

10. 20 DB Bandwidth

10.1 Block Diagram Of Test Setup

10.2 Limit

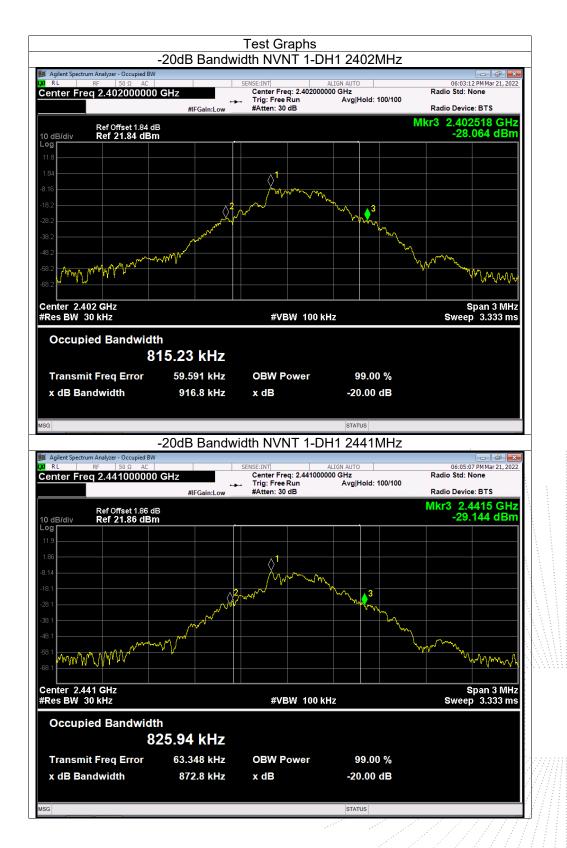
N/A

10.3 Test Procedure

- 1. Set RBW = 30kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

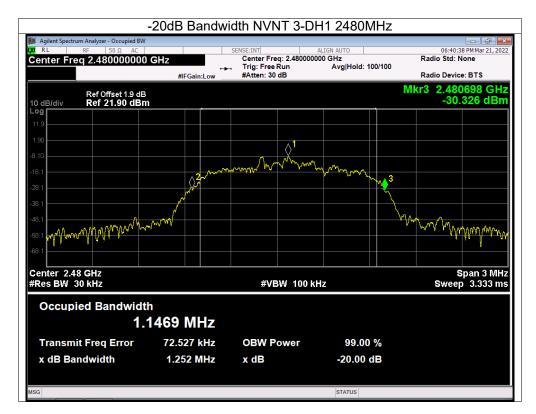
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

Page 48 of 83


Edition:

10.4 Test Result

Temperature :	26 ℃		Relative Humidity	: 54%
Test Voltage :	AC120	V/60Hz	Remark	N/A
Modulation		Test Cha	annel	Bandwidth(MHz)
GFSK		Low	,	0.917
GFSK		Midd	e	0.873
GFSK		High	1	0.872
π/4DQPSK		Low	,	1.245
π/4DQPSK		Midd	e	1.287
π/4DQPSK		High	1	1.291
8DPSK		Low	,	1.242
8DPSK		Midd	e	1.252
8DPSK		High	1	1.252



Page 54 of 83

11. Maximum Peak Output Power

11.1 Block Diagram Of Test Setup

11.2 Limit

		FCC Part15 (15.247),	Subpart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS

11.3 Test Procedure

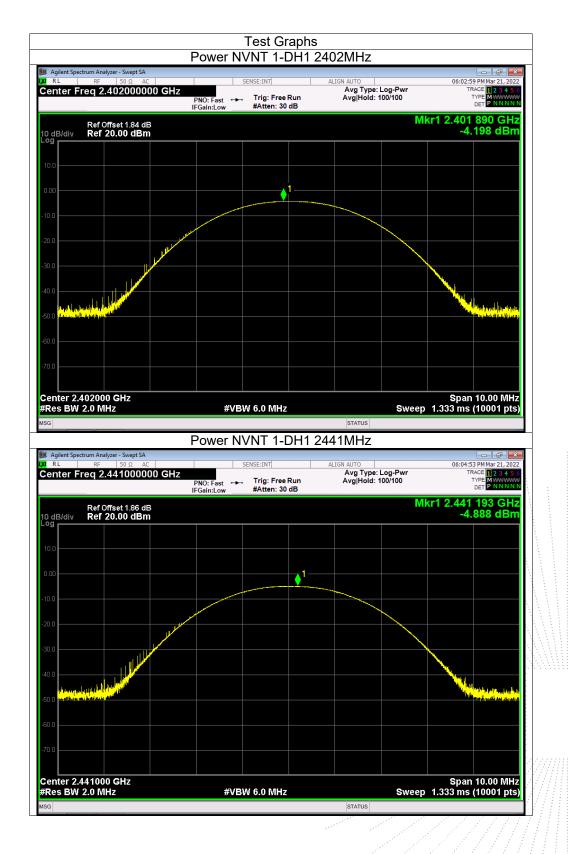
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 2MHz. VBW = 6MHz. Sweep = auto; Detector Function = Peak.

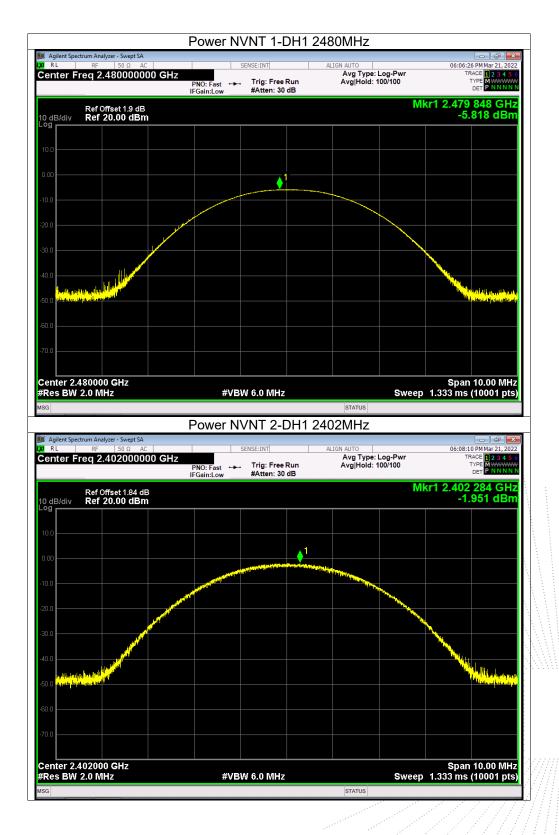
3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

