

Report No.:	No.: MTi210427012-04E1	
Date of issue:	June 17, 2021	
Applicant:	Cherub Technology Co., Ltd	
Product name:	2.4GHz Wireless System for	
	Saxophone	
Model(s):	B-6	
FCC ID:	2AOAA-B-6	

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

Instructions

- 1. The report shall not be partially reproduced without the written consent of the laboratory;
- 2. The test results of this report are only responsible for the samples submitted;
- 3. This report is invalid without the seal and signature of the laboratory;
- 4. This report is invalid if transferred, altered or tampered with in any form without authorization;
- 5. Any objection to this report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of Contents

1	GE	ENERAL DESCRIPTION	5
	1.1	Feature of equipment under test (EUT)	5
	1.2	OPERATION CHANNEL LIST	
	1.3	TEST FREQUENCY CHANNEL	5
	1.4	EUT OPERATION MODE	6
	1.5	ANCILLARY EQUIPMENT LIST	6
2	SU	JMMARY OF TEST RESULT	6
3	тс	ST FACILITIES AND ACCREDITATIONS	7
3			
	3.1	TEST LABORATORY	
	3.2	ENVIRONMENTAL CONDITIONS	
	3.3	MEASUREMENT UNCERTAINTY	
	3.4	TEST SOFTWARE	7
4	LIS	ST OF TEST EQUIPMENT	8
5	TE	EST RESULT	9
	5.1	ANTENNA REQUIREMENT	9
		1.1 Standard requirement	
	5.1	1.2 EUT Antenna	
	5.2	AC POWER LINE CONDUCTED EMISSION	. 10
	5.2	2.1 Limits	. 10
	5.2	2.2 Test setup	. 10
	5.2	2.3 Test procedure	. 11
	5.2	2.4 Test results	. 11
	5.3	RADIATED SPURIOUS EMISSION	. 12
	5.3	3.1 Limit	
	5.3	3.2 Test method	. 12
		3.3 Test Result	
		3.4 Band edge–Field strength of fundamental	
		3.5 Band edge-radiated	
		20dB and 99% bandwidth	
	-	4.1 Limits	
	-	4.2 Test method	
	•	4.3 Test result	
P	нотос	GRAPHS OF THE TEST SETUP	.34
Ρ	нотос	GRAPHS OF THE EUT	.35

测

TEST RESULT CERTIFICATION				
Applicant's name:	Cherub Te	chnology Co., Ltd		
Address	Room507, Block 1, Nanhai E-Cool, No. 6 Xinghua Road, Shekou, Nanshan District, Shenzhen City, Guangdong Province, China, 518067			
Manufacturer's Name	Cherub Te	chnology Co., Ltd		
Address		Room507, Block 1, Nanhai E-Cool, No. 6 Xinghua Road, Shekou, Nanshan District, Shenzhen City, Guangdong Province, China, 518067		
Factory:	Cherub Te	chnology Co., Ltd(Zhuhai High-tech Park)		
Address:		i No.9Rd, Tangjiawan Town, Zhuhai National Hi-tech Development Zone, Zhuhai City, Guangdong Province, 2080		
Product description				
Product name	2.4GHz W	ireless System for Saxophone		
Trademark	NUX			
Model Name	B-6			
Serial Model	N/A			
Standards	FCC Part 15.249			
Test procedure:	: ANSI C63.10-2013			
Date of Test	·			
Date (s) of performance of tests	3:	May 08, 2021 ~May 28, 2021		
Test Result Pass		Pass		
	r test (EUT)	ted by Shenzhen Microtest Co., Ltd. and the test results is in compliance with the FCC requirements. And it is fied in the report.		
Testing Engineer	:	Danny An		
		(Danny Xu)		
Technical Manager	:	(Leo Su		
Authorized Signatory	:	(Loo Ou) Tom Xue (Tom Xue)		

1 General description

微

1.1 Feature of equipment under test (EUT)

测

Micr©test

检

测

Equipment:	2.4GHz Wireless System for Saxophone
Trade Name:	NUX
Model Name:	B-6
Serial Model:	N/A
Model Difference:	N/A
Operation Frequency:	2404 - 2479 MHz
Modulation Type:	GFSK
Antenna Type:	PCB antenna
Antenna Gain:	3.59dBi
Max. Field Strength:	90.67dBuV/m
Power Source:	DC 3.7V from battery
Battery:	Charging box: DC 3.7V 3000mAh Wireless product: DC 3.7V 500mAh
Hardware version:	V1
Software version:	V1

1.2 Operation channel list

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2404	11	2444
1	2408	12	2448
2	2412	13	2451
3	2416	14	2455
4	2420	15	2458
5	2424	16	2462
6	2428	17	2465
7	2431	18	2469
8	2434	19	2472
9	2437	20	2476
10	2441	21	2479

1.3 Test Frequency Channel

Channel	Frequency(MHz)
Low	2404
Middle	2441
High	2479

1.4 EUT operation mode

During testing, RF test program provided by the manufacture to control the Tx operation followed the test requirement.

1.5 Ancillary equipment list

Equipment	Model	S/N	Manufacturer
/	/	/	/

2 Summary of Test Result

Test procedures according to the technical standards:

Item	FCC Part No.	Description of Test	Result
1	FCC Part15.203	Antenna Requirement	Pass
2	FCC Part15.207	AC power line conducted emission	N/A
5	FCC Part15.249(d)	Radiated spurious emission	Pass
4	FCC Part 15.215	20dB and 99% Bandwidth	Pass

Test Facilities and Accreditations 3

测

3.1 **Test laboratory**

Test Laboratory	Shenzhen Microtest Co., Ltd
Location	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China.
FCC Registration No.	448573

3.2 **Environmental conditions**

Temperature:	15ºC~35ºC
Humidity	20%~75%
Atmospheric pressure	98kPa~101kPa

3.3 **Measurement uncertainty**

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %

RF frequency	1 x 10-7
RF power, conducted	±1 dB
Conducted emission(150kHz~30MHz)	± 2.5 dB
Radiated emission(30MHz~1GHz)	± 4.2 dB
Radiated emission (above 1GHz)	± 4.3 dB
Temperature	±1 degree
Humidity	± 5 %

