ~ 2022-11-10

Date of Issue.....: 2022-11-11

Test Result..... Pass

Report Prepared by:

(Chris Xu / Jack Suo)

chris

Report Approved by:

(Ghost Li)

Authorized Signatory:

(Terry Yang)

Page 3 of 44

Report No.: SHATBL2210021W03

Table of Contents

1. SUMMARY OF TEST RESULTS	6
2. GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF THE EUT	7
2.2 DESCRIPTION OF THE TEST MODES	8
2.3 TEST SOFTWARE AND POWER LEVEL	8
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TES	STED 9
2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UN	ITS 9
2.6 LABORATORY INFORMATION	10
2.7 MEASUREMENT UNCERTAINTY	10
2.8 EQUIPMENTS LIST	11
3. EMC EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT	12
3.2 TEST PROCEDURE	13
3.3 TEST SETUP	13
3.4 EUT OPERATING CONDITIONS	13
3.5 TEST RESULTS	14
4. RADIATED EMISSION MEASUREMENT	16
4.1 RADIATED EMISSION LIMITS	16
4.2 TEST PROCEDURE	18
4.3 TEST SETUP	19
4.4 EUT OPERATING CONDITIONS	19
4.5 FIELD STRENGTH CALCULATION	20
4.6 TEST RESULTS	20
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	33
5.1 LIMIT	33
5.2 TEST PROCEDURE	33
5.3 TEST SETUP	33
5.4 EUT OPERATION CONDITIONS	33
5.5 TEST RESULTS	34
6. POWER SPECTRAL DENSITY TEST	36
6.1 LIMIT	36
6.2 TEST PROCEDURE	36
6.3 TEST SETUP	36

Page 4 of 44

Report No.: SHATBL2210021W03

F

K

K

Table of Contents

	6.4 EUT OPERATION CONDITIONS	36
	6.5 TEST RESULTS	37
7.	BANDWIDTH TEST	38
	7.1 LIMIT	38
	7.2 TEST PROCEDURE	38
	7.3 TEST SETUP	38
	7.4 EUT OPERATION CONDITIONS	38
	7.5 TEST RESULTS	39
8.	PEAK OUTPUT POWER TEST	40
	8.1 LIMIT	40
	8.2 TEST PROCEDURE	40
d	8.3 TEST SETUP	40
	8.4 EUT OPERATION CONDITIONS	40
	8.5 TEST RESULTS	41
9.	ANTENNA REQUIREMENT	43
	9.1 STANDARD REQUIREMENT	43
Y	9.2 EUT ANTENNA	43
10	APPENDIX-PHOTOS OF TEST SETUP	44

K3V

K3V

FON

K3V

431

Kan Kan

KIST KIST

K3V

1-

K3V

S.

FOR

En L

3

3

F3V

K3V

Kalin Kalin

Kan Kan

Kar Kar

Kan Kan

F3V

KS

By Report No.: SHATBL2210021W03

Kan Kan Kan

Kan Kan

Kar Kar

Kan Kan

F3V

Kal

1

É

E SA

FB

F

E.

Page 5 of 44 KON TOWN **Revision History**

Kar

Rev. Issue Date	e Report NO.	Effect Page	Contents
00 2022-11-1	1 SHATBL2210021W0	03 ALL	Initial Issue
F 35	To all	FX	3
L D	, E.	3 F	53
ST F	BY F	3	L. Bu
234	E B	F 3	23
F 23"	- F 21	FX	3
L B	E. E.	3V F	By
DV F	By A	200	1 3
200	L. T. S.	F 3	, Y.
F 34	- K	· F	3
PA	2 . E.	ALL T	23
AN F	KIND AND ROLL	F 135	Tan Ash
	F 13	Kan San San San San San San San San San S	A A A A A A A A A A A A A A A A A A A
TOWN TOWN	1		TOWN TOWN

Page 6 of 44

Report No.: SHATBL2210021W03

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C						
Standard Section	Test Item	Judgment	Remark			
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB&99% Bandwidth	PASS	5°			
15.247 (b)(3)	Output Power	PASS	13			
15.247(d) & 15.209 & 15.205	Radiated Spurious Emission	PASS	F-6			
15.247(d) & 15.205	Conducted Spurious & Band Edge Emission					
15.247 (e)	Power Spectral Density	PASS	25V			
15.205	Restricted bands of operation	PASS	13			
15.203	Antenna Requirement	PASS	F-			

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2013.

Page 7 of 44

Report No.: SHATBL2210021W03

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Smart Hub Gen2	200		
Trade Name	N/A	F 30 F 23		
Model Name	3RSH04027BWZ			
Series Model	N/A	- F W		
Model Difference	N/A			
	The EUT is Smart F	lub Gen2		
	Operation Frequency:	2405~2480 MHz		
	Modulation Type:	OQPSK		
	Radio Technology:	ZigBee		
Product Description	ZigBee Version:	5.0		
Troduct Description	Number Of Channel:	16		
	Antenna Designation:	PCB Antenna		
	Antenna Gain (dBi)	2 dBi		
	F 37	. V. 16 L.		
Channel List	Please refer to the I	Note 2.		
Power Rating	N/A	N F 23		
Battery	N/A	S F B		
Hardware version number	V0.5	B. C. F.		
Software version number	02.00.31.00	L 13, 12 E		
Connecting I/O Port(s)	Please refer to the I	Note 1.		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

Page 8 of 44

Report No.: SHATBL2210021W03

2

Channel list							
Channel Frequency (MHz) Channel Frequ							
CH 11	2405	CH 19	2445				
CH 12	2410	CH 20	2450				
CH 13	2415	CH 21	2455				
CH 14	2420	CH 22	2460				
CH 15	2425	CH 23	2465				
CH 16	2430	CH 24	2470				
CH 17	2435	CH 25	2475				
CH 18	2440	CH 26	2480				

3.

Table for Filed Antenna

Ant.	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	3RSH04 <mark>0</mark> 27BWZ	PCB Antenna	N/A	2 dBi	ZigBee ANT

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	EUT Channel	Test Frequency (MHz)
Mode 1	TX CH11	2405
Mode 2	TX CH18	2440
Mode 3	TX CH26	2480

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

For Conducted Emission

F 13	Test Case
Conducted Emission	Mode 4 : Keeping ZigBee TX

2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

RF Function	Туре	Mode Or Modulation type	Ant Gain(dBi)	Power Class	Software For Testing
ZigBee	ZigBee	OQPSK	2	17	Provided by the customer

Page 9 of 44

Report No.: SHATBL2210021W03

2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

The EUT was programmed to be in continuously transmitting mode.