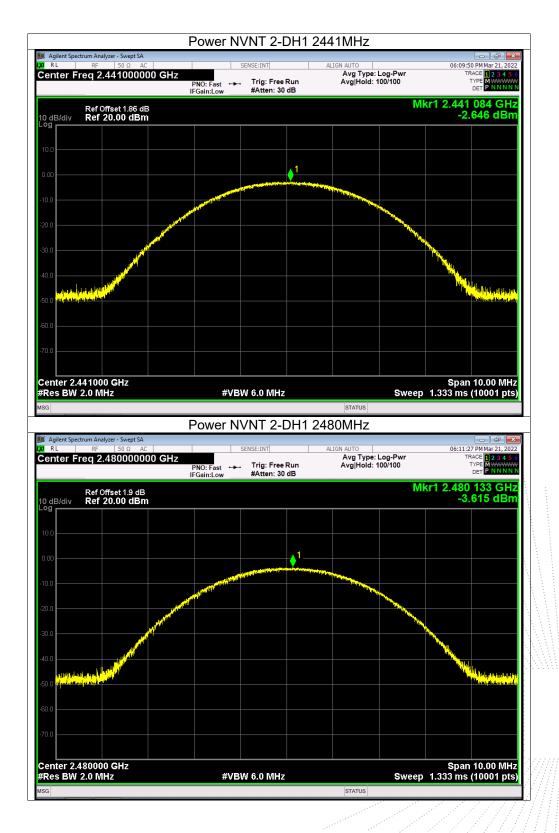
Page 55 of 83

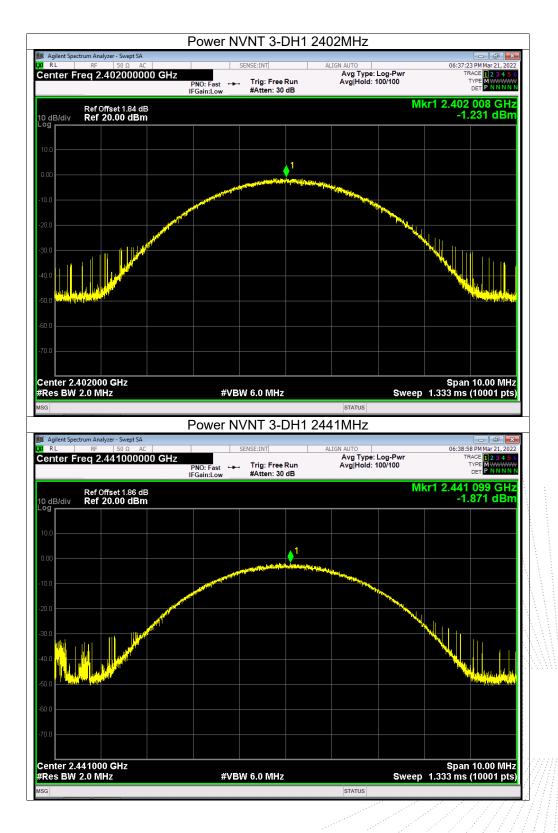
Edition: A.4

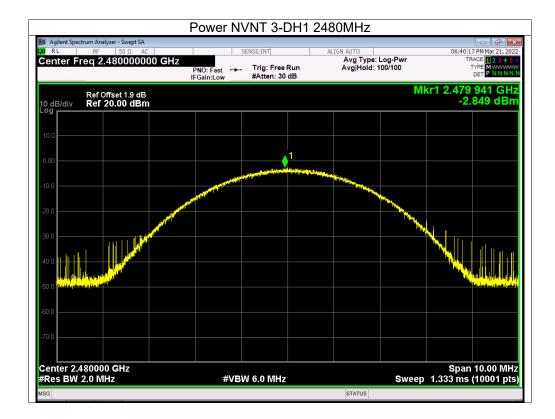


11.4 Test Result


Temperature :	26 ℃	Relative Humidity :	54%	
Test Voltage :	AC120V/60Hz	Remark:	N/A	
Modulation	Test Channel	Output Power (dBm))	Limit (dBm)
GFSK	Low	-4.2		21
GFSK	Middle	-4.89		21
GFSK	High	-5.82		21
π/4DQPSK	Low	-1.95		21
π/4DQPSK	Middle	-2.65		21
π/4DQPSK	High	-3.62		21
8DPSK	Low	-1.23		21
8DPSK	Middle	-1.87		21
8DPSK	High	-2.85		21







Page 61 of 83

12. Hopping Channel Separation

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

No.: BCTC/RF-EMC-005

Page 62 of 83

Edition: A.

12.4 Test Result

Modulation	Test Channel	Separation (MHz)	Limit(MHz)	Result
GFSK	Low	1	0.917	PASS
GFSK	Middle	1	0.873	PASS
GFSK	High	1	0.872	PASS
π/4DQPSK	Low	1	0.830	PASS
π/4DQPSK	Middle	0.998	0.858	PASS
π/4DQPSK	High	1.002	0.861	PASS
8DPSK	Low	1.002	0.828	PASS
8DPSK	Middle	0.998	0.835	PASS
8DPSK	High	1.002	0.835	PASS

Agilent Spectrum Analyzer - Swep RL RF 50 Ω		FS NVNT 1-D		064	
RL RF 50 Ω Center Freq 2.40250	0000 GHz	Wide Trig: Free R n:Low #Atten: 30 d		og-Pwr	3:45 PM Mar 21, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN
Ref Offset 1.8 0 dB/div Ref 20.00 c					1 898 GHz 6.464 dBm
.og 10.0					
0.00				2	
20.0					
40.0					
50.0					
50.0 70.0					
enter 2.402500 GHz Res BW 30 kHz		#VBW 100 kHz		Sp Sweep 2.133	an 2.000 MHz
IKR MODE TRC SCL	X	Y FUNCI	TION FUNCTION WIDTH	FUNCTION VALUE	
1 N 1 f 2 N 1 f 3	2.401 898 GHz 2.402 898 GHz	-6.464 dBm -6.509 dBm			
4 5 6					E
7 8					
9 10 11					
sg			STATUS		•
	CI	FS NVNT 1-DH	-11 2441MHz		
Agilent Spectrum Analyzer - Swep RL RF 50 Ω	AC	SENSE:INT	ALIGN AUTO		5:31 PM Mar 21, 2022
enter Freq 2.44150	PNO:	Wide Trig: Free R n:Low #Atten: 30 d		00/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNNN
Ref Offset 1.8	i6 dB			Mkr1 2.44	0 902 GHz 7 133 dBm
0 dB/div Ref 20.00 c	6 dB 1Bm			Mkr1 2.44	0 902 GHz 7.133 dBm
0 dB/div Ref 20.00 c 9 10.0	36 dB 1Bm			Mkr1 2.44 	0 902 GHz 7.133 dBm
0 dB/div Ref 20.00 c 99 10.0 0.00	1Bm				0 902 GHz 7.133 dBm
0 dB/div Ref 20.00 c	1Bm				0 902 GHz 7.133 dBm
0 dB/div Ref 20.00 c 9 10.0 10.0 20.0 20.0 40.0 40.0 Ref 20.00 c 10.0	1Bm				0 902 GHz 7.133 dBm
o dB/div Ref 20.00 c g g g g g g g g g g g g g	1Bm				0 902 GHz 7.133 dBm
o dB/div Ref 20.00 c	1Bm			2	7.133 dBm
o dB/div Ref 20.00 c 9 9 10 10 10 10 10 10 10 10 10 10		#VBW 100 kHz		2 2 Sweep 2.133	7.133 dBm
0 dB/div Ref 20.00 c	1Bm	#VBW 100 kHz		2 2 	7.133 dBm
0 dB/div Ref 20.00 c	1 1 2.440 902 GHz	Y FUNCT -7.133 dBm		2 2 Sweep 2.133	7.133 dBm
0 dB/div Ref 20.00 c	1 1 2.440 902 GHz	Y FUNCT -7.133 dBm		2 2 Sweep 2.133	7.133 dBm

