

CONFIDENTIAL

Rev. 0.1 Nov. 21, 2023

AloT Module

Model: SM35B02

CONFIDENTIAL

Rev. 0.1 Nov. 21, 2023

1. SM35B02 Module Introduction

Overview

The SM35B02 is a highly integrated AIoT module with built-in low power dual band Wi-Fi 802.11 a/b/g/n and Bluetooth specification 5.1. The high resolution 1080P camera interface can transmit images immediately with low latency via high performance Wi-Fi. This module included powerful NPU AI computing engine to accelerate AI model processing, and can be widely used in various IoT application need image processing, (like image recognition, face recognition...), suitable for smart home, industrial smart control, smart retail, health care or automotive electronics markets.

With the small size design of this module, it can easily fit into the product space..

A variety of pre-trained AI models will be supported directly in the module so it can be quickly applied to each kind of applications.

Applications

- > IOT (Internet of things)
- > IOV (Internet of vehicles)
- Home automation
- E-home gateway
- > Industrial control system
- > IP camera
- Long-term care
- Others

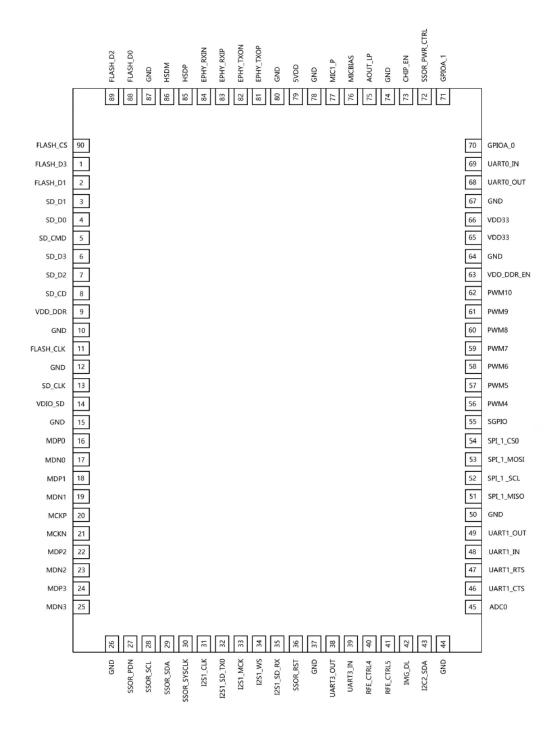
CONFIDENTIAL

Rev. 0.1 Nov. 21, 2023

2. SM35B02 Module Specification

Functions Specification

Function	Description			
Processor	32bi t low power ARM processor with up to 500MHz clock			
Camera Input	MIPI interface			
Audio Input	Both digital and analog microphone interface			
Audio Output	Analog output			
Storage	Support Micro SD memory card			
Connectivity	Wi-Fi 2.4GHz/5GHz			
Connectivity	Bluetooth BLE 5.1			
Video Encoder	H.264/265			
AI Models	Provide multiple pre-trained AI models			
UART	Multiple UART interface			
SPI	Maximum 2 SPI interface			
I2C	Multiple I2C interface			
PWM	Multiple PWM interface with configurable duty cycle			
ADC	Multiple ADC channel with 12-biit mode			
GPIO	Multiple programmable GPIOs			
USB Interface	USB video output			
Native Develop	Support Arduino IDE development			



CONFIDENTIAL

Rev. 0.1 Nov. 21, 2023

3. PIN Description

< TOP VIEW >

CONFIDENTIAL

Rev. 0.1 Nov. 21, 2023

NO.	Name	Description				
1	FLASH_D3	Flash Data Input (Data Input Output 3)				
2	FLASH_D1	Flash Data Input (Data Input Output 1)				
3	SD_D1	SD Data 1. Multiplexed with GPIOS_1.				
4	SD_D0	SD Data 0. Multiplexed with GPIOS_2.				
5	SD_CMD	SD Command. Multiplexed with GPIOS_3.				
6	SD_D3	SD Data 3. Multiplexed with GPIOS_5.				
7	SD_D2	SD Data 3. Multiplexed with GPIOS_5.				
8	SD_CD	SD Card Detection. Multiplexed with GPIOS_4.				
9	VDD_DDR	1.8V/1.35V power input				
10	GND	Ground connections				
11	FLASH_CLK	Flash Serial Clock Input				
12	GND	Ground connections				
13	SD_CLK	SD Bus clock. Multiplexed with GPIOS_0.				
14	VDIO_SD	I/O Voltage supply input				
15	GND	Ground connections				
16	MDP0	MIPI sensor lane0 differential data positive input.				
17	MDN0	MIPI sensor lane0 differential data negative input.				
18	MDP1	MIPI sensor lane1 differential data positive input.				
19	MDN1	MIPI sensor lane1 differential data negative input.				
20	MCKP	MIPI sensor differential clock positive input.				
21	MCKN	MIPI sensor differential clock negative input.				
22	MDP2	MIPI sensor lane2 differential data positive input.				
23	MDN2	MIPI sensor lane2 differential data negative input.				
24	MDP3	MIPI sensor lane3 differential data positive input.				
25	MDN3	MIPI sensor lane3 differential data negative input.				
26	GND	Ground connections				
27	SSOR_PDN	GPIO pin				
28	SSOR_SCL	GPIO pin				
29	SSOR_SDA	GPIO pin				
30	SSOR_SYSCLK	GPIO pin				
31	I2S1_CLK	GPIO pin				
32	I2S1_CD_TX0	GPIO pin				
33	I2S1_MCK	GPIO pin				
34	12S1_WS	GPIO pin				

