

FCC SAR EVALUATION REPORT

In accordance with the requirements of FCC 47 CFR Part 2(2.1093), ANSI/IEEE C95.1-1992 and IEEE Std 1528-2013

Product Name: Tablet PC

Trademark: WinBook

Model Name: 10" TW102

Serial Model: N/A

Report No.: SER171113601005E

FCC ID: 2AOBMWBTW102

Prepared for

International Products Sourcing Group

4119 Leap Road, Hilliard OH, 43026

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599

Website: http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name: International Products Sourcing Group

Address...... 4119 Leap Road, Hilliard OH, 43026

Manufacturer's Name.....: Shenzhen EMDOOR Digital Technology CO.,LTD

6 th Floor, Jin Fu Lai Mansion, No.49-1 Dabaolu Rd, Baoan28

Report No.: SER171113601005E

District, Shenzhen City, 518049 China

Product description

Product name.....: Tablet PC Trademark: WinBook Model and/or type reference .: 10" TW102

Serial Model N/A

FCC 47 CFR Part 2(2.1093)

Standards ANSI/IEEE C95.1-1992 IEEE Std 1528-2013

Published RF exposure KDB procedures

This device described above has been tested by Shenzhen NTEK. In accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that this device is capable of compliance with localized specific absorption rate (SAR) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992. The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

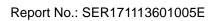
This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personal only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests Nov. 28, 2017 Date of Issue Dec. 18, 2017

Test Result Pass

Prepared By (Test Engineer) (Cheng Jiawen)


Approved By (Lab Manager)

(Sam Chen)

% % Revision History % %

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Test Report Release	Dec. 18, 2017	Cheng Jiawen

TABLE OF CONTENTS

1.	Gener	al Information	6
	1.1.	RF exposure limits	6
	1.2.	Statement of Compliance	7
	1.3.	EUT Description	
	1.4.	Test specification(s)	8
	1.5.	Ambient Condition	8
2.	SAR M	easurement System	9
	2.1.	SATIMO SAR Measurement Set-up Diagram	9
	2.2.	Robot	10
	2.3.	E-Field Probe	11
	2.3	3.1. E-Field Probe Calibration	11
	2.4.	SAM phantoms	12
	2.4	I.1. Technical Data	12
		Device Holder	
		Test Equipment List	
3.		easurement Procedures	
	3.1.	Power Reference	17
	3.2.	Area scan & Zoom scan	
	3.3.	Description of interpolation/extrapolation scheme	
	3.4.		
		Power Drift	
4.	•	າ Verification Procedure	
		Tissue Verification	
		L.1. Tissue Dielectric Parameter Check Results	
		System Verification Procedure	
		2.1. System Verification Results	
5.		easurement variability and uncertainty	
		SAR measurement variability	
		SAR measurement uncertainty	
6.	•	osure Conditions	
		Tablet host platform exposure conditions	
7.		put Power	
		Maximum Tune-up Limit	
		WLAN Output Power	
		Bluetooth Output Power	
8.		na Location	
9.		alone SAR test exclusion	
10.		Results	
		. SAR measurement results	
	10	.1.1. SAR measurement Result of WLAN 2.4GHz	27

Report No.: SER171113601005E

1. General Information

1.1. RF exposure limits

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B).Limits for General Population/Uncontrolled Exposure (W/kg)

1	Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
	0.08	1.6	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE
HEAD AND TRUNK LIMIT
1.6 W/kg
APPLIED TO THIS EUT

1.2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for 10" TW102 are as follows.

	Max. Reported SAR (W/kg)
Band	1-g Body
	(Separation distance of 0mm)
WLAN 2.4G	1.194

Note: This device is in compliance with Specific Absorption Rate (SAR) for general population / uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 & KDB 865664 D01.

1.3. EUT Description

Device Information						
Product Name	Tablet PC	Tablet PC				
Trademark	WinBook					
Model Name	10" TW102	10" TW102				
Serial Model	N/A					
FCC ID	2AOBMWBTW102					
Device Phase	Identical Prototype					
Exposure Category	General population / Uncontrolled environment					
Antenna Type	FPCB Antenna					
Battery Information	DC 3.7V, 5800mAh					
Device Operating Configurations						
Supporting Mode(s)	WLAN 2.4G, Bluetooth					
Test Modulation	WLAN(DSSS/OFDM), Bluetoot	h(GFSK, π/4-DQ	PSK, 8DPSK)			
	Band	Tx (MHz)	Rx (MHz)			
Operating Frequency Range(s)	WLAN 2.4G 2412-2462		-2462			
	Bluetooth 2402-2480					
Test Channels (low-mid-high)	st Channels (low-mid-high) 1-3-6-9-11(WLAN 2.4G)					

1.4. Test specification(s)

FCC 47 CFR Part 2(2.1093)
ANSI/IEEE C95.1-1992
IEEE Std 1528-2013
KDB 865664 D01 SAR measurement 100 MHz to 6 GHz
KDB 865664 D02 RF Exposure Reporting
KDB 447498 D01 General RF Exposure Guidance
KDB 248227 D01 802.11 Wi-Fi SAR

1.5. Ambient Condition

KDB 616217 D04 SAR for laptop and tablets

Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

2. SAR Measurement System

2.1. SATIMO SAR Measurement Set-up Diagram

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ±0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe.

The Keithley multimeter reads the voltage of each sensor and send these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface"

2.2. Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

- High precision (repeatability ±0.03 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

Report No.: SER171113601005E

2.3. E-Field Probe

This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards.

For the measurements the Specific Dosimetric E-Field Probe SN 08/16 EPGO287 with following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter : 2.5 mm

- Distance between probe tip and sensor center: 1 mm

- Distance between sensor center and the inner phantom surface: 2 mm (repeatability better than ±1 mm).