2.5 DESCRIPTION OF necessary accessories AND support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

3	ltem	Equipment	Mfr/Brand	Model/Type No.	Length	Note
7	N/A	N/A	N/A	N/A	N/A	N/A

Support units

Item	Equipment	Mfr/Brand	Model	Type No.	Note
E-2	Notebook	Lenovo	DESKTOP-USDEO09	00326-10000-00000-AA636	N/A
C-1	USB Cable	N/A	100cm	N/A	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in Length column.

Page 10 of 44

Report No.: SHATBL2210021W03

2.6 LABORATORY INFORMATION

Company Name:	Shanghai ATBL Technology Co., Ltd.
Address:	Building 8, No. 160, Basheng Road, Waigaoqiao Free Trade Zone, Pudong New Area, Shanghai
Telephone:	+86(0)21-51298625
The FCC Registration Number (FRN):	0031025281
A2LA Number:	6184.01
CNAS Number:	CNAS L14531

2.7 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 %.

1000		()
No.	ltem	Uncertainty
1	RF output power, conducted	±0.962dB
2	Conducted spurious emissions	±2.986dB
3	All emissions, radiated 30MHz-1GHz	±2.49dB
4	All emissions, radiated 1GHz-18GHz	±3.50dB
5	Occupied bandwidth	±23.36Hz
6	Power spectral density	±0.866dB

Page 11 of 44

Report No.: SHATBL2210021W03

2.8 EQUIPMENTS LIST

2.8.1 Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Management number	Calibrated until
Test Receiver	R&S	ESCI	100469	SHATBL-E003	2023.05.20
Spectrum Analyzer	Agilent	N9020A	MY50200811	SHATBL-E017	2023.05.20
Bilog Antenna	SCHWARZBECK	VLUB 9168	01174	SHATBL-E008	2023.05.20
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	SHATBL-E009	2023.05.20
Pre-Amplifier (0.1M-3GHz)	JPT	JPA-10M1G35	2101010003500	SHATBL-E005	2023.05.20
Pre-Amplifier (1G-18GHz)	JPT	JPA0118-55-30 3A	1910001800055 000	SHATBL-E006	2023.05.20
Temperature & Humidity	DeLi	DeLi	N/A	SHATBL-E016	2023.05.20
Antenna/Turntable Controller	Brilliant	N/A	N/A	SHATBL-E007	N/A
Test SW	FALA	EMC-RI	(Ver.4A2)	SHATBL-E046	N/A

2.8.2 Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Management number	Calibration date
Test Receiver	R&S	ESPI	101679	SHATBL-E012	2023.05.20
LISN	R&S	ENV216	101300	SHATBL-E013	2023.05.20
LISN	R&S	ENV216	100333	SHATBL-E041	2023.05.20
Temperature & Humidity	DeLi	DeLi	N/A	SHATBL-E015	2023.05.20
Test SW	FALA	EZ-EMC(Ver.EM	IC-CON3A1.1)	SHATBL-E044	N/A

Page 12 of 44

Report No.: SHATBL2210021W03

2.8.3 RF Connected Test

Kind of Equipment	Manufactur	Type No.	Serial No.	equipment	Calibrated
Tana of Equipment	er	Type No.	Conditio.	number	until
Power meter (with pulse power sensor)	Anritsu	ML2496A	1935001	SHATBL-W030	2023.09.27
Pulse power sensor (with power meter)	Anritsu	MA2411B	1911006	SHATBL-W031	2023.09.27
Signal Analyzer	Agilent	N9020A	MY57300196	SHATBL-W004	2023.09.27
Signal Generator	Agilent	N5182B	MY46240556	SHATBL-W005	2023.09.27
Wireless Communications Test Set	R&S	CMW500	101331	SHATBL-W007	2023.09.27
Temperature & Humidity	Deli	deli	N/A	SHATBL-W011	2023.09.27
Attenuator	Agilent	8494B	DC-18G	SHATBL-W009	2023.09.27
Attenuator	Agilent	8496B	DC-18G	SHATBL-W010	2023.09.27
nower enlitter	MANUZ	MPD-DC/6-2	62315 G51	SHATBL-W015	2023.09.27
power splitter	MNK	S	62315 G52	SHATBL-W016	2023.09.27
Filter	Chengdu kangmaiwei	ZBSF-C2400 -2483.5-T3	N/A	SHATBL-W021	N/A
Constant temperature and humidity box	KSON	THS-B6C-15 0	6159K	SHATBL-W019	2023.01.17
Test SW	FALA	LZ-RF(Ver.L	zRF-03A3.1)	SHATBL-W020	N/A

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

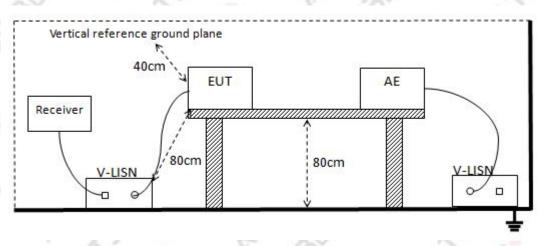
EDECHENCY (MH~)	Conducted Emis	ssion limit (dBuV)
FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		


Page 13 of 44

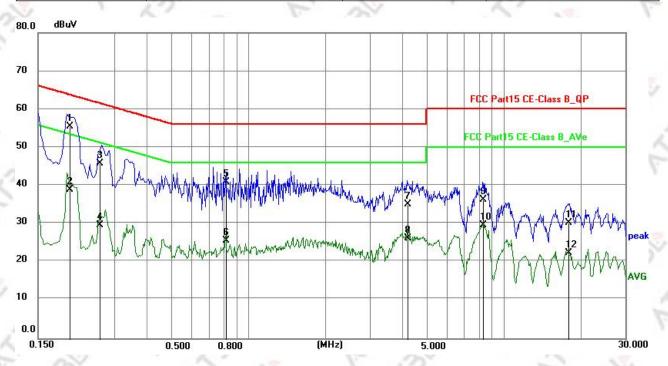
Report No.: SHATBL2210021W03

3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

3.4 EUT OPERATING CONDITIONS


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

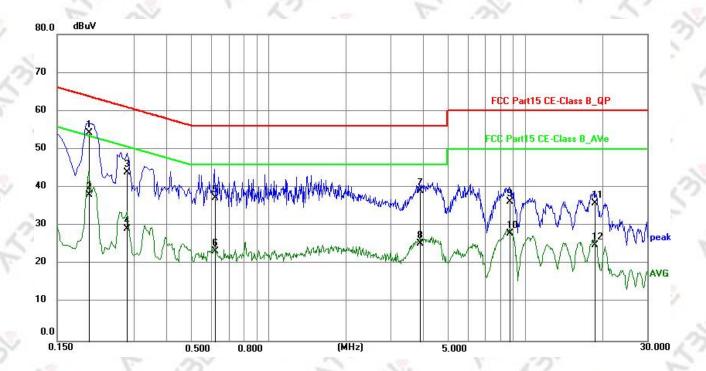
Report No.: SHATBL2210021W03

3.5 TEST RESULTS

Temperature:	25.1℃	Relative Humidity:	49%
Phase:	L 13,	Test Mode:	Mode 1
Test Voltage:	AC 120V/60Hz	Test Date:	2022.11.01