Agilent Spectrum Analyzer - Swept		CENCE THE		06:05:57 DMMs 21, 202
RL RF 50 Ω enter Freq 2.47950		SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	06:06:57 PM Mar 21, 202 TRACE 1 2 3 4 5
	PNO: IFGair			
Ref Offset 1.9			I	Mkr1 2.478 902 GH: -8.139 dBn
dB/div Ref 20.00 d	Bm			-0.109 0.01
	1			
1.0		~	/ ~~~	
1.0				
.0				
.0				
enter 2.479500 GHz				Span 2.000 MH
Res BW 30 kHz		#VBW 100 kHz		ep 2.133 ms (1001 pts
R MODE TRC SCL	X 2.478 902 GHz	Y FUNCTI -8.139 dBm	ION FUNCTION WIDTH	FUNCTION VALUE
N 1 f	2.479 902 GHz	-8.094 dBm		
	<u> </u>			
à			STATUS	
	CF	S NVNT 2-DH	11 2402MHz	
Agilent Spectrum Analyzer - Swept RL RF 50 Ω		SENSE:INT	ALIGN AUTO	06:08:43 PM Mar 21, 202
enter Freq 2.40250	0000 GHz	Wide 😱 Trig: Free Ru	Avg Type: Log-Pwr un Avg Hold:>100/100	TRACE 1 2 3 4 5 TYPE MWWW DET P NNNN
	IFGair	#Atten: 30 dE		Mkr1 2.401 900 GH
Ref Offset 1.8 dB/div Ref 20.00 d			'	-6.406 dBn
g				
	_ 1		<mark>2</mark>	
	$\wedge \cdots \rightarrow$	\sim	^	
1.0 1.0 1.0				
.0				
1.0				
.0 .0 .0				
enter 2.402500 GHz				Span 2.000 MH
00 00 00 00 00 00 00 00 00 00	X	#VBW 100 kHz		ep 2.133 ms (1001 pts
enter 2.402500 GHz tes BW 30 kHz	2.401 900 GHz	Y FUNCTI		
0 0 0 0 0 0 0 0 0 0 0 0 0 0		Y FUNCTI		ep 2.133 ms (1001 pts
0	2.401 900 GHz	Y FUNCTI		ep 2.133 ms (1001 pts
0.0	2.401 900 GHz	Y FUNCTI		Pep 2.133 ms (1001 pts
0	2.401 900 GHz	Y FUNCTI		Pep 2.133 ms (1001 pts
0	2.401 900 GHz	Y FUNCTI		Pep 2.133 ms (1001 pts

Agilent Spectrum Analyzer - Swept SA			- ¢ -
RL RF 50 Ω AC enter Freq 2.441500000 GHz	PNO: Wide Trig: Free Run IEGain: I ow #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	06:10:29 PM Mar 21, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
Ref Offset 1.86 dB	IFGain:Low #Atten: 30 dB	Mkr	1 2.440 902 GHz
dB/div Ref 20.00 dBm			-7.063 dBm
.0		^2	
.0			
.0			
.0			
enter 2.441500 GHz			Span 2.000 MHz
RI MODELTRCI SCL X	#VBW 100 kHz		2.133 ms (1001 pts)
N 1 f 2.440 902 GH N 1 f 2.441 900 GH	z -7.063 dBm		
		STATUS	
Agilent Spectrum Analyzer - Swept SA	CFS NVNT 2-DH1	2480MHz	- 6 -
RL RF 50 Ω AC enter Freq 2.479500000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	06:12:08 PM Mar 21, 202 TRACE 1 2 3 4 5
	PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hold:>100/100	DET PNNNN
Ref Offset 1.9 dB dB/div Ref 20.00 dBm		Mkr	1 2.478 898 GHz -8.295 dBm
g 			
0 1		2	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.0			
.0			
enter 2.479500 GHz tes BW 30 kHz	#VBW 100 kHz	Sweep	Span 2.000 MHz 2.133 ms (1001 pts
R MODE TRC SCL X N 1 f 2.478 898 GH	Y FUNCTION z -8.295 dBm	FUNCTION WIDTH FUN	CTION VALUE
N 1 f 2.479 900 GH	z -8.033 dBm		