Probe linearity: ±0.08 dBAxial isotropy: <0.25 dB

- Hemispherical Isotropy: <0.50 dB

- Calibration range: 650MHz to 5900MHz for head & body simulating liquid.

- Lower detection limit: 7mW/kg

Angle between probe axis (evaluation axis) and surface normal line: less than 30°.

2.3.1. E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report.

2.4. SAM phantoms

Photo of SAM phantom SN 16/15 SAM119

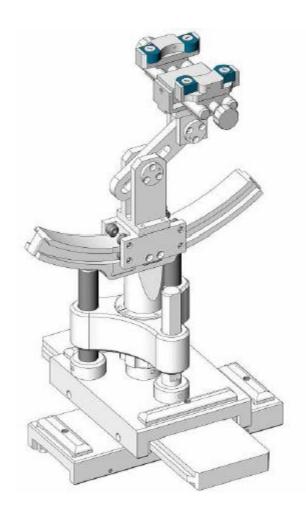
The SAM phantom is used to measure the SAR relative to people exposed to electro-magnetic field radiated by mobile phones.

2.4.1. Technical Data

Serial Number	Shell thickness	Filling volume	Dimensions	Positionner Material	Permittivity	Loss Tangent
SN 16/15 SAM119	2 mm ±0.2 mm	27 liters	Length:1000 mm Width:500 mm Height:200 mm	Gelcoat with fiberglass	3.4	0.02

230

Page 13 of 58 Report No.: SER171113601005E 500 10,08 Int 162.89 1000 400.00 49,98 SCALE 0,200


Serial Number	Left Head		Right Head		Flat Part	
	2	2.02	2	2.08	1	2.09
	3	2.05	3	2.06	2	2.06
	4	2.07	4	2.07	3	2.08
	5	2.08	5	2.08	4	2.10
SN 16/15 SAM119	6	2.05	6	2.07	5	2.10
	7	2.05	7	2.05	6	2.07
	8	2.07	8	2.06	7	2.07
	9	2.08	9	2.06	-	-

The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 μm .

2.5. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 degree.

Serial Number Holder Material		Permittivity	Loss Tangent	
SN 16/15 MSH100	Delrin	3.7	0.005	

2.6. Test Equipment List

This table gives a complete overview of the SAR measurement equipment.

Devices used during the test described are marked $\, \boxtimes \,$

	Manufacturar	Name of nufacturer		Serial Number	Calibration		
	Manufacturei	Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
\boxtimes	MVG	E FIELD PROBE	SSE2	SN 08/16 EPGO287	Sep. 18,	Sep. 17,	
	IVIVO	ETIELDTROBE	OOLZ	3N 00/10 E1 00207	2017	2018	
	MVG	450 MHz Dipole	SID450	SN 03/15 DIP	Apr. 06,	Apr. 05,	
	10100	100 1111 12 15 15 010	010-100	0G450-345	2015	2018	
	MVG	750 MHz Dipole	SID750	SN 03/15 DIP	Apr. 06,	Apr. 05,	
			G .D. C	0G750-355	2015	2018	
	MVG	835 MHz Dipole	SID835	SN 03/15 DIP	Apr. 06,	Apr. 05,	
			G .2 G	0G835-347	2015	2018	
$ \Box$	MVG	900 MHz Dipole	SID900	SN 03/15 DIP	Apr. 06,	Apr. 05,	
				0G900-348	2015	2018	
	MVG	1800 MHz Dipole	SID1800	SN 03/15 DIP	Apr. 06,	Apr. 05,	
			0.2.000	1G800-349	2015	2018	
	MVG	1900 MHz Dipole	SID1900	SN 03/15 DIP	Apr. 06,	Apr. 05,	
				1G900-350	2015	2018	
$ \Box$	MVG	2000 MHz Dipole	SID2000	SN 03/15 DIP	Apr. 06,	Apr. 05,	
				2G000-351	2015	2018	
\boxtimes	MVG	2450 MHz Dipole	SID2450	SN 03/15 DIP	Apr. 06,	Apr. 05,	
		2 100 1111 12 2 17010	0.22.00	2G450-352	2015	2018	
$ \Box$	MVG	2600 MHz Dipole	SID2600	SN 03/15 DIP	Apr. 06,	Apr. 05,	
		2000 1111 12 21,0010	0.2200	2G600-356	2015	2018	
П	MVG	5000 MHz Dipole	SWG5500	SN 13/14 WGA 33	Apr. 06,	Apr. 05,	
				311 10/11 W 3/100	2015	2018	
\boxtimes	MVG	Liquid measurement Kit	SCLMP	SN 21/15 OCPG 72	NCR	NCR	
\boxtimes	MVG	Power Amplifier	N.A	AMPLISAR_28/14_003	NCR	NCR	
	KEITHLEY	Millivoltmeter	2000	4072790	NCR	NCR	
		Universal radio			A 0.7	A	
	R&S	communication	CMU200	117858	Aug. 07,	Aug. 06,	
		tester			2017	2018	
	R&S	Wideband radio			Oct. 26,	Oct. 25,	
		R&S co	communication	CMW500	103917	2017	2018
		tester			2017	2010	
\boxtimes	HP	Notice ale Area le mare a	8753D	2440 104400	Aug. 07,	Aug. 06,	
	1 11	HP Network Analyzer		3410J01136	2017	2018	

PSG Analog Aug. 07, Aug. 06, \boxtimes Agilent E8257D MY51110112 Signal Generator 2017 2018 Aug. 07, Aug. 06, \boxtimes Agilent Power meter E4419B MY45102538 2017 2018 Aug. 07, Aug. 06, \boxtimes Agilent E9301A MY41495644 Power sensor 2017 2018 Aug. 07, Aug. 06, Agilent \boxtimes Power sensor E9301A US39212148 2017 2018 Directional Aug. 07, Aug. 06, \boxtimes MCLI/USA CB11-20 0D2L51502 Coupler 2017 2018

3. SAR Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

- (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/Bluetooth power measurement, use engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power in each supported wireless interface and frequency band.
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/Bluetooth output power.