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1990	45.80	9.76	55.56	63.65	-8.09	QP
2	0.1990	29.25	9.76	39.01	53.65	-14.64	AVG
3	0.2630	36.12	9.76	45.88	61.34	-15.46	QP
4	0.2630	20.01	9.76	29.77	51.34	-21.57	AVG
5	0.8170	31.18	9.76	40.94	56.00	-15.06	QP
6	0.8170	16.03	9.76	25.79	46.00	-20.21	AVG
7	4.2100	25.33	9.84	35.17	56.00	-20.83	QP
8	4.2100	16.53	9.84	26.37	46.00	-19.63	AVG
9	8.2840	26.44	9.93	36.37	60.00	-23.63	QP
10	8.2840	19.73	9.93	29.66	50.00	-20.34	AVG
11	17.9950	20.18	10.17	30.35	60.00	-29.65	QP
12	17.9950	12.30	10.17	22.47	50.00	-27.53	AVG
					200		

Remark:


- 1. All readings are Quasi-Peak
 2. Margin = Result (Result =Reading + Factor)–Limit
 3.Factor= Cable Loss +Antenna Factor-Amplifier Gain

Page 15 of 44

Report No.: SHATBL2210021W03

1	Temperature:	25.1℃	Relative Humidity:	49%
	Phase:	N	Test Mode:	Mode 1
V	Test Voltage:	AC 120V/60Hz	Test Date:	2022.11.01

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1990	44.51	9.73	54.24	63.65	-9.41	QP
2	0.1990	28.52	9.73	38.25	53.65	-15.40	AVG
3	0.2810	34.29	9.73	44.02	60.79	-16.77	QP
4	0.2810	19.64	9.73	29.37	50.79	-21.42	AVG
5	0.6190	27.64	9.72	37.36	56.00	-18.64	QP
6	0.6190	13.70	9.72	23.42	46.00	-22.58	AVG
7	3.8900	29.32	9.82	39.14	56.00	-16.86	QP
8	3.8900	15.60	9.82	25.42	46.00	-20.58	AVG
9	8.6980	26.45	9.93	36.38	60.00	-23.62	QP
10	8.6980	18.23	9.93	28.16	50.00	-21.84	AVG
11	18.7030	25.81	10.23	36.04	60.00	-23.96	QP
12	18.7030	14.80	10.23	25.03	50.00	-24.97	AVG

Remark:

- 1. All readings are Quasi-Peak
- 2. Margin = Result (Result =Reading + Factor)–Limit 3.Factor= Cable Loss +Antenna Factor-Amplifier Gain

Report No.: SHATBL2210021W03

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FCC

	The same of the sa	
FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
16.42-16.423	399.9-410	4.5-5.15
16.69475-16.69525	608-614	5.35-5.46
16.80425-16.80475	960-1240	7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5-1646.5	9.3-9.5
74.8-75.2	1660-1710	10.6-12.7
108-121.94	1718.8-1722.2	13.25-13.4
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475-156.52525	2483.5-2500	17.7-21.4
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	Above 38.6
	- F	25
	16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 108-121.94 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	16.42-16.423 399.9-410 16.69475-16.69525 608-614 16.80425-16.80475 960-1240 25.5-25.67 1300-1427 37.5-38.25 1435-1626.5 73-74.6 1645.5-1646.5 74.8-75.2 1660-1710 108-121.94 1718.8-1722.2 123-138 2200-2300 149.9-150.05 2310-2390 156.52475-156.52525 2483.5-2500 156.7-156.9 2690-2900 162.0125-167.17 3260-3267 167.72-173.2 3332-3339 240-285 3345.8-3358

For Radiated Emission

Page 17 of 44

Report No.:	SHATBL2210021W03
-------------	------------------

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/QP/AV	
Start Frequency	9 kHz/150KHz(Peak/QP/AV)	
Stop Frequency	150kHz/30MHz(Peak/QP/AV)	
1 13 E	200Hz (From 9kHz to 0.15MHz)/	
RB / VB (emission in restricted	9kHz (From 0.15MHz to 30MHz);	
band)	200Hz (From 9kHz to 0.15MHz)/	
2	9kHz (From 0.15MHz to 30MHz)	

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector <u></u>	Peak/QP		
Start Frequency	30 MHz(Peak/QP)		
Stop Frequency	1000 MHz (Peak/QP)		
RB / VB (emission in restricted band) 120 kHz / 300 kHz			

Spectrum Parameter	er Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted 1 MHz / 3 MHz(Peak)		
band) 1 MHz/1/T MHz(AVG)		

For Restricted band

Spectrum Parameter	Setting		
Detector	Peak/AV		
Chart Char Fue accessor	Lower Band Edge: 2310 to 2410 MHz		
Start/Stop Frequency	Upper Band Edge: 2475 to 2500 MHz		
DD /WD	1 MHz / 3 MHz(Peak)		
RB / VB	1 MHz/1/T MHz(AVG)		

Page 18 of 44

Report	No.:	SHATBL2210021W03

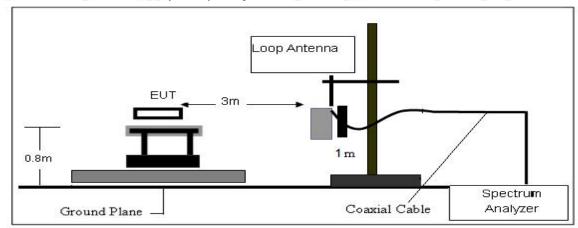
Receiver Parameter	Setting	
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV	
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP	
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV	
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP	
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP	

4.2 TEST PROCEDURE

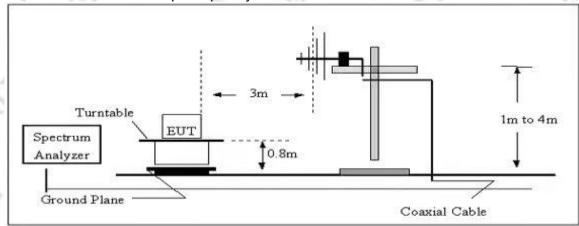
- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter an echoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