Agilent Spectrum Analyzer - Swept SA R L RF 50 Ω AC		ICE-INT			06:22:45 DN Max 21, 2022
RL RF 50 Ω AC enter Freq 2.402500000		Trig: Free Run	ALIGN AUTO Avg Type: Lo Avg Hold:>100		06:22:45 PM Mar 21, 2022 TRACE 1 2 3 4 5 ( TYPE MWWWW DET P N N N N
	IFGain:Low	#Atten: 30 dB		NU-4-0	
Ref Offset 1.84 dB dB/div Ref 20.00 dBm				MK <b>r</b> 1 2.	402 062 GHz -6.504 dBm
g					
.00	1			<mark>2</mark>	
		~		$\sim$	$\sim$
0.0	$\rightarrow$				
J.O					
J.0					
0.0					
enter 2.402500 GHz					Span 2.000 MHz
Res BW 30 kHz		100 kHz			3 ms (1001 pts)
KR     MODE     TRC     SCL     X       1     N     1     f     2.402	062 GHz -6.504 dE	3m	UNCTION WIDTH	FUNCTION	VALUE
3	064 GHz -6.512 dE	3m			
4 5					=
6					
8					
1					
3			STATUS		
	CFS NVN	IT 3-DH1 24	41MHz		
Agilent Spectrum Analyzer - Swept SA					- 6 🗾
RL RF 50 Ω AC enter Freq 2.441500000	GHz	ISE:INT	ALIGN AUTO Avg Type: Lo		06:27:15 PM Mar 21, 2022 TRACE 1 2 3 4 5 (
	PNO: Wide 😱 IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold:>10		TYPE MWWWWW DET PNNNN
Ref Offset 1.86 dB				Mkr1 2.	441 064 GHz -7.124 dBm
dB/div Ref 20.00 dBm					-7.124 UBII
0.0	.1			. 2	
.00					
			~~~~``		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0.0					
J.0					
J.0					
.0					
enter 2.441500 GHz					Snon 2 000 MHz
Res BW 30 kHz	#VBW	100 kHz		Sweep 2.13	Span 2.000 MHz 33 ms (1001 pts)
R MODE TRC SCL X	Y		UNCTION WIDTH	FUNCTION	VALUE
2 N 1 f 2.442	064 GHz -7.124 dE 062 GHz -7.189 dE	3m 3m			
3					
56 67					
7 8 9					
					*
			STATUS		

	CFS NVNT 3-DH1	2480MHz	
📜 Agilent Spectrum Analyzer - Swept SA 🗶 R.L. RF 50 Ω AC	SENSE:INT	ALIGN AUTO	06:29:21 PM Mar 21, 202
Center Freq 2.479500000 GHz	PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 TYPE M WWWW DET P NNNN
Ref Offset 1.9 dB 10 dB/div Ref 20.00 dBm		Ν	/kr1 2.479 062 GHz -8.120 dBm
			2
-20.0			
70.0			
Center 2.479500 GHz #Res BW 30 kHz	#VBW 100 kHz	Swe	Span 2.000 MH: ep 2.133 ms (1001 pts
MKR MODE TRC SCL X 1 N 1 f 2.479 062 GF 2 N 1 f 2.480 064 GF 3 3 1 f 2.480 064 GF		FUNCTION WIDTH	FUNCTION VALUE
4 5 6 7 8 8 9 9			
10			

13. Number Of Hopping Frequency

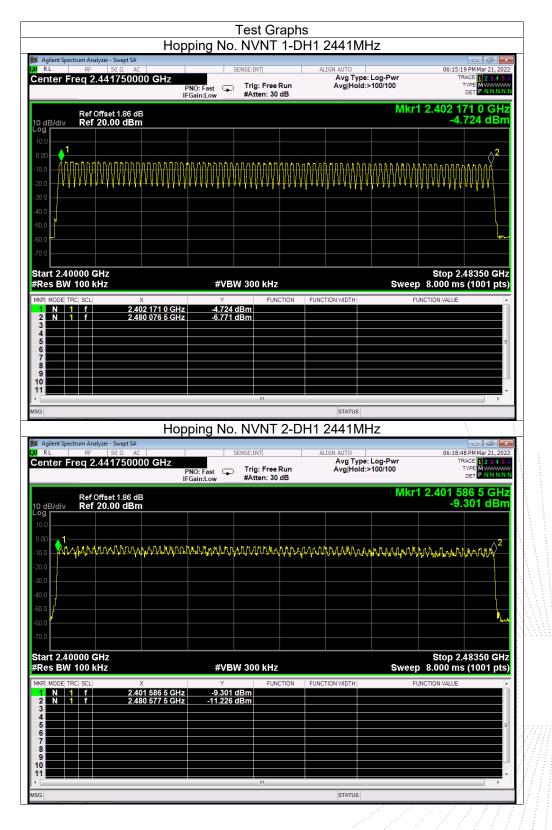
13.1 Block Diagram Of Test Setup

13.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

13.3 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.


2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

Page 69 of 83

13.4 Test Result

	trum Analyzer - S									
RL		Ω AC		SENSE:]	NT	AL	IGN AUTO	Les Dem		:12 PM Mar 21, 202
enter Fi	req 2.441	750000 GHz	PNO: Fast		g: Free Run		Avg Type Avg Hold	:: Log-Pwr :>100/100		TRACE 1 2 3 4 5 TYPE MWWWM DET P N N N N
			IFGain:Low	- #A	tten: 30 dB					
	Ref Offset	1.86 dB						Mkr		337 0 GHz
0 dB/div .og r	Ref 20.0	0 dBm	_						-6	.850 dBm
10.0										
0.00 1 -										
	<u>. የ</u> ለ ለ ለ ለ ለ ለ ለ	ᡃᡪᢦ᠕ᡣᡅᡅ᠕ᡯ᠋ᢩ᠕᠕᠕	ለሐብጠሌ አለታ	(ADAA)		<u>ሊ</u> የ.አ (N J M N A	በስቤሐሌሌልል	A D KA I J	1 1 A B . A C
	all by a Lun	I I I I I I I I I I I I I I I I I I I	YY Y Y T VY	110/1	V" * YV()	የዋ ህን ወ	e westinge	an a h a thread a	w wp i w vivi	k na a mad
20.0										
30.0										
40.0										
50.0 <mark>H</mark>										'l
50.0										برا
70.0										
itart 2.40 Res BW	000 GHz		#1	BW 30				Swoor		2.48350 GHz is (1001 pts
				Das 10						is (1001 pts
1 N 1	RC SCL	× 2.401 837 0 GHz	Y -6.8	50 dBm	FUNCTION	FUNCT	FION WIDTH	FL	JNCTION VALUE	
2 N 1	f	2.480 410 5 GHz		97 dBm						
3 4										
5										
6 7										
8										
10										
11										

14. Dwell Time

14.1 Block Diagram Of Test Setup

14.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

14.3 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. Centred on a hopping channel;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

Page 72 of 83

14.4 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

DH5:1600/79/6*0.4*79*(MkrDelta)/1000 DH3:1600/79/4*0.4*79*(MkrDelta)/1000 DH1:1600/79/2*0.4*79*(MkrDelta)/1000 Remark: Mkr Delta is once pulse time.

Modulation	Channel Data	Packet	pulse time(ms)	Dwell Time(s)	Limits(s)
		DH1	0.39	0.125	0.4
GFSK	Middle	DH3	1.643	0.263	0.4
		DH5	2.892	0.308	0.4
		2DH1	0.399	0.128	0.4
π/4DQPSK	Middle	2DH3	1.648	0.264	0.4
		2DH5	2.898	0.309	0.4
		3DH1	0.401	0.128	0.4