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix A demonstrates.
- (c) Set scan area, grid size and other setting on the OPENSAR software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band.
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

3.1. Power Reference

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

3.2. Area scan & Zoom scan

The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan above the hot spot to calculate the 1g and 10g SAR value.

Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 * 30 *30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit).

Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz
Maximum distance from (geometric center of pr			5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle surface normal at the m			30° ± 1°	20° ± 1°
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	Z00III(-)	1st two points closest	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		between subsequent	≤ 1.5·Δz	Zoom(n-1)
Minimum zoom scan volume	x, y, z		≥ 30 mm	$3 - 4 \text{ GHz: } \ge 28 \text{ mm}$ $4 - 5 \text{ GHz: } \ge 25 \text{ mm}$ $5 - 6 \text{ GHz: } \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

3.3. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

3.4. Volumetric Scan

The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209.

3.5. Power Drift

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than ±5%, the SAR will be retested.

4. System Verification Procedure

4.1. Tissue Verification

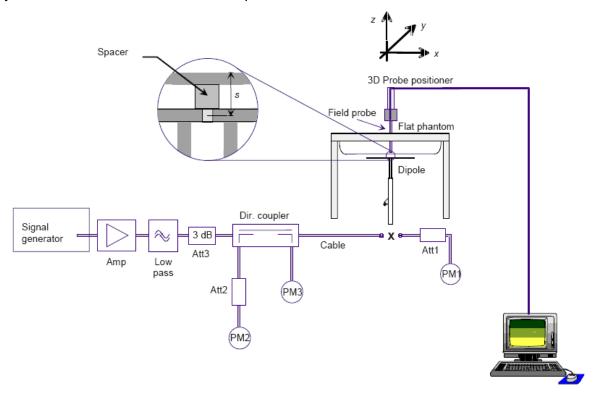
The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients (% of weight)	Head Tissue									
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800
Water	34.40	34.40	34.40	55.36	55.36	57.87	57.87	57.87	65.53	65.53
NaCl	0.79	0.79	0.79	0.35	0.35	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	64.81	64.81	64.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	30.45	30.45	19.97	19.97	19.97	24.24	24.24
DGBE	0.00	0.00	0.00	13.84	13.84	22.00	22.00	22.00	10.23	10.23
Ingredients (% of weight)					Body ⁻	Tissue				
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800
Water	50.30	50.30	50.30	69.91	69.91	71.88	71.88	71.88	79.54	79.54
NaCl	0.60	0.60	0.60	0.13	0.13	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	49.10	49.10	49.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	9.99	9.99	19.97	19.97	19.97	11.24	11.24
DGBE	0.00	0.00	0.00	19.97	19.97	7.99	7.99	7.99	9.22	9.22

4.1.1. Tissue Dielectric Parameter Check Results

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within ±5% of the target values.

	Measured	Target T	ïssue	Measured Tissue			
Tissue Type	Frequency (MHz)	εr (±5%)	σ (S/m) (±5%)	εr	σ (S/m)	Liquid Temp.	Test Date
Body	2450	52.70	1.95	52.57	1.95	21.2 °C	Nov. 28, 2017
2450		(50.07~55.33)	(1.85~2.04)	52.57	1.95	Z1.Z C	1100. 20, 2017


NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

4.2. System Verification Procedure

The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100mW (below 5GHz) or 100mW (above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

The system verification is shown as below picture:

4.2.1. System Verification Results

Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of ±10%. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report.

	Target SA	Measured SAR				
System	(±10%)		(Normalized to 1W)		Liquid	Task Daka
Verification	1-g (W/Kg)	10-g (W/Kg)	1-g (W/Kg)	10-g (W/Kg)	Temp.	Test Date
2450MHz Body	49.32 (44.39~54.25)	22.89 (20.60~25.17)	48.42	21.85	21.2 °C	Nov. 28, 2017

5. SAR Measurement variability and uncertainty

5.1. SAR measurement variability

Refer to KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

5.2. SAR measurement uncertainty

Refer to KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

6. RF Exposure Conditions

6.1. Tablet host platform exposure conditions

Refer to KDB616217 D04, When the modular approach is used, transmitters and modules must be initially tested for standalone operations in generic host conditions according to the following minimum test separation distance and antenna installation requirements for incorporation in the tablet platform. The separation distance required for incorporation in qualified hosts is described in KDB 447498; item 5) of section 4.1 and item 1) of section 5.2.2 etc.

- \leq 5 mm between the antenna and user for both back surface and edge exposure conditions
- the antennas used by the host must have been tested for equipment approval or qualify for SAR test
 exclusion
- the antenna polarization, physical orientation, rotation and installation configurations used by the host must have been tested for compliance or qualify for test exclusion
- when the SAR Test Exclusion Threshold in KDB 447498 applies, a test separation distance of 5 mm is required to determine test exclusion for the tablet platform

The antennas embedded in tablets are typically \leq 5mm from the outer housing. The required antenna to user test separation distance is a "not to exceed test" distance required to apply the modular approach. Instead of the typical zero gap tablet edge test requirement between the edge of a tablet and the user, when an antenna has been tested at \leq 5 mm according to the modular approach it can be incorporated into tablets with at least twice the tested distance from the outer housing of the tablet edge; otherwise, the tablet edge zero gap test requirement applies. When the dedicated host approach is applied, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom.