3.4 Test software

Software Name	Manufacturer	Model	Version
Bluetooth and WiFi Test System	Shenzhen JS tonscend co,.ltd	JS1120-3	2.5.77.0418

4 List of	test equipment					
Equipme nt No.	Equipment Name	Manufact urer	Model	Serial No.	Calibration date	Due date
MTI-E043	EMI Test Receiver	Rohde≻ hwarz	ESCI7	101166	2020/06/04	2021/06/03
MTI-E044	TRILOG Broadband Antenna	schwarab eck	VULB 9163	9163-133 8	2020/06/05	2021/06/04
MTI-E047	Amplifier	Hewlett-P ackard	8447F	3113A061 50	2020/06/04	2021/06/03
MTI-E089	ESG Vector Signal Generator	Agilent	N5182A	MY49060 455	2020/06/03	2021/06/02
MTI-E058	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051 240	2020/07/03	2021/07/04
MTI-E062	PXA Signal Analyzer	Agilent	N9030A	MY51350 296	2020/06/04	2021/06/03
MTI-E066	MXA Signal Analyzer	Agilent	N9020A	MY50143 483	2020/06/04	2021/06/03
MTI-E078	Synthesized Sweeper	Agilent	83752A	3610A019 57	2020/06/04	2021/06/03
MTI-E079	DC Power Supply	Agilent	E3632A	MY40027 695	2020/06/04	2021/06/03
MTI-E045	Double Ridged Broadband Horn Antenna	schwarab eck	BBHA 9120 D	9120D-22 78	2020/06/05	2021/06/04
MTI-E021	EMI Test Receiver	Rohde≻ hwarz	ESCS30	100210	2020/06/04	2021/06/03
MTI-E022	Pulse Limiter	Schwarzb eck	VSTD 9561-F	00679	2020/06/03	2021/06/02
MTI-E023	Artificial mains network	Schwarzb eck	NSLK 8127	NSLK 8127 #841	2020/06/04	2021/06/03
MTI-E046	Active Loop Antenna	Schwarzb eck	FMZB 1519 B	00044	2020/06/05	2021/06/04
MTI-E048	Amplifier	Agilent	8449B	3008A024 00	2020/07/03	2021/07/04
MTI-E072	Thermometer Clock Humidity Monitor	-	HTC-1	/	2020/06/07	2021/06/06

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

5 Test Result

5.1 Antenna requirement

5.1.1 Standard requirement

FCC PART 15.203;

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

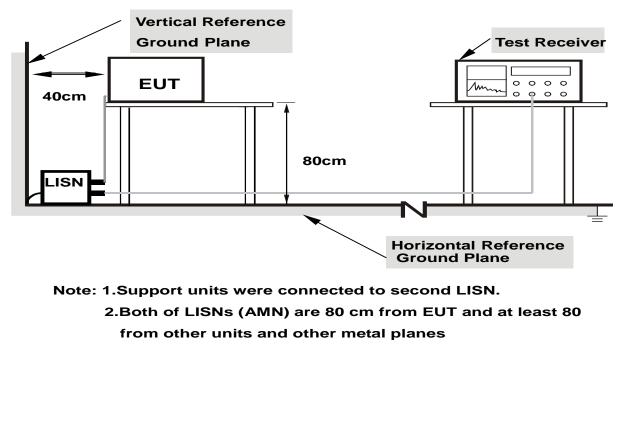
5.1.2 EUT Antenna

The antenna is a PCB antenna, which was permanently affixed to the device and un-replaced, complies with 15.203. In addition, the maximum antenna gain is 3.59dBi.

5.2 AC power line conducted emission

5.2.1 Limits

FCC §15.207;


For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 ^{note2}	56 - 46 note2
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note1: The tighter limit applies at the band edges.

Note2: The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

5.2.2 Test setup

5.2.3 Test procedure

a. EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b. The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

- c. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment's powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- d. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- e. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- f. LISN at least 80 cm from nearest part of EUT chassis.

For the actual test configuration, please refer to the related Item -EUT Test Photos.

5.2.4 Test results

Note: The device can not TX when it charging status.

5.3 Radiated spurious emission

5.3.1 Limit

FCC PART 15.249(a);

Except as provided in paragraph (a) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Frequency (MHz)	Field Strength of	Field Strength of Harmonics
Trequency (MITZ)	Fundamental (mV/m)	(μV/m)
902-928	50	500
2400-2483.5	50	500
5725-5875	50	500

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

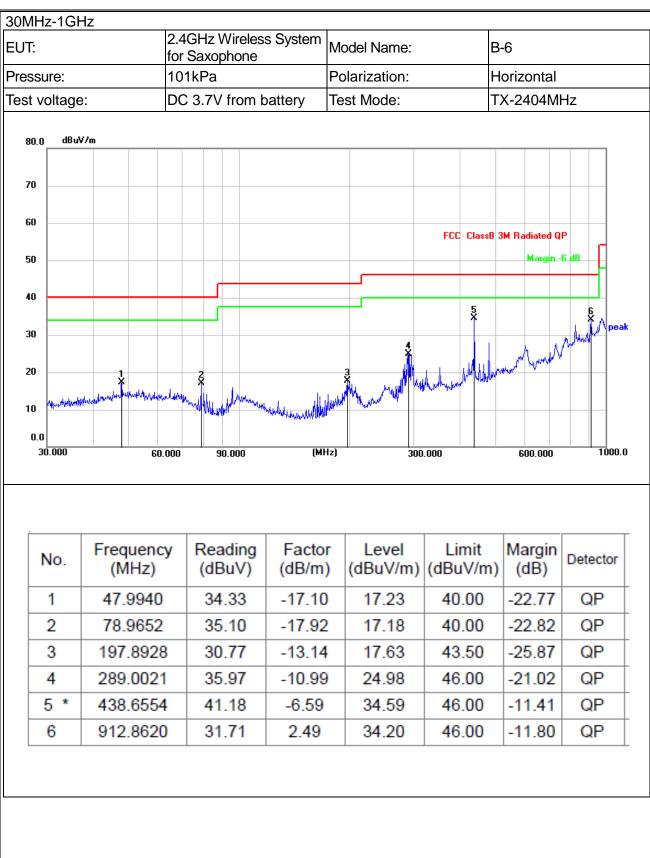
5.3.2 Test method

- a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.
- b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- c) Use the following spectrum analyser settings:
 - 1) Span = wide enough to fully capture the emission being measured
 - 2) RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz
 - 3) VBW \geq RBW, Sweep = auto
 - 4) Detector function = peak
 - 5) Trace = max hold
- d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.