8DPSK	Middle	3DH3	1.65	0.264	0.4
		3DH5	2.901	0.309	0.4

		NVNT 1	Test G -DH1 2		z One E	lurst		
Agilent Spectrum Analyzer - Swep R L RF 50 Ω	AC	S	ENSE:INT		ALIGN AUTO	Log Dur	06:15	28 PM Mar 21, 2022
enter Freq 2.44100	P	NO: Fast ↔→ Gain:Low	Trig Delay Trig: Vide #Atten: 30		Avg Type	Log-Pwr		TRACE 1 2 3 4 5 0 TYPE WWWWWW DET P NNNN
Ref Offset 1.8							ΔMkr	1 390.0 µs
dB/div Ref 20.00 c								9.31 dB
0.0 1∆2								
								TRIG LVL
0.0 X 2								
0.0								
	n a serie de la comparte de la comp	a sel a la gran a segura da la la segura da l					a war wit werder die bereek	<mark>tat all at se like al elitere</mark>
o.o <mark>pilata pr</mark> esenta da presenta da pres Presenta da presenta da pre	n her		<mark>United All and Long 1</mark>	a <mark>ha di mahij</mark>	<mark>n produktel Andre</mark>	<mark>a diaminina ka</mark> hi	litte kinder der der der der der der der der der	ilinii mini mitariit
	211-							0
enter 2.441000000 G es BW 1.0 MHz	902	#VBV	V 3.0 MH2	Z		Sweep	10.00 ms	Span 0 Hz 5 (10001 pts)
KR MODE TRC SCL 1 Δ2 1 t (Δ)	× 390.0 µs	γ (Δ) 9.3 ⁴	FUI 1 dB	NCTION FUN	CTION WIDTH	F	UNCTION VALUE	A
2 F 1 t	497.0 µs	-14.57 c	lBm					
4 5								=
6 7 8								
9								
1								
G								
					STATUS			,
	Dwell	NVNT 1-		2441MH		urst		
	pt SA					Surst	06:31	.02 PM Mar 21, 2022
RL RF 50 Ω	pt SA AC 00000 GHz P		-DH3 2	y-500.0 µs	z One E		06:31	:02 PM Mar 21, 2022
RL RF 50 Ω enter Freq 2.44100 	Pt SA AC O0000 GHz P IF 36 dB	NO: Fast ↔	-DH3 2 ENSE:INT Trig Delay Trig: Vide	y-500.0 µs	z One E			:02 PM Mar 21, 2022 TRACE 1 2 3 4 5 (
RL RF 50 Ω enter Freq 2.44100 Ref Offset 1.6 Ref Offset 1.6 Ref 20.00 0 0 dB/div Ref 20.00 0	Pt SA AC O0000 GHz P IF 36 dB	NO: Fast ↔	-DH3 2 ENSE:INT Trig Delay Trig: Vide	y-500.0 µs	z One E			1.643 ms
RL RF 50 Ω enter Freq 2.44100 Ref Offset 1.6 0 dB/div Ref Offset 1.6 0 g 0	AC	NO: Fast ↔	-DH3 2 ENSE:INT Trig Delay Trig: Vide	y-500.0 µs	z One E			1.643 ms
RL RF 50 Ω enter Freq 2.44100 Ref Offset 1.6 0 dB/div Ref 20.00 d 0 0	AC AC 00000 GHz P F 36 dB dBm	NO: Fast ↔	-DH3 2 ENSE:INT Trig Delay Trig: Vide	y-500.0 µs	z One E			1.643 ms
RL RF 50 Ω enter Freq 2.44100 Ref Offset 1.8 Ref Offset 1.8 0 dB/div Ref 20.00 0 Ref 20.00 0 0 0 Ref 20.00 0 Ref 20.00 0	AC AC 00000 GHz P F 36 dB dBm	NO: Fast ↔	-DH3 2 ENSE:INT Trig Delay Trig: Vide	y-500.0 µs	z One E			:02 PMMar 21, 2022 TRACE 12 3 4 5 G TYPE WWWWW DET PNNNN 1.643 ms 9.94 dB
Ref Offset 1.8 0 dB/div Ref 20.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AC AC 00000 GHz P F 36 dB dBm	NO: Fast ↔	-DH3 2 ENSE:INT Trig Delay Trig: Vide	y-500.0 µs	z One E			:02 PMMar 21, 2022 TRACE 12 3 4 5 G TYPE WWWWW DET PNNNN 1.643 ms 9.94 dB
RL RF 50 Ω enter Freq 2.44100 Ref Offset 1.8 0 dB/div Ref 20.00 0 00 00 00 00 00 00 00 00 00 00 00 00	AC 00000 GH2 00000 GH2 PF 36 dB dBm 1Δ2	NO: Fast Gain:Low	-DH3 2 ENSE:INT Trig Delay Trig: Vide #Atten: 30	y-500.0 μs io 0 dB	Z One B	: Log-Pwr		02 PM Mar 21, 2022 TRACE [] 2 3 4 5 6 TYPE WINNIN DET P NNNNN 1.643 ms 9.94 dB
RL RF 50 Ω enter Freq 2.44100 Ref Offset 1.6 Ref Offset 1.6 0 dB/div Ref 20.00 c Ref 20.00 c	pt SA AC 00000 GHz P F 56 dB dBm 1Δ2	NO: Fast Gain:Low Print 8 ⁻¹⁰ ₹ * ²⁰⁰ (6)	-DH3 2 ENSE:INT Trig Delat Trig: Vide #Atten: 30	y-500.0 µs oo 0 dB	Z One B	: Log-Pwr	AMkr1	02 PM Mar 21, 2022 TRACE [] 2 3 4 5 6 TYPE WINNIN DET P NNNNN 1.643 ms 9.94 dB
RL RF 50 Ω enter Freq 2.44100 Ref Offset 1.6 Ref Offset 1.6 0 dB/div Ref 20.00 g Ref 20.00 g	pt SA AC D00000 GHz P F 36 dB dBm 1Δ2	NO: Fast Gain:Low Print 8 ⁻¹⁰ ₹ * ²⁰⁰ (6)	-DH3 2 ENSE:INT Trig Delat Trig: Vide #Atten: 30	y-500.0 µs oo 0 dB	Z One B	: Log-Pwr	AMkr1	02 PM Mar 21, 2022 TRACE [1 2 3 4 5 0 TYPE WINNIN DET P NNNNN 1.643 ms 9.94 dB
RL RF 50 Ω enter Freq 2.44100 Ref Offset 1.6 Ref Offset 1.6 0 dB/div Ref 20.00 c Ref 000 c 0 0 Ref 000 c Ref 000 c	pt SA AC D00000 GHz P F 36 dB dBm 1Δ2	NO: Fast Gain:Low	-DH3 2 ENSE:INT Trig Delat Trig: Vide #Atten: 30		Z One B		AMkr1	02 PM Mar 21, 2022 TRACE 2 3 4 5 4 TYPE WINNIN 1.643 ms 9.94 dB TROC LVL
RL RF 50 Ω enter Freq 2.44100 Ref Offset 1.6 Ref Offset 1.6 0 dB/div Ref 20.00 d Ref 0 d 0 dB/div Ref 0 d Ref 0 d	AC AC D0000 GH2 PF 36 dB dBm 142	NO: Fast Gain:Low	-DH3 2 ENSE:INT Trig Delat Trig: Vide #Atten: 30	y-500.0 µs ю 0 dB	Z One B	Log-Pwr	AMkr1	02 PM Mar 21, 2022 TRACE [1 2 3 4 3 5 TYPE WINNIN DET P NNNNN 1.643 ms 9.94 dB TRO LVL TRO LVL Span 0 Hz 5 (10001 pts)