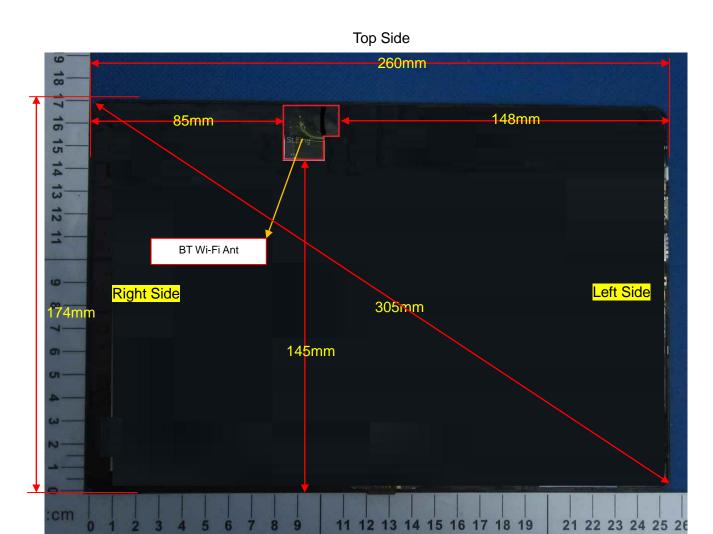
7. RF Output Power

7.1. Maximum Tune-up Limit

7.11. WIGAII	num rune-up Emm			
		The Tune-up Maximum		Measured Output
Band	Mode	Power (Customer	Range	Maximum
		Declared)(dBm)		Power(dBm)
	802.11b	12±1	11~13	12.8
WLAN	802.11g	12±1	11~13	12.4
2.4G	802.11n-HT20	11.5±1	10.5~12.5	12.4
	802.11n-HT40	10±1	9~11	9.8
D	3.0	1±1	0~2	1.97
Bluetooth	4.0	-3±1	-4~-2	-2.53

7.2. WLAN Output Power

Mode	Channel	Frequency (MHz)	Tune-up	Output Power (dBm)
	1	2412	13.0	12.8
802.11b	6	2437	13.0	12.2
	11	2462	13.0	12.7
	1	2412	13.0	11.6
802.11g	6	2437	13.0	12.4
	11	2462	13.0	11.4
000.44	1	2412	12.5	10.6
802.11n	6	2437	12.5	12.4
(HT20)	11	2462	12.5	12.3
000.44	3	2422	11.0	9.7
802.11n (HT40)	6	2437	11.0	9.3
	9	2452	11.0	9.8


7.3. Bluetooth Output Power

DI (1 (0 0)	Output Power (dBm)					
Bluetooth(3.0)	Tune-up	0CH	39CH	78CH		
1M	2.00	0.17	0.50	0.39		
2M	2.00	1.77	1.83	1.71		
3M	2.00	1.87	1.97	1.97		

	Channel	Tune-up	Output Power (dBm)
51	0CH	-2.00	-2.66
Bluetooth(4.0)	19CH	-2.00	-2.53
	39CH	-2.00	-2.63

8. Antenna Location

Bottom Side

Distance of the Antenna to the EUT surface/edge						
Antennas	Front Side	Back Side	Left Side	Right Side	Top Side	Bottom Side
WLAN &	≤5mm	≤5mm	148mm	85mm	≤5mm	145mm
Bluetooth				•		

Positions for SAR tests						
Test separation distances ≤ 5	Test separation distances ≤ 50 mm					
5 D W	Tune-up Maximum power of 802.11b					
Exposure Positions	13dBm					
	Antenna to user(mm)	5				
Front Side	SAR exclusion threshold	6				
	SAR testing required?	YES				

	Antenna to user(mm)	5
Back Side	SAR exclusion threshold	6
	SAR testing required?	YES
Top Side	Antenna to user(mm)	5
	SAR exclusion threshold	6
	SAR testing required?	YES

NOTE: Refer to section 4.3.1 of KDB 447498 D01.

Positions for SAR tests						
Test separation distances > 50 mm						
Francisco Decitions	Tune-up Maximum	power of 802.11b				
Exposure Positions	13dBm	20mW				
	Antenna to user(mm)	148				
Left Side	SAR exclusion threshold(mW)	1076				
	SAR testing required?	NO				
	Antenna to user(mm)	85				
Right Side	SAR exclusion threshold(mW)	446				
	SAR testing required?	NO				
	Antenna to user(mm)	145				
Bottom Side	SAR exclusion threshold(mW)	1046				
	SAR testing required?	NO				

NOTE: Refer to section 4.3.1 of KDB 447498 D01.

9. Stand-alone SAR test exclusion

Refer to KDB 447498 D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f_{(GHZ)}}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where:

- $f_{(GHZ)}$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	P _{max}	P _{max}	Distance	f	Calculation	SAR Exclusion	SAR test
iviode	(dBm)	(mW)	(mm)	(GHz)	Result	threshold	exclusion
Bluetooth	2	1.58	5	2.48	0.5	3.0	Yes

NOTE: Standalone SAR test exclusion for Bluetooth

10. SAR Results

10.1. SAR measurement results

General Notes:

- 1) Refer to KDB447498 D01, all measurement SAR results are scaled to the maximum tune-up tolerance limit to demonstrate compliant.
- 2) Refer to KDB447498 D01, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100MHz. When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.
- 3) Refer to KDB865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤20%,and the measured SAR <1.45W/Kg, only one repeated measurement is required.
- 4) Refer to KDB865664 D02, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing(Refer to appendix C for details).