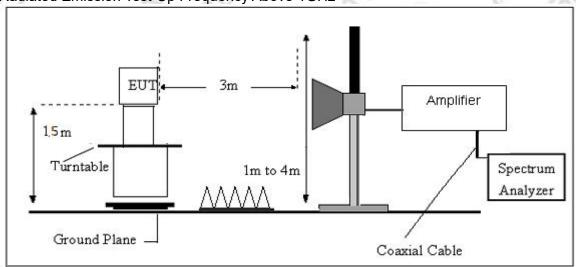
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



Page 19 of 44 Re


Report No.: SHATBL2210021W03

4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Page 20 of 44

Report No.: SHATBL2210021W03

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

4.6 TEST RESULTS

Temperature:	23.2℃	Relative Humidity:	52%RH
Test Voltage:	AC 5V	Polarization:	- 1 12
Test Mode:	TX Mode1/3	1 12	F 3

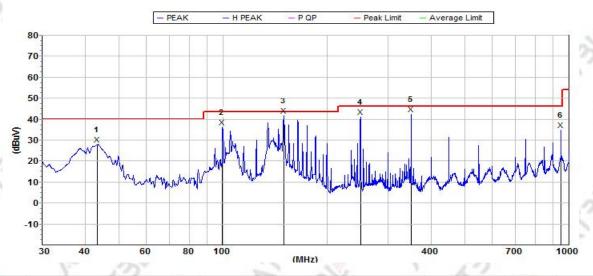
Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Report No.: SHATBL2210021W03


(30MHz -1000MHz)

Temperature:	23.2°C	Relative Humidity:	52%RH
Test Voltage:	AC 5V	Phase:	Horizontal
Test Mode:	TX Mode 1	6	2 K 32

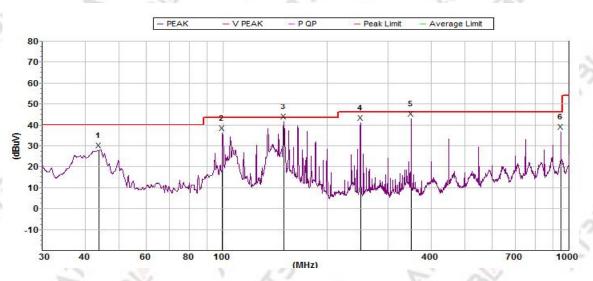
Remark:

- Margin = Result (Result = Reading + Factor)—Limit
 Factor = Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Mode 1 Horizontal

Mk.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.F/G. (dB/m)	Amp.G. (dB)	Cbl.L. (dB)	Pol.
10	43.429513	28.0	40.0	12.0	13.9	32.4	0.8	NH.
2	99.702770	36.3	43.5	7.2	10.2	32.9	1.4	2 H
3	150.274066	41.8	43.5	1.7	14.2	32.8	1.3	H
4	249.862716	41.2	46.0	4.8	11.6	32.8	2.6	H
5	349.862839	42.6	46.0	3.4	13.4	32.5	2.7	Н
6	948.760988	35.0	46.0	11.0	20.3	31.3	3.8	Н

Page 22 of 44


Report No.: SHATBL2210021W03

Temperature:	23.2℃	Relative Humidity:	52%RH
Test Voltage:	AC 5V	Phase:	Vertical
Test Mode:	TX Mode 1	F W	1. 13

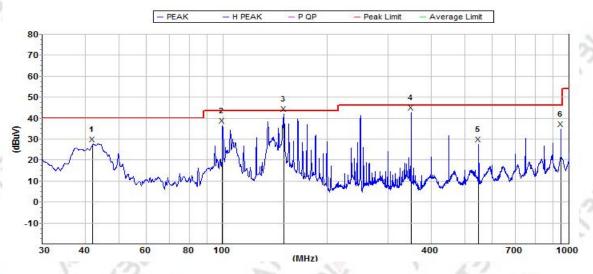
Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Mode 1 Vertical

Mk.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.F/G. (dB/m)	Amp.G. (dB)	Cbl.L. (dB)	Pol.
1	43.888789	28.0	40.0	12.0	13.9	32.4	8.0	V
2	99.702770	36.4	43.5	7.1	10.2	32.9	1.4	V
3	150.274066	41.9	43.5	1.6	14.2	32.8	1.3	٧
4	249.862716	41.2	46.0	4.8	11.6	32.8	2.6	V
5	349.862839	43.0	46.0	3.0	13.8	32.5	2.7	V
6	948.760988	37.0	46.0	9.0	22.1	31.3	3.8	V

Report No.: SHATBL2210021W03


(30MHz -1000MHz)

Temperature:	23.2℃	Relative Humidity:	52%RH
Test Voltage:	AC 5V	Phase:	Horizontal
Test Mode:	TX Mode 3	E 23	2 1 25

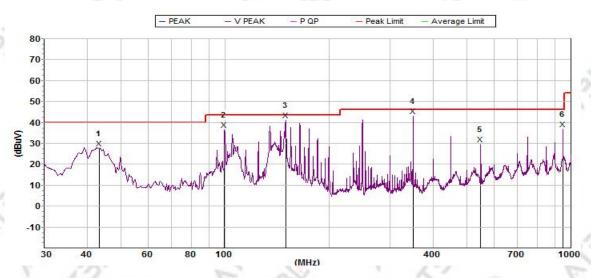
Remark:

- Margin = Result (Result = Reading + Factor)—Limit
 Factor = Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Mode 3 Horizontal

Mk.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.F/G. (dB/m)	Amp.G. (dB)	Cbl.L. (dB)	Pol.
1	42.080322	27.7	40.0	12.3	14.0	32.4	0.8	NH.
2	99.702770	36.5	43.5	7.0	10.1	32.9	1.4	7 H
3	149.748044	42.2	43.5	1.3	14.1	32.9	1.3	H
4	349.862839	42.7	46.0	3.3	13.4	32.5	2.7	H
5	549.019455	27.6	46.0	18.4	15.4	32.4	3.1	Н
6	948.760988	35.0	46.0	11.0	20.3	31.3	3.7	Н

Page 24 of 44


Report No.: SHATBL2210021W03

Temperature:	23.2℃	Relative Humidity:	52%RH
Test Voltage:	AC 5V	Phase:	Vertical
Test Mode:	TX Mode 3	- F 21	1 3

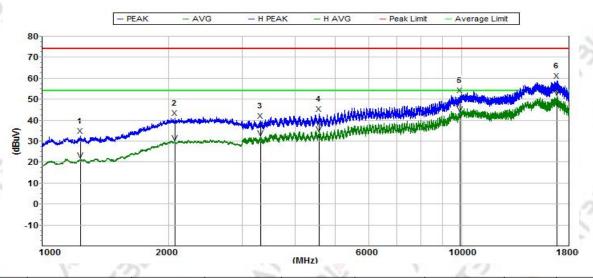
Remark:

- Margin = Result (Result = Reading + Factor)—Limit
 Factor = Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Mode 3 Vertical

Mk.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.F/G. (dB/m)	Amp.G. (dB)	Cbl.L. (dB)	Pol.
1	43.429513	27.8	40.0	12.2	13.9	32.4	0.8	V
2	99.702770	36.5	43.5	7.0	10.2	32.9	1.4	V
3	149.748044	41.3	43.5	2.2	14.2	32.9	1.3	V
4	349.862839	43.1	46.0	2.9	13.8	32.5	2.7	V
5	549.019455	29.7	46.0	16.3	17.4	32.5	3.1	V
6	948.760988	37.0	46.0	9.0	22.1	31.3	3.8	V

Report No.: SHATBL2210021W03


(30MHz -18000MHz)

Temperature:	23.2℃	Relative Humidity:	52%RH
Test Voltage:	AC 5V	Phase:	Horizontal
Test Mode:	TX Mode 1	2	S F 23

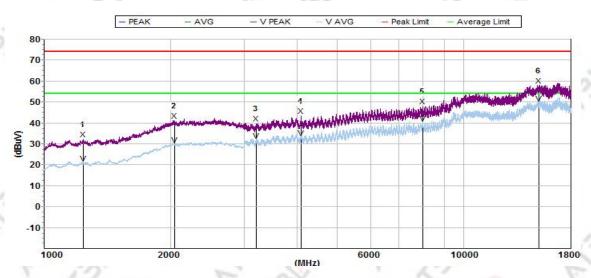
Remark:

- Margin = Result (Result = Reading + Factor)—Limit
 Factor = Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Mode 1 Horizontal

Mk.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.F/G. (dB/m)	Amp.G. (dB)	Cbl.L. (dB)	Pol.
Peak	7	1	37	1	25			2
1	1235.000000	32.7	74.0	41.3	20.7	57.3	2.3	7 H
2	2076.000000	41.2	74.0	32.8	22.1	50.1	2.7	H
3	3317.250000	39.9	74.0	34.1	24.1	51.0	3.1	Н
4	4569.000000	43.2	74.0	30.8	24.7	50.0	3.6	Н
5	9924.000000	51.9	74.0	22.1	27.5	48.5	5.4	Н
6	16821.750000	58.8	74.0	15.2	30.9	47.4	6.8	Н
Avg	Z. P.	122		100		1	13	
1	1235.000000	21.2	54.0	32.8	20.7	57.3	2.3	H
2	2076.000000	29.4	54.0	24.6	22.1	50.1	2.7	Н
3	3317.250000	31.5	54.0	22.5	24.1	51.0	3.1	H
4	4569.000000	33.6	54.0	20.4	24.7	50.0	3.6	Н
5	9924.000000	43.3	54.0	10.7	27.5	48.5	5.4	Н
6	16821.750000	51.0	54.0	3.0	30.9	47.4	6.8	Н

Page 26 of 44


Report No.: SHATBL2210021W03

Temperature:	23.2℃	Relative Humidity:	52%RH
Test Voltage:	AC 5V	Phase:	Vertical
Test Mode:	TX Mode 1	F 25	12

Remark:

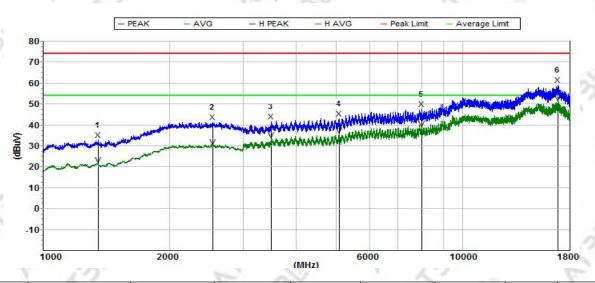
- Margin = Result (Result = Reading + Factor)
 – Limit
 Factor = Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Mode 1 Vertical

Mk.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.F/G. (dB/m)	Amp.G. (dB)	Cbl.L. (dB)	Pol.
Peak		100	1.	10		Time,	No.	
1_3	1238.000000	32.4	74.0	41.6	20.7	57.3	2.3	V
2	2048.000000	41.3	74.0	32.7	22.2	50.1	2.7	V
3	3205.500000	40.0	74.0	34.0	24.4	51.3	3.0	V
4	4093.500000	43.4	74.0	30.6	24.8	50.1	3.3	V
5	7983.000000	48.0	74.0	26.0	26.9	48.6	4.9	V
6	15078.000000	58.1	74.0	15.9	31.1	46.9	6.3	V
Avg	V 2	2	Pr-	2		1.	40	
21	1238.000000	20.8	54.0	33.2	20.7	57.3	2.3	V
2	2048.000000	29.6	54.0	24.4	22.2	50.1	2.7	V
3	3205.500000	31.7	54.0	22.3	24.4	51.3	3.0	V
4	4093.500000	33.1	54.0	20.9	24.8	50.1	3.3	V
5	7983.000000	39.8	54.0	14.2	26.9	48.6	4.9	V
6	15078.000000	49.4	54.0	4.6	31.1	46.9	6.3	V

(30MHz -18000MHz)

Page 27 of 44


Report No.: SHATBL2210021W03

Temperature:	23.2℃	Relative Humidity:	52%RH
Test Voltage:	AC 5V	Phase:	Horizontal
Test Mode:	TX Mode 3	Fall	1. 13, 12

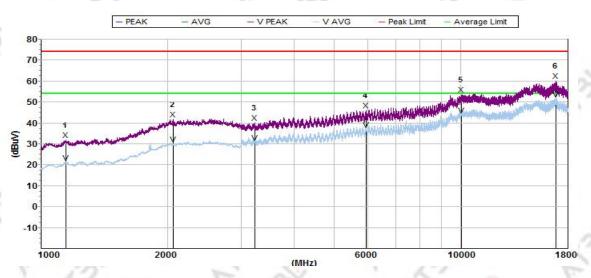
Remark:

- Margin = Result (Result = Reading + Factor)–Limit
 Factor = Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Mode 3 Horizontal