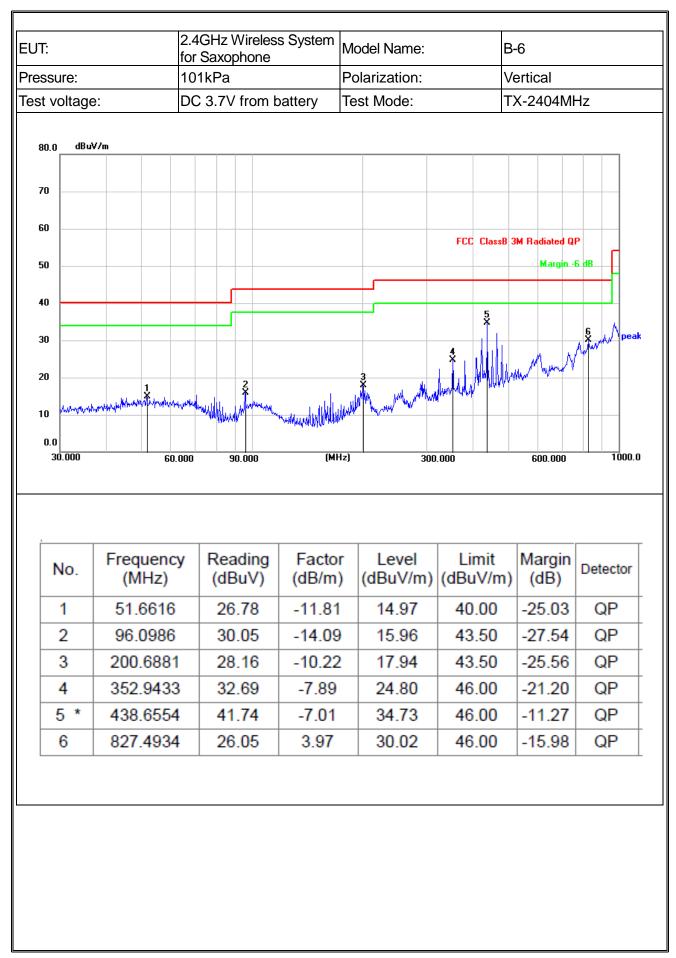
5.3.3 Test Result

Below 30MHz					
EUT:	2.4GHz Wirele System for Saxophone	ess Model na	ame. :	B-6	
Pressure:	1010 hPa	Test volta	age:	DC :	3.7V from battery
Test mode:	TX	Polarizat	ion :		
Freq.	Reading	Limit	Margin		State
	1				

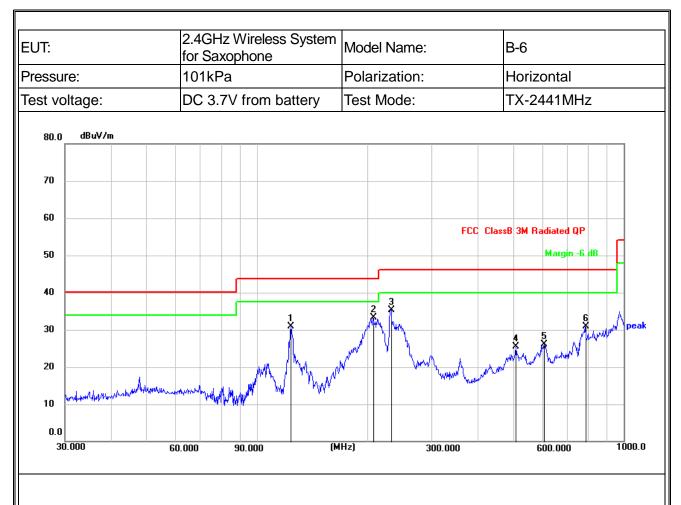
•	9		9	
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Pass
				Pass

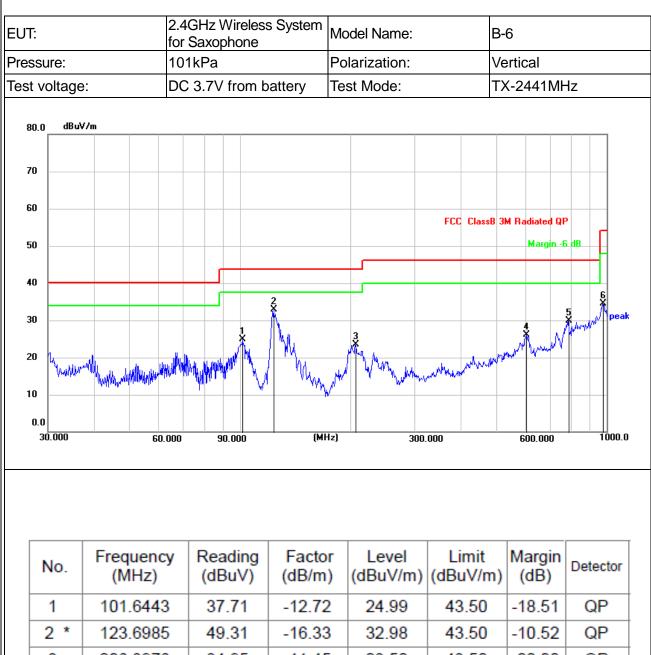

Note:

1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

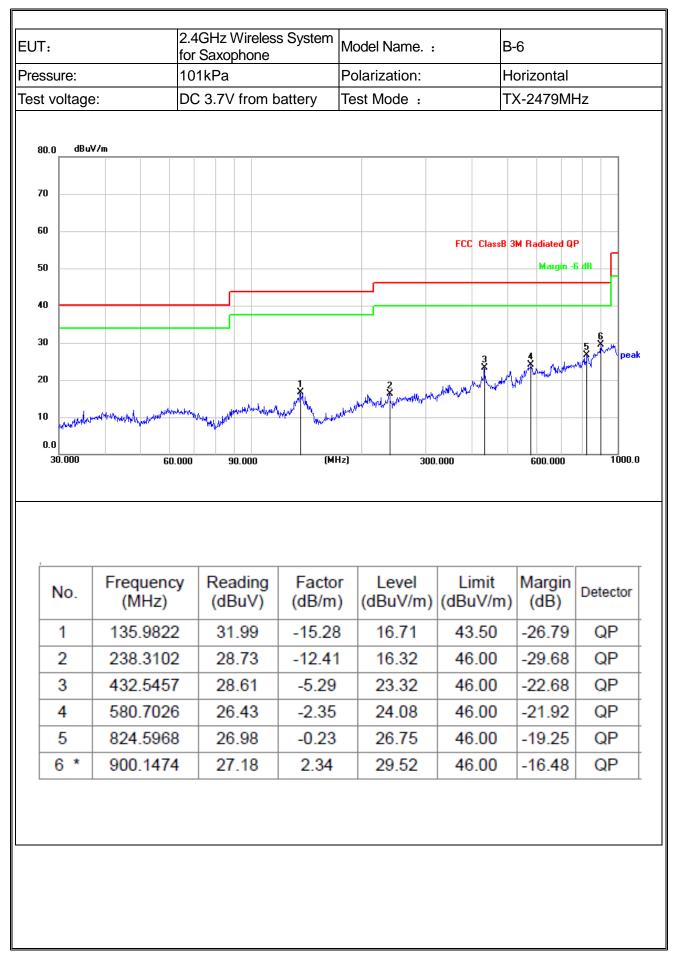

2. Distance extrapolation factor =40 log (specific distance/test distance)(dB);

3. Limit line = specific limits (dBuV) + distance extrapolation factor.

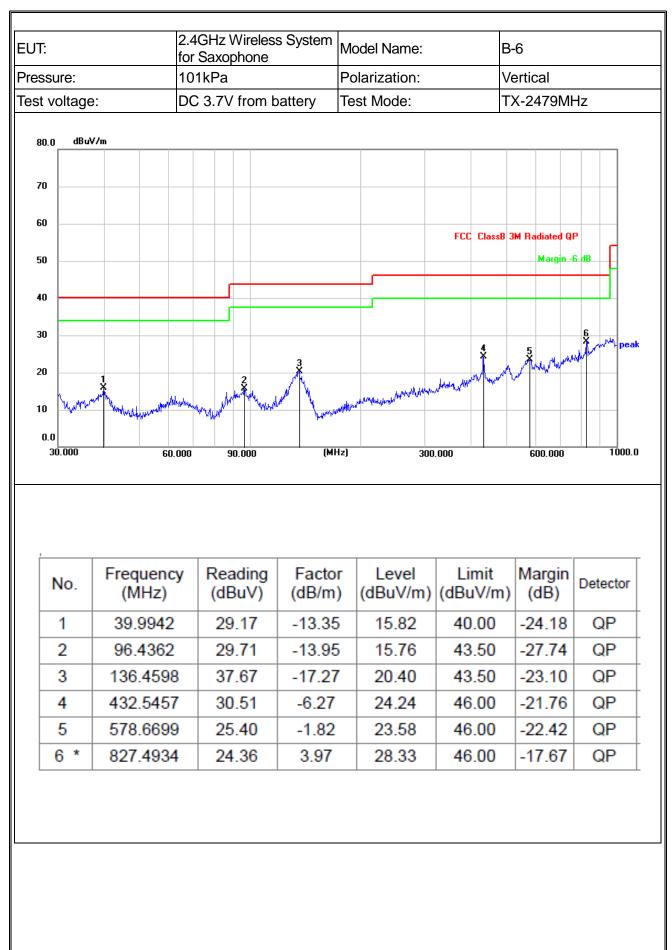




No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	123.6985	46.53	-15.67	30.86	43.50	-12.64	QP
2 *	207.1226	45.95	-12.57	33.38	43.50	-10.12	QP
3	232.5318	48.00	-12.60	35.40	46.00	-10.60	QP
4	508.2582	30.25	-4.73	25.52	46.00	-20.48	QP
5	607.7867	30.28	-4.10	26.18	46.00	-19.82	QP
6	785.0935	32.63	-1.81	30.82	46.00	-15.18	QP



测



2 *	123.6985	49.31	-16.33	32.98	43.50	-10.52	QP
3	206.3976	34.95	-11.45	23.50	43.50	-20.00	QP
4	605.6592	26.19	-0.01	26.18	46.00	-19.82	QP
5	785.0935	26.62	3.22	29.84	46.00	-16.16	QP
6	975.7529	24.53	9.94	34.47	54.00	-19.53	QP
					-		