10.1.1. SAR measurement Result of WLAN 2.4GHz

Test Position of Body with 0mm	Test channel /Freq.	Test Mode	_	Value /kg) 10g	Power Drift (±5%)	Conducted power (dBm)	Tune-up power (dBm)	Scaled SAR 1g (W/Kg)
Front Side	1/2412	802.11b	0.668	0.316	3.79	12.80	13.00	0.699
Back Side	1/2412	802.11b	0.995	0.459	0.60	12.80	13.00	1.042
Top Side	1/2412	802.11b	0.290	0.172	1.53	12.80	13.00	0.304
Back Side	6/2437	802.11b	0.993	0.469	2.89	12.20	13.00	1.194
Back Side	11/2462	802.11b	1.093	0.496	-2.68	12.70	13.00	1.171
Back Side - Repeated	11/2462	802.11b	1.043	0.485	-1.16	12.70	13.00	1.118

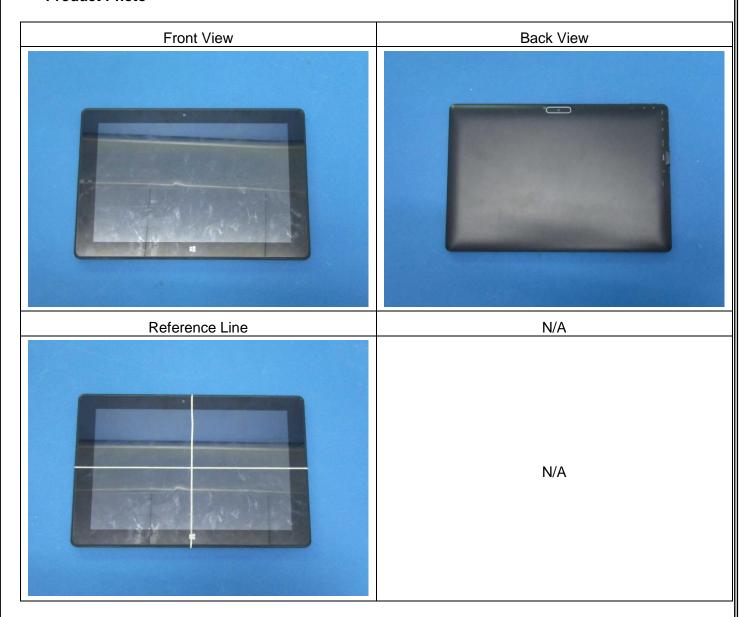
NOTE: Body SAR test results of WLAN 2.4G

10.2. Simultaneous Transmission Possibilities Analysis

WLAN 2.4GHz and Bluetooth share the same antenna, and cannot transmit simultaneously.

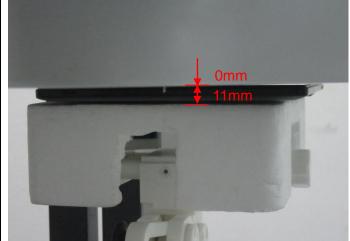
11. Appendix A. Photo documentation

	Table of contents	
Test Facility		
Product Photo		
Test Positions		
Liquid depth		


Test Facility

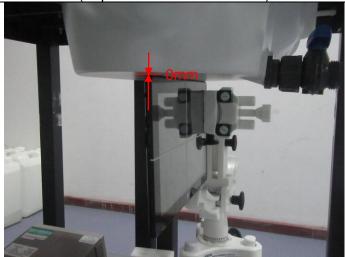
Measurement System SATIMO

Product Photo

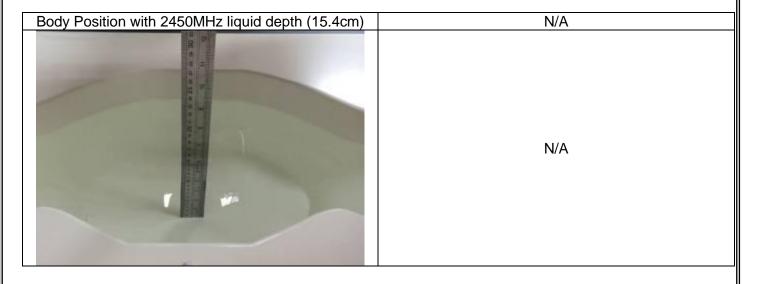


Test Positions

Front Side (Separation distance of 0mm)



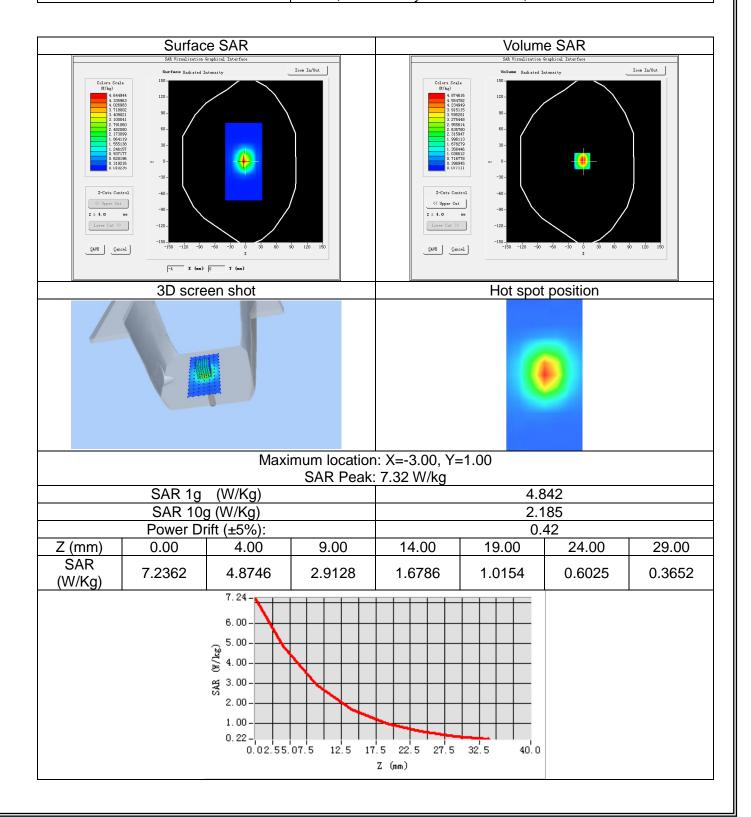
Top Side (Separation distance of 0mm)