RL RF 50 Ω enter Freq 2.44100 Ref Offset 1.6 Ref Offset 1.6 dB/div Ref 20.00 d Ref 20.00 d 0 Ref 20.00 d Ref 20.00 d	AC AC D0000 GHz P F 36 dB dBm 1Δ2	NO: Fast Gain:Low	-DH3 2 ENSE:INT Trig Dela; Trig: Vide #Atten: 30 #Atten: 30 W 3.0 MH2 FUT 4 GB	y-500.0 µs ю 0 dB	z One B align Auto Avg Type	Log-Pwr	AMkr1	02 PM Mar 21, 2022 TRACE [1 2 3 4 3 5 TYPE WINNIN DET P NNNNN 1.643 ms 9.94 dB TRO LVL TRO LVL Span 0 Hz 5 (10001 pts)
RL RF 50 Ω enter Freq 2.44100 Ref Offset 1.6 Ref Offset 1.6 0 dB/div Ref 20.00 c Ref 0 0 dB/div Ref 20.00 c Ref 0 0 dB/div Ref 0 Ref 0 0 dB/div Ref 20.00 c Ref 20.00 c 1 d2 f <td< td=""><td>AC AC D00000 GHz P F 36 dB dBm 1Δ2 (m-1)/ 4 m(1) 3Hz X 1.643 ms</td><td>NO: Fast Gain:Low maint # 1977 #VBV ¥VBV</td><td>-DH3 2 ENSE:INT Trig Dela; Trig: Vide #Atten: 30 #Atten: 30 W 3.0 MH2 FUT 4 GB</td><td>y-500.0 µs ю 0 dB</td><td>z One B align Auto Avg Type</td><td>Log-Pwr</td><td>AMkr1</td><td>02 PM Mar 21, 2022 TRACE [1 2 3 4 3 5 TYPE WINNIN DET P NNNNN 1.643 ms 9.94 dB TRO LVL TRO LVL Span 0 Hz 5 (10001 pts)</td></td<>	AC AC D00000 GHz P F 36 dB dBm 1Δ2 (m-1)/ 4 m(1) 3Hz X 1.643 ms	NO: Fast Gain:Low maint # 1977 #VBV ¥VBV	-DH3 2 ENSE:INT Trig Dela; Trig: Vide #Atten: 30 #Atten: 30 W 3.0 MH2 FUT 4 GB	y-500.0 µs ю 0 dB	z One B align Auto Avg Type	Log-Pwr	AMkr1	02 PM Mar 21, 2022 TRACE [1 2 3 4 3 5 TYPE WINNIN DET P NNNNN 1.643 ms 9.94 dB TRO LVL TRO LVL Span 0 Hz 5 (10001 pts)
RL RF 50 Ω enter Freq 2.44100 Ref Offset 1.6 Ref Offset 1.6 0 dB/div Ref 20.00 c Ref 0 0 dB/div Ref 20.00 c Ref 0 0 dB/div Ref 0 Ref 0	AC AC D00000 GHz P F 36 dB dBm 1Δ2 (m-1)/ 4 m(1) 3Hz X 1.643 ms	NO: Fast Gain:Low maint # 1977 #VBV ¥VBV	-DH3 2 ENSE:INT Trig Dela; Trig: Vide #Atten: 30 #Atten: 30 W 3.0 MH2 FUT 4 GB	y-500.0 µs ю 0 dB	z One B align Auto Avg Type	Log-Pwr	AMkr1	02 PM Mar 21, 2022 TRACE [1 2 3 4 3 5 TYPE WINNIN DET P NNNNN 1.643 ms 9.94 dB TRO LVL TRO LVL Span 0 Hz 5 (10001 pts)
RL RF 50 Ω enter Freq 2.44100 Ref Offset 1.6 Ref Offset 1.6 0 dB/div Ref 20.00 d Ref 20.00 d 0 dV Ref 20.00 d Ref 20.00 d	AC AC D00000 GHz P F 36 dB dBm 1Δ2 (m-1)/ 4 m(1) 3Hz X 1.643 ms	NO: Fast Gain:Low maint # 1977 #VBV ¥VBV	-DH3 2 ENSE:INT Trig Dela; Trig: Vide #Atten: 30 #Atten: 30 W 3.0 MH2 FUT 4 GB	y-500.0 µs ю 0 dB	z One B align Auto Avg Type	Log-Pwr	AMkr1	02 PM Mar 21, 2022 TRACE [1 2 3 4 3 5 TYPE WINNIN DET P NNNNN 1.643 ms 9.94 dB TRO LVL TRO LVL Span 0 Hz 5 (10001 pts)
RL RF 50 Ω enter Freq 2.44100 Ref Offset 1.6 Ref Offset 1.6 0 dE/div Ref 20.00 c Ref 20.00 c 0 de ref 2.4410000000 C Ref 20.00 c Ref 20.00 c 0 de ref 2.4410000000 C Ref 20.00 c Ref 20.00 c 0 de ref 2.4410000000 C Ref 20.00 c Ref 20.00 c 0 de ref 2.441000000 C Ref 20.00 c Ref 20.00 c 0 de ref 2.441000000 C Ref 2.4410000000 C Ref 2.4410000000 C <	AC AC D00000 GHz P F 36 dB dBm 1Δ2 (m-1)/ 4 m(1) 3Hz X 1.643 ms	NO: Fast Gain:Low maint # 1977 #VBV ¥VBV	-DH3 2 ENSE:INT Trig Dela; Trig: Vide #Atten: 30 #Atten: 30 W 3.0 MH2 FUT 4 GB	y-500.0 µs ю 0 dB	z One B align Auto Avg Type	Log-Pwr	AMkr1	02 PM Mar 21, 2022 TRACE [1 2 3 4 3 5 TYPE WINNIN DET P NNNNN 1.643 ms 9.94 dB TRO LVL TRO LVL Span 0 Hz 5 (10001 pts)

	RF 50 Ω Freq 2.441000	DOO GHZ	Tast ↔ T	E:INT Frig Delay-500.0 με Frig: Video Atten: 30 dB	ALIGN AUTO s Avg Type	: Log-Pwr	TRA	PM Mar 21, 202 CE 1 2 3 4 5 PE W
	Ref Offset 1.86	dB					ΔMkr1 2	
dB/div	Ref 20.00 dB	m						3.02 dE
.00								
D.O		u kindala, sakulladan ang ber	1Δ2					TRIG LVL
 	X2							
0.0 <mark>710 9</mark>					kalandar arang dalamatan kalang Tupan yang dalamatan kalang dalamatan kalang dalamatan kalang dalamatan kalang			Hangarang ang talahan Inter Delaka jalahan
	2.441000000 GH 1.0 MHz	Z	#VBW 3	3.0 MHz		Sweep	ء ') 10.00 ms	Span 0 Hz 10001 pts
	TRC SCL 1 t (Δ)	X 2 892 ms (A	Y 3.02 d	FUNCTION	FUNCTION WIDTH	Fl	INCTION VALUE	
2 F 3	1 t	2.892 ms (Δ 493.0 μs	-21.86 dBr					
4 5 6								
8								
9 0 1								
3				III	STATUS			•
		Dwell N	VNT 2-D) H1 2441N	/Hz One E	Burst		
RL		AC		E:INT	ALIGN AUTO		06:18:57	👝 🗗 🗾
enter	Freq 2.441000	PNO	East +++ T	Trig Delay-500.0 με Trig: Video Atten: 30 dB	s Avg Type	: Log-Pwr	T	CE 1 2 3 4 5 PE WWWWWW