T:		2.4GHz		ss System	Model N	Name. :	: I	3-6	
ssure:		101kPa	1		Polariza	ation:		Horizontal	
t voltag	e:	DC 3.7	V from	battery	Test Mo	ode :	-	TX-2404M	Hz
100.0 dBu	₩/m								
90									
BO								FCC ABOVE	1G-PK
70				7 9	11				
60		3 X	5 X	- 7 9 	11 			FCC ABOVE	1G-AV
50	1 X		6	8 10 X X	12 X				
40		×	×						
30									
20									
10									
							1		
0.0	3400.00 5800	.00 820	0.00 1	10600.00 (M	Hz) 15	5400.00	17800.00 202	200.00 22600). OO 25000.
	Frequence (MHz)	xy Re	eading	Facto	or Le	evel	17800.00 202 Limit (dBuV/m	Margin	
1000.000	Frequenc (MHz)	y Re (d	eading IBuV)	Facto (dB/m	or Le	evel uV/m)	Limit (dBuV/m	Margin) (dB)	Detector
1000.000	Frequenc	cy Re (d 0 4	ading	Facto (dB/m 3.94	or Le i) (dB	evel	Limit	Margin (dB) -22.14	
No.	Frequenc (MHz) 4808.000	cy Re (d 0 4 0 3	eading IBuV) 7.92	Facto (dB/m	or Le i) (dBi 5 38	evel uV/m) 1.86	Limit (dBuV/m 74.00	Margin) (dB)	Detector peak
No.	Frequenc (MHz) 4808.000 4808.000	cy Re (d 0 4 0 3 0 4	eading IBuV) 7.92 4.86	Facto (dB/m 3.94 3.94	or Le i) (dBi 51 38 55	evel uV/m) 1.86 8.80	Limit (dBuV/m 74.00 54.00	Margin (dB) -22.14 -15.20	Detector peak AVG
No.	Frequence (MHz) 4808.000 4808.000 7212.000	cy Re (d 0 4 0 3 0 4 0 4 0 3	eading IBuV) 7.92 4.86 5.79	Facto (dB/m 3.94 3.94 9.35	or Le i) (dB 5 ⁻ 38 55 42	evel uV/m) 1.86 8.80 5.14	Limit (dBuV/m 74.00 54.00 74.00	Margin (dB) -22.14 -15.20 -18.86	Detector peak AVG peak
No.	Frequence (MHz) 4808.000 4808.000 7212.000 7212.000	cy Re (d 0 4 0 3 0 4 0 4 0 3 0 4 0 3 0 4	eading IBuV) 7.92 4.86 5.79 3.05	Facto (dB/m 3.94 3.94 9.35 9.35	or Le i) (dBi 5' 38 55 42) 56	evel uV/m) 1.86 8.80 5.14 2.40	Limit (dBuV/m 74.00 54.00 74.00 54.00	Margin (dB) -22.14 -15.20 -18.86 -11.60	Detector peak AVG peak AVG
No. 1 2 3 4 5	Frequence (MHz) 4808.000 4808.000 7212.000 7212.000 9496.000	cy Re (d 0 4 0 3 0 4 0 3 0 4 0 3 0 4 0 2	eading IBuV) 7.92 4.86 5.79 3.05 1.66	Facto (dB/m 3.94 3.94 9.35 9.35 14.40	or Le) (dBi 5' 38 55 42) 56) 43	evel uV/m) 1.86 8.80 5.14 2.40 6.06	Limit (dBuV/m 74.00 54.00 74.00 54.00 74.00	Margin (dB) -22.14 -15.20 -18.86 -11.60 -17.94	Detector peak AVG peak AVG peak
No. 1 2 3 4 5 6	Frequence (MHz) 4808.000 4808.000 7212.000 7212.000 9496.000 9496.000	xy Re (d 0 4 0 3 0 4 0 3 0 4 0 3 0 4 0 2 0 4 0 4	eading IBuV) 7.92 4.86 5.79 3.05 1.66 9.40	Facto (dB/m 3.94 3.94 9.35 9.35 9.35 14.40	or Le) (dBi 5' 38 55 42) 56) 43 2 6'	evel uV/m) 1.86 8.80 5.14 2.40 6.06 3.80	Limit (dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00	Margin (dB) -22.14 -15.20 -18.86 -11.60 -17.94 -10.20	Detector peak AVG peak AVG peak AVG
No. 1 2 3 4 5 6 7	Frequence (MHz) 4808.000 4808.000 7212.000 7212.000 9496.000 9496.000 11008.00	cy Re (d 0 4 0 3 0 4 0 3 0 4 0 3 0 4 0 2 10 4 10 2	eading IBuV) 7.92 4.86 5.79 3.05 1.66 9.40 1.95	Facto (dB/m 3.94 3.94 9.35 9.35 9.35 14.40 14.40 19.82	or Le) (dB) 5' 38 55 42) 56) 43 2 6' 2 48	evel uV/m) 1.86 8.80 5.14 2.40 6.06 3.80 1.77	Limit (dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Margin (dB) -22.14 -15.20 -18.86 -11.60 -17.94 -10.20 -12.23	Detector peak AVG peak AVG peak AVG peak
No. 1 2 3 4 5 6 7 8 *	Frequence (MHz) 4808.000 4808.000 7212.000 7212.000 9496.000 9496.000 11008.00 11008.00	cy Re (d 0 4 0 3 0 4 0 3 0 4 0 3 0 4 0 2 10 4 10 2 10 4	eading IBuV) 7.92 4.86 5.79 3.05 1.66 9.40 1.95 8.78	Facto (dB/m 3.94 3.94 9.35 9.35 14.40 14.40 19.82 19.82	or Le) (dB) 5' 38 55 42 0 56 0 43 2 6' 2 48 0 60	evel uV/m) 1.86 8.80 5.14 2.40 6.06 3.80 1.77 8.60	Limit (dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	Margin (dB) -22.14 -15.20 -18.86 -11.60 -17.94 -10.20 -12.23 -5.40	Detector peak AVG peak AVG peak AVG peak AVG
No. 1 2 3 4 5 6 7 8 * 9	Frequence (MHz) 4808.000 4808.000 7212.000 7212.000 9496.000 9496.000 11008.00 11008.00 12424.00	cy Re (d 0 4 0 3 0 4 0 3 0 4 0 3 0 4 0 2 10 4 10 2 10 4 10 3	eading BuV) 7.92 4.86 5.79 3.05 1.66 9.40 1.95 8.78 3.55	Facto (dB/m 3.94 3.94 9.35 9.35 9.35 14.40 14.40 19.82 19.82 19.82	or Le) (dB) 5' 38 55 42) 56) 43 2 6' 2 48) 60) 47	evel uV/m) 1.86 8.80 5.14 2.40 6.06 3.80 1.77 8.60 0.75	Limit (dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Margin (dB) -22.14 -15.20 -18.86 -11.60 -17.94 -10.20 -12.23 -5.40 -13.25	Detector peak AVG peak AVG peak AVG peak AVG