N/A

N/A

Liquid depth



The Control of the Co	Page 32 of 58	Report No.: SER171113601005E
12. Appendix B. System Chec	k Plots	
	Table of contents	
System Performance Check - 2450MH	z	

System Performance Check - SID2450MHz

Date of measurement:	Nov. 28, 2017
Signal:	Communication System: CW; Frequency: 2450.00MHz; Duty Cycle: 1:1.00
ConvF:	2.27
Liquid Parameters:	Relative permittivity (real part): 52.57; Conductivity (S/m): 1.95;
Device Position:	Dipole
Area Scan:	dx=12mm dy=12mm, h=5.00mm
Zoom Scan:	7x7x7, dx=5mm dy=5mm dz=5mm, h=5.00mm

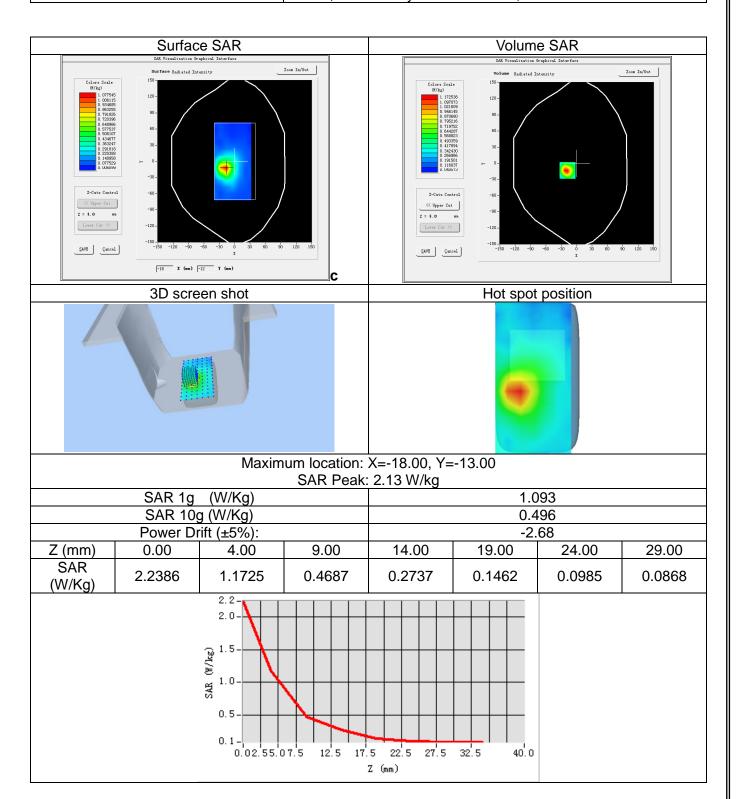

13. Appendix C. Plots of High SAR Measurement

	Table of contents	
/LAN 2.4G Body		
•		

WLAN 2.4G_802.11b_Ch11_Back Side _0mm

Date of measurement:	Nov. 28, 2017
Signal:	Communication System: WLAN 802.11a/b/g/n/ac; Frequency: 2462.00MHz; Duty Cycle: 1:1.00
ConvF:	2.27
Liquid Parameters:	Relative permittivity (real part): 52.49; Conductivity (S/m): 1.97;
Device Position:	Body
Area Scan:	dx=12mm dy=12mm, h=5.00mm
Zoom Scan:	7x7x7, dx=5mm dy=5mm dz=5mm, h=5.00mm

14. Appendix D. Calibration Certificate

Table of contents		
E Field Probe - SN 08/16 EPGO287		
2450 MHz Dipole - SN 03/15 DIP 2G450-352		
Extended Calibration Certificate		

COMOSAR E-Field Probe Calibration Report

Ref: ACR.261.2.17.SATU.A

Shenzhen NTEK Testing Technology Co., Ltd.
BUILDING E, FENDA SCIENCE PARK,
SANWEI COMMUNITY, XIXIANG STREET,
BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA
MVG COMOSAR DOSIMETRIC E-FIELD PROBE

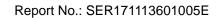
SERIAL NO.: SN 08/16 EPGO287

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 09/18/2017

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.


Ref: ACR.261.2.17.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/18/2017	Jes
Checked by:	Jérôme LUC	Product Manager	9/18/2017	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	9/18/2017	thim buthowshi

	Customer Name
	NTEK TESTING
Distribution :	TECHNOLOGY
	CO., LTD.