Mk.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.F/G. (dB/m)	Amp.G. (dB)	Cbl.L. (dB)	Pol.
Peak	1	15	1.	10		Riv.	2	
1	1353.000000	32.9	74.0	41.1	20.8	57.3	2.3	Н
2	2537.000000	41.4	74.0	32.6	23.0	50.3	2.8	H
3	3501.000000	41.9	74.0	32.1	24.2	50.5	3.1	Н
4	5072.250000	43.0	74.0	31.0	24.8	49.2	3.7	Н
5	7984.500000	47.7	74.0	26.3	26.1	48.6	4.9	H
6	16836.000000	59.4	74.0	14.6	30.9	47.4	6.8	Н
Avg	V X	2	In-	2	1	1/2	49	
1	1353.000000	21.2	54.0	32.8	20.8	57.3	2.3	Н
2	2537.000000	29.7	54.0	24.3	23.0	50.3	2.8	J.H.
3	3501.000000	32.8	54.0	21.2	24.2	50.5	3.1	H
4	5072.250000	35.1	54.0	18.9	24.8	49.2	3.7	Н
5	7984.500000	38.1	54.0	15.9	26.1	48.6	4.9	HA
6	16836.000000	50.8	54.0	3.2	30.9	47.4	6.8	Н

Page 28 of 44


Report No.: SHATBL2210021W03

Temperature:	23.2℃	Relative Humidity:	52%RH
Test Voltage:	AC 5V	Phase:	Vertical
Test Mode:	TX Mode 3	P AV	12

Remark:

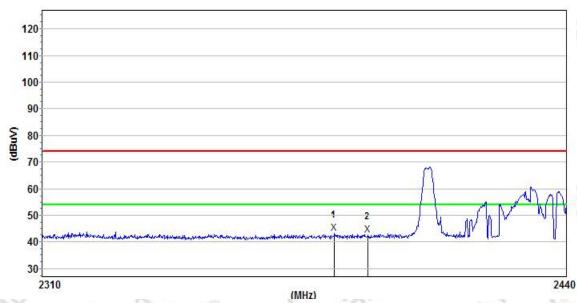
- 1. Margin = Result (Result = Reading + Factor)—Limit 2. Factor = Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Mode 3 Vertical

Mk.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.F/G. (dB/m)	Amp.G. (dB)	Cbl.L. (dB)	Pol.
Peak		18	1.	(2)		River,	2	
1.3	1144.000000	31.9	74.0	42.1	20.7	57.3	2.2	V
2	2068.000000	41.9	74.0	32.1	22.3	50.1	2.7	V
3	3234.750000	40.1	74.0	33.9	24.4	51.2	3.0	V
4	5940.750000	46.1	74.0	27.9	25.5	48.9	4.1	V
5	10035.750000	53.6	74.0	20.4	28.4	48.5	5.4	V
6	16839.750000	60.2	74.0	13.8	31.4	47.4	6.8	V
Avg	Y 4	2	E-	2		1/2	40	
1	1144.000000	21.1	54.0	32.9	20.7	57.3	2.2	V
2	2068.000000	30.0	54.0	24.0	22.3	50.1	2.7	V
3	3234.750000	30.6	54.0	23.4	24.4	51.2	3.0	V
4	5940.750000	36.8	54.0	17.2	25.5	48.9	4.1	V
5	10035.750000	43.8	54.0	10.2	28.4	48.5	5.4	٧
6	16839.750000	51.4	54.0	2.6	31.4	47.4	6.8	V

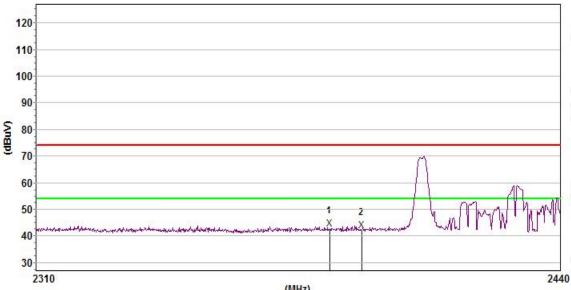
Note:

- 1.All TX Mode, the worst case is mode1&3, only show the worst case.
- 2.Other 18G-25G Emission detected are more than 20dB below the limit.



Page 29 of 44

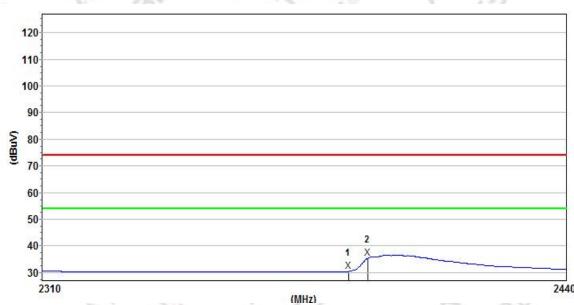
Report No.: SHATBL2210021W03


4.6 TEST RESULTS (Restricted Bands Requirements)

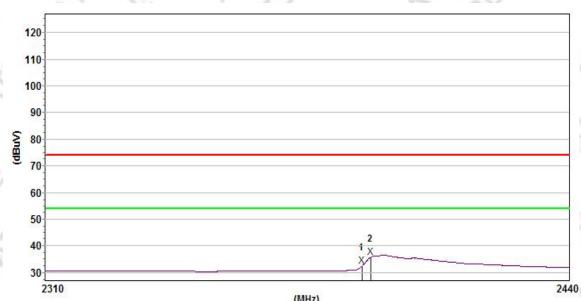
GFSK-Low Horizontal

Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(dB)	(dB)	FOI.
PK	10	1.5	254	- 1	7	77.	1.	12
. 1	2381.661401	43.3	74.0	30.7	22.7	50.2	2.8	Н
2	2390.000000	42.9	74.0	31.1	22.8	50.2	2.8	TH A

Vertical


Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(dB)	(dB)	1 01.
PK				Li-	.25	- 00		17.
1	2382.052625	42.9	74.0	31.1	23.1	50.2	2.8	V
2	2390.000000	42.1	74.0	31.9	23.1	50.2	2.8	V

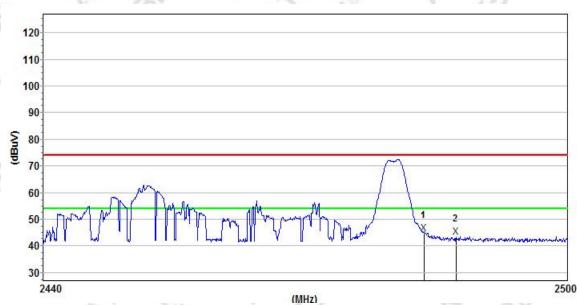
Page 30 of 44


Report No.: SHATBL2210021W03

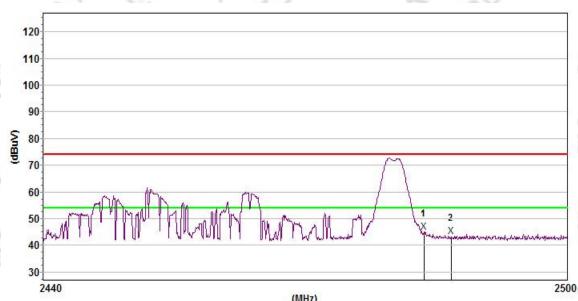
GFSK-Low Horizontal

Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Dal
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(dB)	(dB)	Pol.
AVG		V /	2	li-	200		1	40
1	2385.054142	30.5	54.0	23.5	22.7	50.2	2.8	/H
2	2390.000000	35.4	54.0	18.6	22.8	50.2	2.8	ΔĤ