	Ref Offset 1.86		n.cow "				ΔMkr1	
dB/div	Ref 20.00 dB	m						0.99 dE
.00	1Δ2							
	X ₂							TRIG LVL
0.0								
0.0 0.0 0.0								
0.0 0.0 0.0 0.0	už. ^{In} altablad muticidi	f light for an an an a bear to a far a						
0.0 0.0 0.0 0.0 0.0 0.0 0.0	už. ^{In} altablad muticidi	eli papier program temperanti I V a fast financia e temperanti I V a fast financia e temperatura						
2.0 2.0 2.0 2.0 2.0 3.0 3.0 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.441000000 GH	<mark>i i i i i i i i i i i i i i i i i i i </mark>	and the second	halle, litt a far and a far a fa Ta far a f		n Anglanda (Jan Kangal) A	in data bay <mark>bay bay bayan s</mark> a	Span 0 Hz
1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.1	2.441000000 GH 1.0 MHz	r <mark>i i taljuti uznačka kajio i</mark> ndi z X	######################################	3.0 MHz		Sweep	initia in t _a nt initia in a	Span 0 Hz
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.441000000 GH 1.0 MHz	<mark>d hala da ana da da</mark>	######################################	B	hosto da kaj kanj ang	Sweep	10.00 ms (Span 0 Hz
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.441000000 GH 1.0 MHz TRC SCL 1 t (Δ)	1 100 10 0.00 μ z × 399.0 μs (Δ	#VBW 3	B	hosto da kaj kanj ang	Sweep	10.00 ms (Span 0 Hz
enter 2 es BW KR MODE	2.441000000 GH 1.0 MHz TRC SCL 1 t (Δ)	1 100 10 0.00 μ z × 399.0 μs (Δ	#VBW 3	B	hosto da kaj kanj ang	Sweep	10.00 ms (Span 0 Hz

	RF 50Ω AC Freq 2.44100000	F	PNO: Fast ↔→ Gain:Low	SENSE:INT Trig Delay-5 Trig: Video #Atten: 30 dl	00.0 µs	IGN AUTO Avg Type:	Log-Pwr	06:32:- T	46 PM Mar 21, 202 RACE 1 2 3 4 5 TYPE WWWWW DET P NNNN
) dB/div	Ref Offset 1.86 dE Ref 20.00 dBm	3						ΔMkr1	1.648 ms 4.43 dB
.00		▲1∆2							
3.0									
).0).0									
).0 <mark>alterration</mark>				las aplacad is place					
э.о <mark>Үг^{эф}ірр</mark> э.о		in the second	unggal lag haa	diden of the second			a sellen ander sellen p	limentar d ir kar	n hinin hinin
	.441000000 GHz 1.0 MHz		#\/B	W 3.0 MHz			Swoon	10.00 mc	Span 0 Hz (10001 pts
R MODE T	RC SCL		Y	FUNCT	ION FUNCT	FION WIDTH		JNCTION VALUE	(Tooor prs
	1 t (Δ) 1 t	1.648 ms 485.0 µs	<u>(Δ) 4.4</u> -18.77	43 dB dBm					
4 5 6									=
8									
9 0 1									
3				m		STATUS			•
		Dwell	NVNT 2	2-DH5 24	41MHz	2 One B	urst		
RL	ctrum Analyzer - Swept SA RF 50 Ω AC reg 2.44100000			SENSE:INT Trig Delay-5		IGN AUTO Avg Type:	Log-Pwr	06:33: T	38 PM Mar 21, 2023 RACE 1 2 3 4 5
	1eq 2.44 10000	F	NO: Fast	Talas Midaa		,			
dBłdiv	Ref Offset 1.86 dE Ref 20.00 dBm	3						ΔMkr1	2.898 ms 5.52 dB
dB/div 9 0.0									
.00			<u>1∆2</u>						
	X2								TRIO LVL
0.0									
				, and the second se				^{e t} uri turi buri	
0.0 0.0 <mark>(NE)</mark> 0.0	1								
0.0 0.0 <mark>(44)⁰1778</mark> 0.0 <mark>1)46,146,1</mark>			<mark>V_M, di V</mark>	^{an} an a			and the first of the second	M and a shift as	I water of the day
0.0 0.0 <mark>(44)¹ (77)</mark> 0.0 <mark>(14) (4),</mark>	441000000 GHz		l'an an a				and the state of the		
2.0 (11) (11) (11) (11) (11) (11) (11) (11	1.0 MHz		#VB	Worthdowein W 3.0 MHz	ing a dalari	hydraenter i	Sweep	10.00 ms	Span 0 Hz (10001 pts
2.0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1.0 MHz	2.898 ms 497.0 µs	#VB Υ (Δ) 5.(W 3.0 MHz	ing a dalari		Sweep		Span 0 Hz
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 MHz RC SCL >	2.898 ms	#VB Υ (Δ) 5.5	W 3.0 MHz	ing a dalari	hydraenter i	Sweep	10.00 ms	Span 0 Hz
0.0 (11) (11) (11) (11) (11) (11) (11) (11	1.0 MHz RC SCL >	2.898 ms	#VB Υ (Δ) 5.5	W 3.0 MHz	ing a dalari	hydraenter i	Sweep	10.00 ms	Span 0 Hz

Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω AC enter Freg 2.44100000		SENSE:INT Trig Delay-500.0 µ	ALIGN AUTO		:42 PM Mar 21, 202 TRACE 1 2 3 4 5
enter Freq 2.4410000	PNO: Fast IFGain:Low		s Avg Type. Lo	y-r wi	TYPE WWWWWW DET P NNNN
Ref Offset 1.86 dB dB/div Ref 20.00 dBm				ΔMkr	1 401.0 με 3.12 dE
1Δ2 —					
0.0 X2					TRIG LVL
0.0					
0.0 10.0	alarah na manalara na mangalaranan	a line water a state of the sta		all a second production and a second s	and the state of the second state
		non per proper per per per per per per per per per			and the second second