Issue	Date	Modifications
A	9/18/2017	Initial release

Ref: ACR.261.2.17.SATU.A

TABLE OF CONTENTS

1	D	EVICE UNDER TEST	4
2	Р	RODUCT DESCRIPTION GENERAL INFORMATION	4
3	N	1EASUREMENT METHOD	4
_			
	3.1	Linearity	4
	3.2	Sensitivity	4
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Ν	MEASUREMENT UNCERTAINTY	5
5	C.	ALIBRATION MEASUREMENT RESULTS	6
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	11	ST OF FOLIPMENT	10

Ref: ACR.261.2.17.SATU.A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	SN 08/16 EPGO287		
Product Condition (new / used)	Used		
Frequency Range of Probe	0.4 GHz-6GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.208 MΩ		
	Dipole 2: R2=0.196 MΩ		
	Dipole 3: R3=0.196 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

Page: 4/10

Ref: ACR.261.2.17.SATU.A

LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

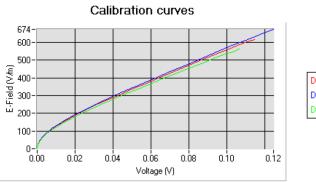
Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	√3	1	1.732%
Reflected power	3.00%	Rectangular	√3	1	1.732%
Liquid conductivity	5.00%	Rectangular	√3	1	2.887%
Liquid permittivity	4.00%	Rectangular	√3	1	2.309%
Field homogeneity	3.00%	Rectangular	√3	1	1.732%
Field probe positioning	5.00%	Rectangular	√3	1	2.887%
Field probe linearity	3.00%	Rectangular	√3	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.2.17.SATU.A

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters			
Liquid Temperature 21 °C			
Lab Temperature	21 °C		
Lab Humidity	45 %		


5.1 <u>SENSITIVITY IN AIR</u>

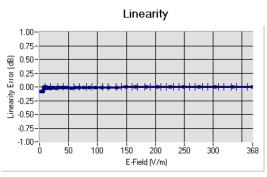
Normx dipole		
$1 (\mu V/(V/m)^2)$	$2 \left(\mu V / (V/m)^2 \right)$	$3 (\mu V/(V/m)^2)$
0.69	0.78	0.61

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
92	90	96

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$

Dipole 1 Dipole 2 Dipole 3


Page: 6/10

Ref: ACR.261.2.17.SATU.A

5.2 <u>LINEARITY</u>

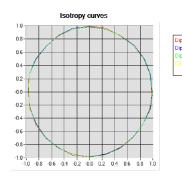
Linearity:[]+/-1.86% (+/-0.08dB)

5.3 <u>SENSITIVITY IN LIQUID</u>

Liquid	Frequency	Permittivity	Epsilon (S/m)	ConvF
	(MHz +/-			
	100MHz)			
HL750	750	42.09	0.91	1.44
BL750	750	55.69	0.95	1.49
HL850	835	42.71	0.89	1.48
BL850	835	57.52	1.03	1.53
HL900	900	41.94	0.93	1.50
BL900	900	52.87	1.09	1.54
HL1800	1800	40.62	1.39	1.75
BL1800	1800	53.22	1.47	1.79
HL1900	1900	41.22	1.37	2.00
BL1900	1900	50.99	1.52	2.07
HL2000	2000	40.39	1.36	1.93
BL2000	2000	54.39	1.54	1.99
HL2450	2450	40.46	1.87	2.18
BL2450	2450	54.62	1.95	2.27
HL2600	2600	38.46	2.01	2.15
BL2600	2600	51.98	2.16	2.19
HL5200	5200	35.14	4.74	2.37
BL5200	5200	49.01	5.27	2.46
HL5400	5400	34.52	4.77	2.33
BL5400	5400	49.67	5.45	2.41
HL5600	5600	37.08	5.03	2.47
BL5600	5600	47.57	5.69	2.54
HL5800	5800	34.64	5.19	2.51
BL5800	5800	49.82	5.94	2.57

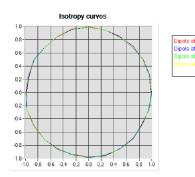
LOWER DETECTION LIMIT: 7mW/kg

Page: 7/10


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.2.17.SATU.A

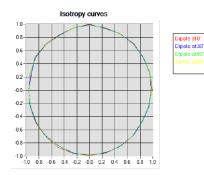
5.4 <u>ISOTROPY</u>


HL900 MHz

- Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.06 dB

HL1800 MHz

- Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.08 dB



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.2.17.SATU.A

HL5600 MHz

- Axial isotropy: 0.06 dB - Hemispherical isotropy: 0.08 dB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.2.17.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019		
Reference Probe	MVG	EP 94 SN 37/08	10/2016	10/2017		
Multimeter	Keithley 2000	1188656	01/2017	01/2020		
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	01/2017	01/2020		
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.		
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Temperature / Humidity Sensor	Control Company	150798832	10/2015	10/2017		

Microneve Vision Group

SAR Reference Dipole Calibration Report

Ref: ACR.139.9.15.SATU.A

Report No.: SER171113601005E

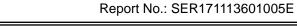
NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ

SERIAL NO.: SN 03/15 DIP 2G450-352

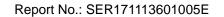
Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144



04/06/2015

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.


Ref: ACR.139.9.15.SATU.A

	Name	Function	Date	Signature	
Prepared by :	Jérôme LUC	Product Manager	5/19/2015	JES	
Checked by : Jérôme LUC		Product Manager	5/19/2015	JES	
Approved by :	Kim RUTKOWSKI	Quality Manager	5/19/2015	Kim Puthowski	

	Customer Name
Distribution :	NTEK TESTING TECHNOLOGY CO., LTD.