Vertical


	_			(WHZ)				
Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(dB)	(dB)	POI.
AVG		7		10		E.	2001	
1	2387.797961	32.6	54.0	21.4	23.1	50.2	2.8	V
2	2390.000000	35.8	54.0	18.2	23.1	50.2	2.8	V

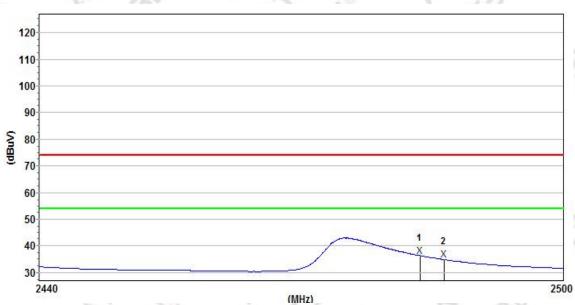
Page 31 of 44


Report No.: SHATBL2210021W03

GFSK-High Horizontal

Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(dB)	(dB)	P01.
PK		V /	(2)	Time.	201		1	40
1	2483.500000	44.7	74.0	29.3	22.9	50.2	2.8	H
2	2487.157970	43.3	74.0	30.7	22.9	50.2	2.8	ΛÍ

Vertical


Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Dal
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(dB)	(dB)	Pol.
PK		12 2		10		E	201	
1	2483.500000	45.0	74.0	29.0	23.3	50.2	2.8	V
2	2486.553846	43.4	74.0	30.6	23.3	50.2	2.8	V

Page 32 of 44

Report No.: SHATBL2210021W03

GFSK- High Horizontal

Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(dB)	(dB)	POI.
AVG			(2)	Time.			1	
1	2483.500000	36.3	54.0	17.7	22.9	50.2	2.8	H
2	2486.191442	34.9	54.0	19.1	22.9	50.2	2.8	ΛÍ

Vertical

Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(dB)	(dB)	POI.
AVG		5	,	10		E.	25	
1	2483.500000	40.4	54.0	13.6	23.3	50.2	2.8	V
2	2485.406414	38.7	54.0	15.3	23.3	50.2	2.8	V

Page 33 of 44

Report No.: SHATBL2210021W03

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 kHz/300 kHz
Trace-Mode:	Max hold

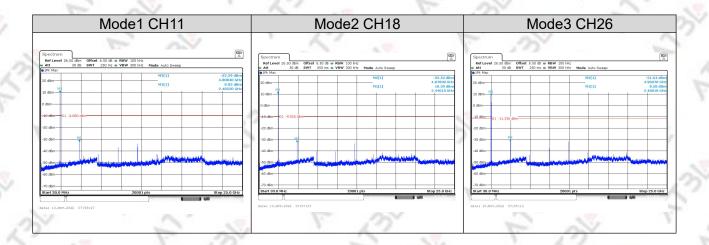
For Band edge

Spectrum Parameter	Setting
Detector	Peak
Chart Otan Francisco	Lower Band Edge: 2300 – 2407 MHz
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz
RB / VB (emission in restricted band)	100 kHz/300 kHz
Trace-Mode:	Max hold

5.3 TEST SETUP

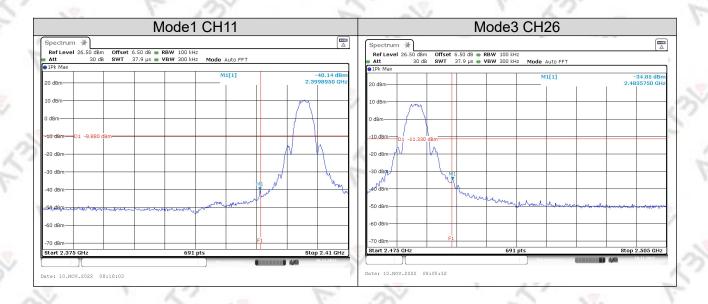
The EUT which is powered by the Battery, is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Page 34 of 44 Report No.: SHATBL2210021W03

5.5 TEST RESULTS


Temperature:	23.2℃	Relative Humidity:	52%RH
Test Voltage:	AC 5V	Test Mode:	TX Mode 1/2/3

Page 35 of 44 Report No.: SHATBL2210021W03

For Band edge(it's also the reference level for conducted spurious emission)

Page 36 of 44

Report No.: SHATBL2210021W03

6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT

	FCC Pa	art 15.247,Subpart C		
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	≤8dBm (RBW≥3kHz)	2400-2483.5	PASS

6.2 TEST PROCEDURE

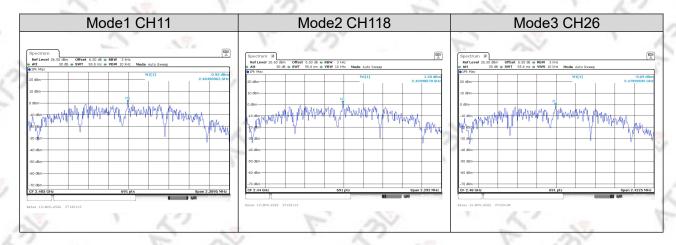
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \geq RBW \geq 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

EUT	SPECTRUM
35.5655.0.252	ANALYZER

6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.


Page 37 of 44

Report No.: SHATBL2210021W03

6.5 TEST RESULTS

Temperature:	23.2 ℃	Relative Humidity:	52%RH
Test Voltage:	AC 5V	Test Mode:	TX Mode1/2/3

Francis	Power Density	Limit (Okt I=/dDm)	Dooult
Frequency	(dBm/3kHz)	Limit (3kHz/dBm)	Result
2405 MHz	0.95	≤8	PASS
2440 MHz	1.20	≤8	PASS
2480 MHz	-0.69	≤8	PASS

Page 38 of 44

Report No.: SHATBL2210021W03

7. BANDWIDTH TEST

7.1 LIMIT

	i	FCC Part 15.247,Subpar	t C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500kHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

Connect the UUT to the spectrum analyzer and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	For 6 dB Bandwidth :100kHz For 99% Bandwidth :1% to 5% of the occupied bandwidth
VBW	For 6dB Bandwidth : ≥3 × RBW For 99% Bandwidth : approximately 3×RBW
Trace	Max hold
Sweep	Auto