CONFIDENTIAL

Rev. 0.1 Nov. 21, 2023

35	I2S1_SD_RX	GPIO pin			
36	SSOR_RST	GPIO pin			
37	GND	Ground connections			
38	UART3_OUT	UART Output			
39	UART3_IN	UART Input			
40	RFE_CTRL4	GPIO pin			
41	RFE_CTRL5	GPIO pin			
42	IMG_DL	GPIO pin			
43	I2S2_SDA	GPIO pin			
44	GND	Ground connections			
45	ADC0	GPIO pin			
46	UART1_CTS	UART CTS			
47	UART1_RTS	UART RTS			
48	UART1_IN	UART Input			
49	UART1_OUT	UART Output			
50	GND	Ground connections			
51	SPI_1_MISO	GPIO pin			
52	SPI_1_SCL	GPIO pin			
53	SPI_1_MOSI	GPIO pin			
54	SPI_1_CS0	GPIO pin			
55	SGPIO	GPIO pin			
56	PWM4	PWM controllers generate pulse signals			
57	PWM5	PWM controllers generate pulse signals			
58	PWM6	PWM controllers generate pulse signals			
59	PWM7	PWM controllers generate pulse signals			
60	PWM8	PWM controllers generate pulse signals			
61	PWM9	PWM controllers generate pulse signals			
62	PWM10	PWM controllers generate pulse signals			
63	VDD_DDR_EN	GPIO pin			
64	GND	Ground connections			
65	VDD33	3.3V Voltage input			
66	VDD33	3.3V Voltage input			
67	GND	Ground connections			
68	UARTO_OUT	UART Output			
69	UARTO_IN	UART Input			

CONFIDENTIAL

Rev. 0.1 Nov. 21, 2023

70	GPIOA_0	GPIO pin				
71	GPIOA_1	GPIO pin				
72	SSOR_PWR_CTRL	GPIO pin Shared with GPIOA_5 1: Enter into test/debug mode 0: Normal operation mode				
73	CHIP_EN	Whole chip enable control , When asserted, chip function is enabled; when de-asserted, whole chip is shutdown				
74	GND	Ground connections				
75	AOUT_LP	Speaker output positive signal.				
76	MICBIAS	Microphone bias output.				
77	MIC1_P	MIC input positive signal.				
78	GND	Ground connections				
79	5VDD	5.0V Voltage input				
80	GND	Ground connections				
81	EPHY_TXOP	GPIO pin				
82	EPHY_TXON	GPIO pin				
83	EPHY_RXIP	GPIO pin				
84	EPHY_RXIN	GPIO pin				
85	HSDP	USB positive differential data lines				
86	HSDM	USB negative differential data lines				
87	GND	Ground connections				
88	FLASH_D0	Flash Data Input (Data Input Output 0)				
89	FLASH_D2	Flash Data Input (Data Input Output 2)				
90	FLASH_CS	Flash Chip Select Input				

CONFIDENTIAL

Rev. 0.1 Nov. 21, 2023

4. Electrical Characteristics

	MIN	TYP	MAX	Unit
Operating Temperature	-20	25	85	deg.C
5VDD	4.75	5	5.25	V
VDD33	3.135	3.3	3.465	V

5. Warning

Federal Communications Commission (FCC) Statement

15.21

You are cautioned that changes or modifications not expressly approved by the part responsible for compliance

could void the user's authority to operate the equipment.

15.105(b)

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.

However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -Reorient or relocate the receiving antenna.
- -Increase the separation between the equipment and receiver.
- -Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -Consult the dealer or an experienced radio/TV technician for help.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1) this device may not cause harmful interference, and
- 2) this device must accept any interference received, including interference that may cause undesired operation

CONFIDENTIAL

Rev. 0.1 Nov. 21, 2023

of the device.

FCC RF Radiation Exposure Statement

- 1) This Transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- 2) This equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20 centimeters between the radiator and your body.

This equipment should be installed.

Note: The end product shall has the words "Contains Transmitter Module FCC ID: 2AOAOSM35B02"

OEM statement

The Original Equipment Manufacturer (OEM) must ensure that the OEM modular transmitter must be labeled with its own FCC ID number. This includes a clearly visible label on the outside of the final product enclosure that displays the contents shown below. If

the FCC ID is not visible when the equipment is installed inside another device, then the outside of the device into which the equipment is installed must also display a label referring to the enclosed equipment.

The end product with this module may subject to perform FCC part 15B unintentional emission test requirement and be properly authorized while installation to host(s), and platform, and integrator are obligated to have its manual or instruction with the related compliance warning to end users. This device is intended for OEM integrator only

The end product with this module may be subject to re-evaluate RF exposure as per 47CFR §

2.1091, and §2.1093 if antenna or usage, including co-located usage of other transmitters, of the subsequent installation are changed.

This radio transmitter has been approved by FCC/Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that Have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

PCB Trace Antennas: 2.4G:3.12dBi / 5G:4.54dBi