Issue	Date	Modifications
A	5/19/2015	Initial release

Ref: ACR.139.9.15.SATU.A

TABLE OF CONTENTS

Intro	duction4	
Dev	ice Under Test	
Prod	luct Description	
3.1	General Information	4
Mea		
4.1	Return Loss Requirements	5
4.2		
Mea		
5.1	Return Loss	5
5.2	Dimension Measurement	5
5.3	Validation Measurement	5
Cali		
6.1	Return Loss and Impedance In Head Liquid	6
6.2	Return Loss and Impedance In Body Liquid	6
6.3	Mechanical Dimensions	6
Vali		
7.1	Head Liquid Measurement	7
7.2	SAR Measurement Result With Head Liquid	8
7.3		
7.4		
List	of Equipment11	
	Devi- Prod 3.1 Mea 4.1 4.2 Mea 5.1 5.2 5.3 Calil 6.1 6.2 6.3 Vali 7.1 7.2 7.3	Device Under Test

Ref: ACR.139.9.15.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type COMOSAR 2450 MHz REFERENCE DIPOLE				
Manufacturer	MVG			
Model	SID2450			
Serial Number	SN 03/15 DIP 2G450-352			
Product Condition (new / used)	New			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/11

Ref: ACR.139.9.15.SATU.A

Report No.: SER171113601005E

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

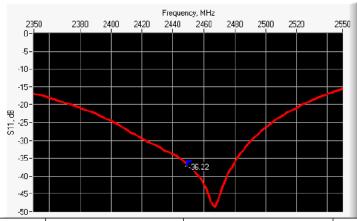
Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 <u>VALIDATION MEASUREMENT</u>

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

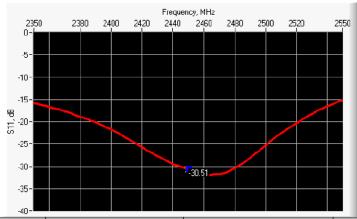
Scan Volume	Expanded Uncertainty		
1 g	20.3 %		

Page: 5/11


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.139.9.15.SATU.A

10 g	20.1 %


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-36.22	-20	$48.9 \Omega + 1.1 i\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-30.51	-20	$52.2 \Omega + 2.0 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L mm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.139.9.15.SATU.A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ε _r ')		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

Ref: ACR.139.9.15.SATU.A

Report No.: SER171113601005E

1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

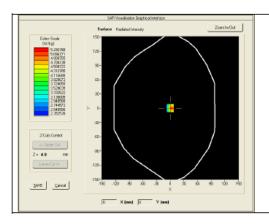
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

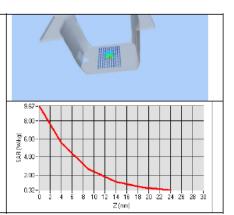
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 38.3 sigma: 1.80
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	

Page: 8/11





SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.139.9.15.SATU.A

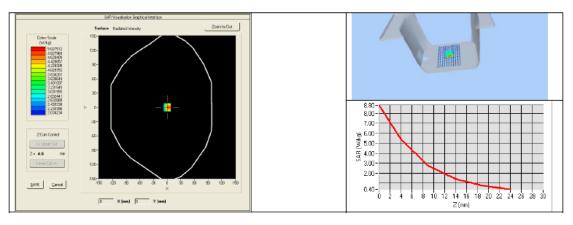
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	52.28 (5.23)	24	23.80 (2.38)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ε _r ')		Conductivity (σ) S/m	
	required	required measured		measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %	PASS	1.95 ±5 %	PASS

Page: 9/11

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR.139.9.15.SATU.A

2600	52.5 ±5 %	2.16 ±5 %	
3000	52.0 ±5 %	2.73 ±5 %	
3500	51.3 ±5 %	3.31 ±5 %	
5200	49.0 ±10 %	5.30 ±10 %	
5300	48.9 ±10 %	5.42 ±10 %	
5400	48.7 ±10 %	5.53 ±10 %	
5500	48.6 ±10 %	5.65 ±10 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps': 52.7 sigma: 1.94
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	49.32 (4.93)	22.89 (2.29)

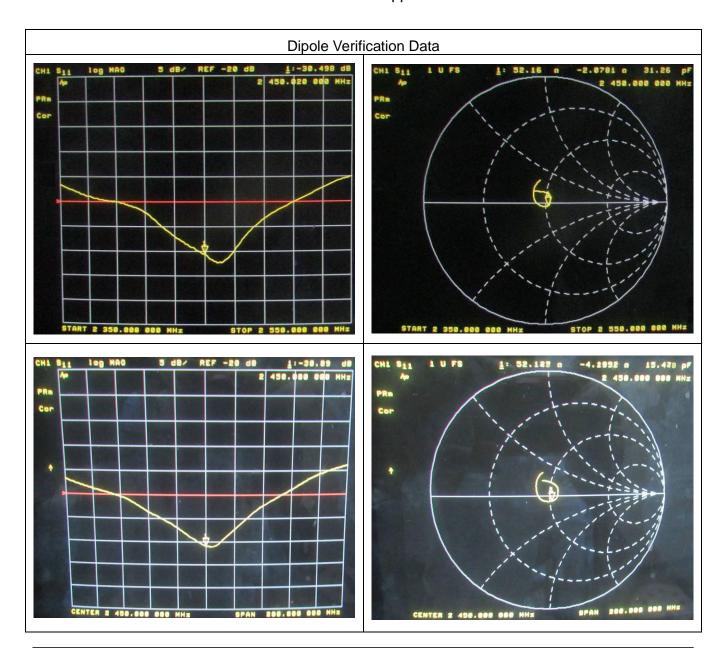
Page: 10/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.139.9.15.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description			Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Calipers	Carrera	CALIPER-01	12/2013	12/2016	
Reference Probe	MVG	EPG122 SN 18/11	10/2014	10/2015 12/2016 12/2016	
Multimeter	Keithley 2000	1188656	12/2013		
Signal Generator	Agilent E4438C	MY49070581	12/2013		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015	


<Justification of the extended calibration>

If dipoles are verified in return loss(<-20dB, within 20% of prior calibration for below 3GHz, and <-8dB, within 20% of prior calibration for 5GHz to 6GHz), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

<Body 2450MHz>

Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	Date of Measurement
-30.51	-	52.2	-	Apr. 06, 2015
-30.498	0.039	52.16	0.04	Apr. 05, 2016
-30.89	1.285	52.12	0.04	Apr. 04, 2017

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