enter 2.441000000 GHz					Span 0 Hz
es BW 1.0 MHz		VBW 3.0 MHz		Sweep 10.00 m	s (10001 pts
KR MODE TRC SCL X 1 Δ2 1 t (Δ) 2 F 1 t	401.0 μs (Δ)	Y FUNCTION 3.12 dB 2.25 dBm	FUNCTION WIDTH	FUNCTION VALUE	
3	497.0 µs -1.				
5 6 7					
8					
0					
G			STATUS		
	Dwell NVN	T 3-DH3 2441N	MHz One Bur	st	
Agilent Spectrum Analyzer - Swept SA RL RF 50 Ω AC enter Freg 2.44100000	0 GHz	SENSE:INT Trig Delay-500.0 µ	ALIGN AUTO s Avg Type: Lo		E 29 PM Mar 21, 202 TRACE 1 2 3 4 5
	PNO: Fast IFGain:Low	Talas Mistara			
Ref Offset 1.86 dB dB/div Ref 20.00 dBm				ΔMkr	1.650 ms 6.55 dE
0 dB/div Ref 20.00 dBm					
).00	1∆2				
0.0 X2					TRIC LVL
0.0					
		ali ja ta je ^{na} ji ¹ y vy tvoj svi je 11 y je 1 ky ky dovy vy pola si k		handle a state that the	alling to the states of the
	ning bang dan jina dan ji	<mark>dir in dialitang baharaha dia dipana</mark>	<mark>lidea philiphaitean d</mark> i	n ini ana ili appia di	
enter 2.441000000 GHz es BW 1.0 MHz	#	VBW 3.0 MHz		Sweep 10.00 m	Span 0 Hz s (10001 pts
		Y FUNCTION 6.55 dB	FUNCTION WIDTH	FUNCTION VALUE	
1 Δ2 1 t (Δ)	1.650 ms (Δ)				
1 Δ2 1 t (Δ) 2 F 1 t 3	1.650 ms (Δ) 497.0 μs -1	1.89 dBm			
1 Δ2 1 t (Δ) 2 F 1 t 3 3 4 5 5 5 6 6 6 6 6	497.0 μs -1				
1 Δ2 1 t (Δ)	<u>497.0 μs</u> -1				

	ctrum Analyzer - S						-1						- đ
	RF 50 req 2.441	Ω AC 000000		PNO: Fas FGain:Lo	st ⊶⊷	. Trig:	Delay-50 Video en: 30 dE		ALIGN AL	g Type: I	Log-Pwr		28 PM Mar 21, 2 TRACE 1 2 3 4 TYPE WWWW DET P NNN
0 dB/div og r	Ref Offset Ref 20.0											ΔMkr1	2.901 n 6.51 c
					1 <u></u> 2								
0.0	K2			innen									TRIC
0.0	<u> </u>												
0.0													
0.0													
						1.			A DOMESTIC AND A DESCRIPTION OF A DESCRI	1.	र्षतम् अपूर्ण विकास सम्बद्ध	a set of the set of the	
0.0 1979 - 1979 - 1999 1990 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19						1.			A DOMESTIC AND A DESCRIPTION OF A DESCRI	1.	<mark>ve^{n N}intennik av</mark> Generationen av	a set of the set of the	
0.0 <mark>1999999999999999999999999999999999999</mark>	441000000	GHz			peta di poli li	1.	i falinti		A DOMESTIC AND A DESCRIPTION OF A DESCRI	1.	<mark>«ովրահնենդե</mark>	a set of the set of the	Span 0 l
enter 2.4 es BW 1	441000000 1.0 MHz) GHz			#VB	W 3.0 I	i falinti	n diana <mark>i</mark> di n	A DOMESTIC AND A DESCRIPTION OF A DESCRI	u <mark>ll alad</mark> ar	^տ ղլումիներ Sweep	<mark>e a^{di}takia dahiji</mark>	Span 0 5 (10001 p
0.0 10000000000000000000000000000000000	441000000 1.0 MHz		<u>2.901 ms</u> 497.0 µs		#VB	W 3.0 I	MHz	n diana <mark>i</mark> di n	land di politi I	u <mark>ll alad</mark> ar	^տ ղլումիներ Sweep	រារីសំណែងរ៉ូត្រ 10.00 ms	Span 0 5 (10001 p
0.0 0000000000000000000000000000000000	441000000 1.0 MHz RC SCL 1 t (Δ)				#VB	W 3.0 I	MHz	n diana <mark>i</mark> di n	land di politi I	u <mark>ll alad</mark> ar	^տ ղլումիներ Sweep	រារីសំណែងរ៉ូត្រ 10.00 ms	Span 0 5 (10001 p
0.0 10000000000000000000000000000000000	441000000 1.0 MHz RC SCL 1 t (Δ)				#VB	W 3.0 I	MHz	n diana <mark>i</mark> di n	land di politi I	u <mark>ll alad</mark> ar	^տ ղլումիներ Sweep	រារីសំណែងរ៉ូត្រ 10.00 ms	Span 0 5 (10001 p
0.0 10000000000000000000000000000000000	441000000 1.0 MHz RC SCL 1 t (Δ)				#VB	W 3.0 I	MHz	n diana <mark>i</mark> di n	land di politi I	u <mark>ll II a</mark> lm	^տ ղլումիներ Sweep	រារីសំណែងរ៉ូត្រ 10.00 ms	Span 0 5 (10001 p

15. Antenna Requirement

15.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

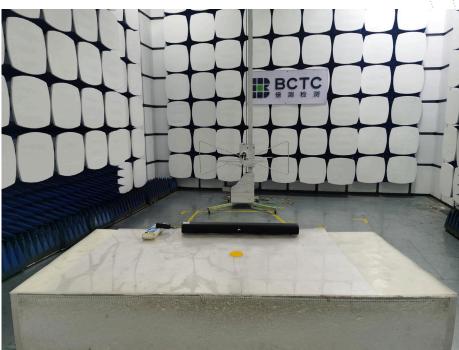
15.2 Test Result

The EUT antenna is PCB antenna, The antenna gain is 1.9 dBi, fulfill the requirement of this section.

Page 79 of 83 Edition:

16. EUT Photographs

EUT Photo 1



17. EUT Test Setup Photographs

Conducted Measurement Photo

Radiated Measurement Photos

Page 81 of 83

No.: BCTC/RF-EMC-005

Page 82 of 83

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without stamp of laboratory.

4. The test report is invalid without signature of person(s) testing and authorizing.

5. The test process and test result is only related to the Unit Under Test.

6. The quality system of our laboratory is in accordance with ISO/IEC17025.

7.If there is any objection to report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

***** END *****

No.: BCTC/RF-EMC-005

Page 83 of 83