JT:		.4GHz Wireles or Saxophone	s System	Model Nar	ne:	В	-6	
ressure:		01kPa		Polarizatio	on:	V	ertical	
est voltage	: D	C 3.7V from b	oattery	Test Mode	e:	Т	X-2404M	Hz
100.0 dBuV	//m							
90								
80								
70							FCC ABOVE	1G-PK
60			9 X	11 X				
		3 5 X	10 *	12			FCC ABOVE	1G-AV
50	1 ×	4 6 X	×	12 X				
40	*							
30								
20								
10 0.0								
1000.000	3400.00 5800.00	8200.00 10	600.00 (MH	lz) 15400	.00 178	00.00 2020	0.00 22600	.00 25000.0
1000.000 No.	Frequency	Reading	Facto	r Lev	el	Limit	Margin	.00 25000.0
				r Lev	el //m) (o		Margin	
No.	Frequency (MHz)	Reading (dBuV)	Facto (dB/m	r Lev) (dBuV	el //m) (c	Limit JBuV/m)	Margin (dB)	Detector
No.	Frequency (MHz) 4804.000	Reading (dBuV) 43.07	Facto (dB/m 3.90	r Lev) (dBuV 46.9	el //m) (c 97	Limit JBuV/m) 74.00	Margin (dB) -27.03	Detector peak
No.	Frequency (MHz) 4804.000 4804.000	Reading (dBuV) 43.07 29.60	Facto (dB/m 3.90 3.90	r Lev) (dBuV 46.9 33.5	el //m) (c 97 50 58	Limit JBuV/m) 74.00 54.00	Margin (dB) -27.03 -20.50	Detector peak AVG
No.	Frequency (MHz) 4804.000 4804.000 7206.000	Reading (dBuV) 43.07 29.60 44.33	Facto (dB/m 3.90 3.90 9.35	r Leve (dBuV 46.9 33.5 53.6 41.2	el //m) (d 97 50 58 20	Limit JBuV/m) 74.00 54.00 74.00	Margin (dB) -27.03 -20.50 -20.32	Detector peak AVG peak
No. 1 2 3 4	Frequency (MHz) 4804.000 4804.000 7206.000 7206.000 8464.000 8464.000	Reading (dBuV) 43.07 29.60 44.33 31.85 44.40 32.33	Facto (dB/m 3.90 3.90 9.35 9.35	r Leve (dBuV 46.9 33.5 53.6 41.2 54.8	el //m) (d 97 50 58 20 37	Limit dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 54.00	Margin (dB) -27.03 -20.50 -20.32 -12.80 -19.13 -11.20	Detector peak AVG peak AVG
No. 1 2 3 4 5 6 7	Frequency (MHz) 4804.000 4804.000 7206.000 7206.000 8464.000 8464.000 10168.000	Reading (dBuV) 43.07 29.60 44.33 31.85 44.40 32.33 43.19	Facto (dB/m 3.90 3.90 9.35 9.35 10.47 10.47 15.99	r Leve (dBuV 46.9 33.5 53.6 41.2 54.8 42.8 59.1	el //m) (d 97 50 58 20 37 30 18	Limit dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 74.00	Margin (dB) -27.03 -20.50 -20.32 -12.80 -19.13 -11.20 -14.82	Detector peak AVG peak AVG peak AVG peak
No. 1 2 3 4 5 6 7 8	Frequency (MHz) 4804.000 4804.000 7206.000 7206.000 8464.000 8464.000 10168.000 10168.000	Reading (dBuV) 43.07 29.60 44.33 31.85 44.40 32.33 43.19 31.41	Facto (dB/m) 3.90 9.35 9.35 10.47 10.47 15.99 15.99	r Leve (dBuV 46.9 33.5 53.6 41.2 54.8 42.8 59.1 47.4	el //m) (d 97 50 58 20 37 30 18 40	Limit dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 54.00	Margin (dB) -27.03 -20.50 -20.32 -12.80 -19.13 -11.20 -14.82 -6.60	Detector peak AVG peak AVG peak AVG peak AVG
No. 1 2 3 4 5 6 7 8 9	Frequency (MHz) 4804.000 4804.000 7206.000 7206.000 8464.000 8464.000 10168.000 10168.000 11008.000	Reading (dBuV) 43.07 29.60 44.33 31.85 44.40 32.33 43.19 31.41 41.21	Facto (dB/m) 3.90 3.90 9.35 9.35 10.47 10.47 15.99 15.99 19.82	r Leve (dBuV 46.9 33.5 53.6 41.2 54.8 42.8 59.1 47.4 61.0	el //m) (d 50 50 58 20 37 30 18 40 03	Limit dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 74.00	Margin (dB) -27.03 -20.50 -20.32 -12.80 -19.13 -11.20 -14.82 -6.60 -12.97	Detector peak AVG peak AVG peak AVG peak AVG
No. 1 2 3 4 5 6 7 8 9 10 *	Frequency (MHz) 4804.000 4804.000 7206.000 7206.000 8464.000 8464.000 10168.000 10168.000 11008.000 11008.000	Reading (dBuV) 43.07 29.60 44.33 31.85 44.40 32.33 43.19 31.41 41.21 29.38	Facto (dB/m) 3.90 3.90 9.35 9.35 10.47 10.47 15.99 15.99 15.99 19.82 19.82	r Leve (dBuV 46.9 33.5 53.6 41.2 54.8 42.8 59.1 47.4 61.0 49.2	el //m) (c 97 50 50 58 20 37 30 18 18 40 03 20	Limit dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 54.00	Margin (dB) -27.03 -20.50 -20.32 -12.80 -19.13 -11.20 -14.82 -6.60 -12.97 -4.80	Detector peak AVG peak AVG peak AVG peak AVG
No. 1 2 3 4 5 6 7 8 9	Frequency (MHz) 4804.000 4804.000 7206.000 7206.000 8464.000 8464.000 10168.000 10168.000 11008.000	Reading (dBuV) 43.07 29.60 44.33 31.85 44.40 32.33 43.19 31.41 41.21 29.38 43.21	Facto (dB/m) 3.90 3.90 9.35 9.35 10.47 10.47 15.99 15.99 19.82	r Leve (dBuV 46.9 33.5 53.6 41.2 54.8 42.8 59.1 47.4 61.0 49.2 61.2	el //m) (c 97 50 50 58 20 37 30 18 40 03 20 27	Limit dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 74.00	Margin (dB) -27.03 -20.50 -20.32 -12.80 -19.13 -11.20 -14.82 -6.60 -12.97	Detector peak AVG peak AVG peak AVG peak AVG