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

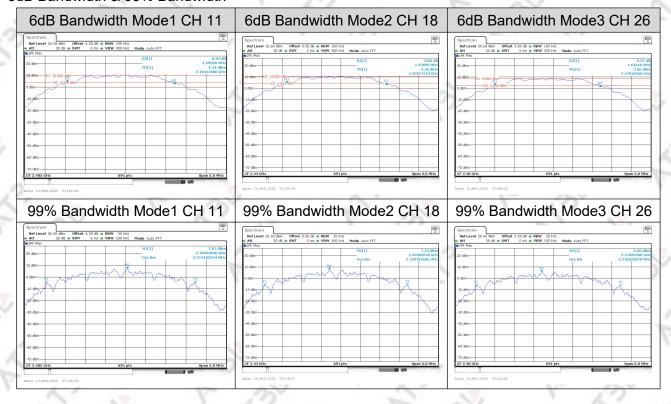
7.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Page 39 of 44


Report No.: SHATBL2210021W03

7.5 TEST RESULTS

Temperature:	23.2 ℃	Relative Humidity:	52%RH
Test Voltage:	AC 5V	Test Mode:	TX Mode1/2/3

Frequency	6dB Bandwidth (MHz)	99 <mark>%</mark> Bandwidth (MHz)	6dB Bandwidth Limit(kHz)	Result
2405 MHz	1.593	2.214	≥500kHz	PASS
2440 MHz	1.528	2.183	≥500kHz	PASS
2480 MHz	1.615	2.218	≥500kHz	PASS

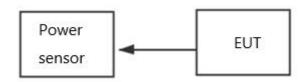
6dB Bandwidth & 99% Bandwidth

Page 40 of 44

Report No.: SHATBL2210021W03

8. PEAK OUTPUT POWER TEST

8.1 LIMIT


	FCC Part 15.247,Subpart C					
Section	Section Test Item Limit Frequency Range (MHz) Result					
15.247(b)(3)						

8.2 TEST PROCEDURE

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Page 41 of 44

Report No.: SHATBL2210021W03

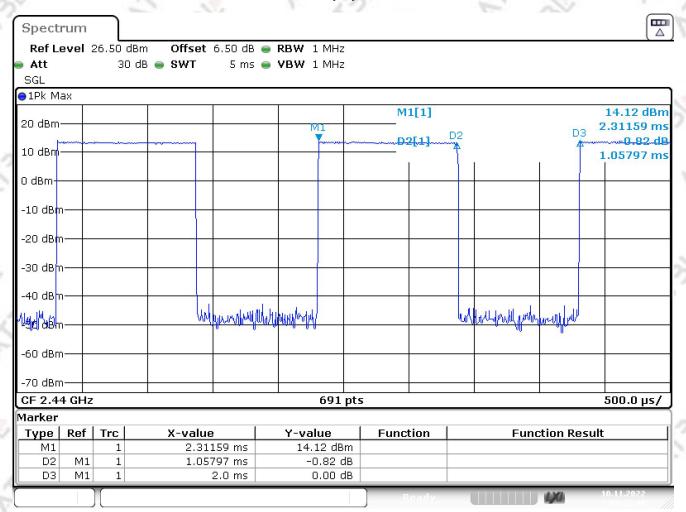
8.5 TEST RESULTS

Т	emperature:	23.2 ℃	Relative Humidity:	52%RH
Т	est Voltage:	AC 5V	Test Mode:	TX Mode1/2/3

Test Channel	Frequency	Peak Conducted Output Power	Average Conducted Output Power	LIMIT
	(MHz)	(dBm)	(dBm)	dBm
CH11	2405	12.55	12.39	30
CH18	2440	12.69	12.48	30
CH26	2480	12.84	12.69	30

EIRP Power

4 / 2					
Test Channel	Frequency	Peak Conducted Output Power	Antenna Gain	EIRP Power	LIMIT
root Orianiioi	(MHz)	(dBm)	(dBi)	(dBm)	dBm
CH11	2405	12.55	2	14.55	36
CH18	2440	12.48	2	14.48	36
CH26	2480	12.69	2	14.69	36


Note: Our power sensor test AVG power has no duty cycle display. The power sensor measures AVG power is Burst power. The software has considered the factor of the duty cycle factor, so it is unnecessary to add it again.

Page 42 of 44

Report No.: SHATBL2210021W03

Duty cycle

Date: 10.NOV.2022 05:42:45

Ton	Тр	Duty cycle(%)	Duty factor(dB)
1.05797	2.0	52.90	2.77

Page 43 of 44

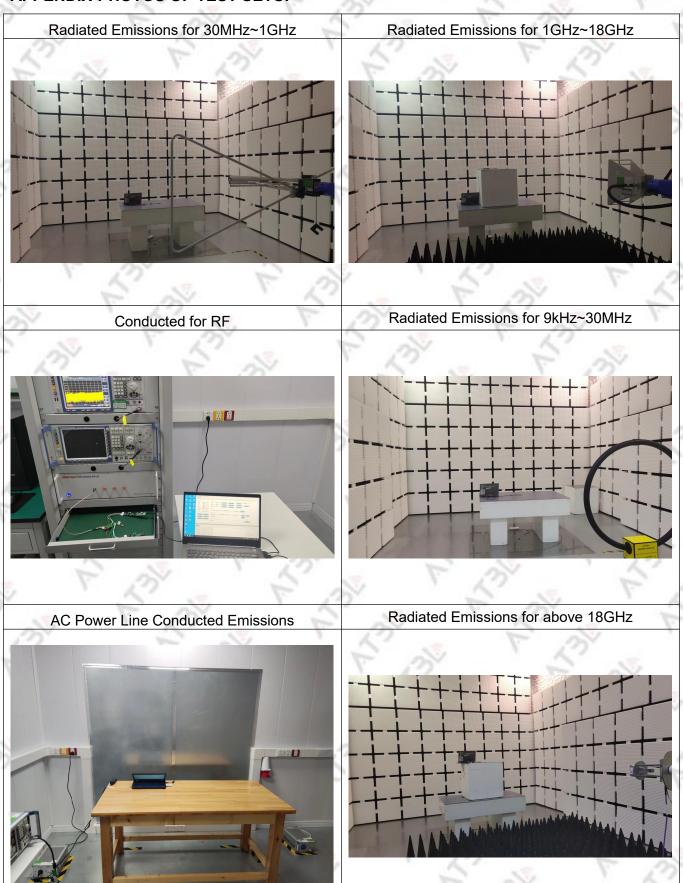
Report No.: SHATBL2210021W03

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA


The EUT antenna is PCB Antenna. It comply with the standard requirement.

Page 44 of 44

Report No.: SHATBL2210021W03

APPENDIX-PHOTOS OF TEST SETUP

*****END OF THE REPORT**