Micr©test 微测检测

UT:			z Wireles ophone	s System	Model N	ame:	E	8-6	
ressure:		101kPa	•		Polariza	ition:	F	lorizontal	
est voltag	le:	DC 3.7	V from b	oattery	Test Mo	de:	Т	X-2441M	Hz
100.0 dBu	uV/m								
90									
80								FCC ABOVE	1G-PK
70									
60	1	3 X	5 X	X 9	11 ×			FCC ABOVE	16-AV
50	X		+	8 10 * *	12 X				
40	2 X	×	6 ×						
30									
20									
10									
0.0	0 3400.00 580	0.00 820	00.00 10	0600.00 (MI	lz) 154	400.00	17800.00 2020	00.00 22600	.00 25000.0
	0 3400.00 580 Frequenc (MHz)	cy Re	eading	Facto	r Le	evel	17800.00 2020 Limit (dBuV/m)	Margin	Detector
1000.000	Frequence	cy Re (d	eading	Facto	r Le) (dBu	evel	Limit	Margin	Detector
1000.000	Frequenc (MHz)	cy Re (d	eading IBuV)	Facto (dB/m	r Le) (dBu 54	evel JV/m)	Limit (dBuV/m)	Margin (dB)	
1000.000	Frequence (MHz) 4880.000	cy Re (d 0 4 0 3	eading IBuV) I9.97	Facto (dB/m 4.69	r Le) (dBu 54	evel JV/m)	Limit (dBuV/m) 74.00	Margin (dB) -19.34	Detector peak
1000.000 No. 1 2	Frequenc (MHz) 4880.000 4880.000	cy Re (d 0 4 0 3 0 4	eading IBuV) 19.97 36.81	Facto (dB/m 4.69 4.69	r Le) (dBu 54 41 57	evel IV/m) .66 .50	Limit (dBuV/m) 74.00 54.00	Margin (dB) -19.34 -12.50	Detector peak AVG
1000.000 No. 1 2 3	Frequence (MHz) 4880.000 4880.000 7320.000	cy Re (d 0 4 0 3 0 4 0 3	eading IBuV) I9.97 36.81 I8.22	Facto (dB/m 4.69 4.69 9.20	r Le) (dBu 54 41 57 44	evel JV/m) .66 .50 7.42	Limit (dBuV/m) 74.00 54.00 74.00	Margin (dB) -19.34 -12.50 -16.58	Detector peak AVG peak
1000.000 No. 1 2 3 4	Frequence (MHz) 4880.000 4880.000 7320.000 7320.000	cy Re (d 0 4 0 3 0 4 0 3 0 4 0 3	eading IBuV) I9.97 36.81 I8.22 35.60	Facto (dB/m 4.69 4.69 9.20 9.20	r Le) (dBu 54 41 57 44 56	evel JV/m) .66 .50 7.42 .80	Limit (dBuV/m) 74.00 54.00 74.00 54.00	Margin (dB) -19.34 -12.50 -16.58 -9.20	Detector peak AVG peak AVG
1000.000 No. 1 2 3 4 5	Frequence (MHz) 4880.000 4880.000 7320.000 7320.000 9520.000	cy Re (d 0 4 0 3 0 4 0 3 0 4 0 3 0 4 0 2	eading IBuV) 19.97 36.81 18.22 35.60 12.14	Facto (dB/m 4.69 4.69 9.20 9.20 14.46	r Le (dBu 54 41 57 44 56 43	evel JV/m) .66 .50 7.42 .80 5.60	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00	Margin (dB) -19.34 -12.50 -16.58 -9.20 -17.40	Detector peak AVG peak AVG peak
1000.000 No. 1 2 3 4 5 6	Frequence (MHz) 4880.000 4880.000 7320.000 7320.000 9520.000 9520.000	cy Re (d 0 4 0 3 0 4 0 3 0 4 0 3 0 4 0 2 00 4	eading IBuV) 19.97 36.81 18.22 35.60 12.14 29.04	Facto (dB/m 4.69 4.69 9.20 9.20 14.46 14.46	r Le (dBu 54 41 57 44 56 43 61	evel JV/m) .66 .50 7.42 .80 5.60 5.50	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00	Margin (dB) -19.34 -12.50 -16.58 -9.20 -17.40 -10.50	Detector peak AVG peak AVG peak AVG
1000.000 No. 1 2 3 4 5 6 7	Frequence (MHz) 4880.000 4880.000 7320.000 7320.000 9520.000 9520.000 11008.000	cy Re (d 0 4 0 3 0 4 0 3 0 4 0 3 0 4 0 2 00 4 00 2	eading IBuV) 19.97 36.81 18.22 35.60 12.14 29.04 11.69	Facto (dB/m 4.69 9.20 9.20 14.46 14.46 19.82	r Le (dBu 54 41 57 44 56 43 61 49	evel JV/m) .66 .50 7.42 .80 5.60 5.50 .51	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Margin (dB) -19.34 -12.50 -16.58 -9.20 -17.40 -10.50 -12.49	Detector peak AVG peak AVG peak AVG peak
1000.000 No. 1 2 3 4 5 6 7 8 *	Frequence (MHz) 4880.000 4880.000 7320.000 7320.000 9520.000 9520.000 11008.000 11008.000	cy Re (d 0 4 0 3 0 4 0 3 0 4 0 3 0 4 0 2 00 4 00 2 00 4	eading IBuV) 19.97 36.81 18.22 35.60 12.14 29.04 11.69 29.48	Facto (dB/m 4.69 9.20 9.20 14.46 14.46 19.82 19.82	r Le (dBu 54 41 57 44 56 43 61 49 60	evel JV/m) .66 .50 .42 .80 .60 .50 .51 .30	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	Margin (dB) -19.34 -12.50 -16.58 -9.20 -17.40 -10.50 -12.49 -4.70	Detector peak AVG peak AVG peak AVG peak AVG
1000.000 No. 1 2 3 4 5 6 7 8 * 9	Frequence (MHz) 4880.000 4880.000 7320.000 7320.000 9520.000 9520.000 11008.000 11008.000 12448.000	cy Re (d 0 4 0 3 0 4 0 3 0 4 0 3 0 4 0 2 00 4 00 2 00 4 00 3	eading IBuV) 19.97 36.81 18.22 35.60 12.14 29.04 11.69 29.48 13.17	Facto (dB/m 4.69 9.20 9.20 14.46 14.46 19.82 19.82 19.82	r Le (dBu 54 41 57 44 56 43 61 49 60 48	evel JV/m) .66 .50 .42 .80 .60 .50 .51 .30 .36	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Margin (dB) -19.34 -12.50 -16.58 -9.20 -17.40 -10.50 -12.49 -4.70 -13.64	Detector peak AVG peak AVG peak AVG peak AVG

for		2.4GHz Wireless System for Saxophone		Model Name:		B-6		
ressure:	•		Polarization:	V	ertical			
est voltage	e: D	DC 3.7V from battery		Test Mode:	T	TX-2441MHz		
100.0 dBu\	V/m					<u>.</u>		
90	·							
80						FCC ABOVE 1	IG-PK	
70			9					
60		3 5 7 X X X				FCC ABOVE 1	IG-AV	
50	1 ×							
40	2	* 6						
30								
20								
10 0.0 1000.000	3400.00 5800.00	8200.00 10	600.00 (MH	z) 15400.00	17800.00 2020	0.00 22600.	.00 25000.0	
0.0	Frequency	Reading	Facto	Level	Limit	Margin		
0.0	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
0.0 1000.000	Frequency	Reading	Facto	Level	Limit	Margin		
0.0 1000.000	Frequency (MHz) 4880.000	Reading (dBuV) 42.77	Factor (dB/m) 4.69	Level (dBuV/m) 47.46	Limit (dBuV/m) 74.00	Margin (dB) -26.54	Detector peak	
0.0 1000.000	Frequency (MHz) 4880.000 4880.000	Reading (dBuV) 42.77 31.11	Factor (dB/m) 4.69 4.69	Level (dBuV/m) 47.46 35.80	Limit (dBuV/m) 74.00 54.00	Margin (dB) -26.54 -18.20	Detector peak AVG	
0.0 1000.000 No. 1 2 3	Frequency (MHz) 4880.000 4880.000 7320.000	Reading (dBuV) 42.77 31.11 46.42	Factor (dB/m) 4.69 4.69 9.20	Level (dBuV/m) 47.46 35.80 55.62	Limit (dBuV/m) 74.00 54.00 74.00	Margin (dB) -26.54 -18.20 -18.38	Detector peak AVG peak	
0.0 1000.000 No. 1 2 3 4	Frequency (MHz) 4880.000 4880.000 7320.000 7320.000	Reading (dBuV) 42.77 31.11 46.42 34.60	Factor (dB/m) 4.69 4.69 9.20 9.20	Level (dBuV/m) 47.46 35.80 55.62 43.80 54.64	Limit (dBuV/m) 74.00 54.00 74.00 54.00	Margin (dB) -26.54 -18.20 -18.38 -10.20	Detector peak AVG peak AVG	
0.0 1000.000 No. 1 2 3 4 5	Frequency (MHz) 4880.000 4880.000 7320.000 7320.000 8464.000	Reading (dBuV) 42.77 31.11 46.42 34.60 44.17	Factor (dB/m) 4.69 4.69 9.20 9.20 9.20 10.47	Level (dBuV/m) 47.46 35.80 55.62 43.80 54.64	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00	Margin (dB) -26.54 -18.20 -18.38 -10.20 -19.36	Detector peak AVG peak AVG peak	
0.0 1000.000 No. 1 2 3 4 5 6	Frequency (MHz) 4880.000 4880.000 7320.000 7320.000 8464.000 8464.000	Reading (dBuV) 42.77 31.11 46.42 34.60 44.17 31.03	Factor (dB/m) 4.69 4.69 9.20 9.20 9.20 10.47 10.47	Level (dBuV/m) 47.46 35.80 55.62 43.80 54.64 41.50	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00	Margin (dB) -26.54 -18.20 -18.38 -10.20 -19.36 -12.50	Detector peak AVG peak AVG peak AVG	
0.0 1000.000 No. 1 2 3 4 5 6 7	Frequency (MHz) 4880.000 4880.000 7320.000 7320.000 8464.000 8464.000 9544.000	Reading (dBuV) 42.77 31.11 46.42 34.60 44.17 31.03 42.49 32.29	Factor (dB/m) 4.69 4.69 9.20 9.20 9.20 10.47 10.47 14.51	Level (dBuV/m) 47.46 35.80 55.62 43.80 54.64 41.50 57.00 46.80	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Margin (dB) -26.54 -18.20 -18.38 -10.20 -19.36 -12.50 -17.00	Detector peak AVG peak AVG peak AVG peak	
0.0 1000.000 No. 1 2 3 4 5 6 7 8	Frequency (MHz) 4880.000 4880.000 7320.000 7320.000 8464.000 8464.000 9544.000 9544.000	Reading (dBuV) 42.77 31.11 46.42 34.60 44.17 31.03 42.49 32.29 41.79	Factor (dB/m) 4.69 4.69 9.20 9.20 10.47 10.47 14.51 14.51	Level (dBuV/m) 47.46 35.80 55.62 43.80 54.64 41.50 57.00 46.80 61.61	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	Margin (dB) -26.54 -18.20 -18.38 -10.20 -19.36 -12.50 -17.00 -7.20	Detector peak AVG peak AVG peak AVG peak AVG	
0.0 1000.000 1000.000 1 2 3 4 5 6 7 8 9	Frequency (MHz) 4880.000 4880.000 7320.000 7320.000 8464.000 8464.000 9544.000 9544.000 11008.000	Reading (dBuV) 42.77 31.11 46.42 34.60 44.17 31.03 42.49 32.29 41.79 28.68	Factor (dB/m) 4.69 9.20 9.20 10.47 10.47 14.51 14.51 19.82	Level (dBuV/m) 47.46 35.80 55.62 43.80 54.64 41.50 57.00 46.80 61.61	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Margin (dB) -26.54 -18.20 -18.38 -10.20 -19.36 -12.50 -17.00 -7.20 -12.39	Detector peak AVG peak AVG peak AVG peak AVG	

Micr©test 微测检测

UT:	tor Saxophone			m Mo	del Nam:	E	8-6			
ressure:		101kPa		Pol	larization:	F	lorizontal			
est voltage):	DC 3.7V from battery			st Mode:	Т	X-2479M	Hz		
100.0 dBu\	//m									
90										
80							FCC ABOVE	1G-PK		
70			7	q 11						
60	1 X	3 X	х Х	9 11 X X			FCC ABOVE	1G-AV		
50	ž	4	<u></u>	10 12 X X						
40	×	*								
30										
20										
10										
0.0 1000.000	3400.00 5800).00 8200.00	10600.00	(MHz)	15400.00	17800.00 2020	0.00 22600	.00 25000.0		
	3400.00 5800 Frequence (MHz)		ling Fac	tor	Level (dBuV/m)	Limit	Margin	.00 25000.0		
	Frequenc	y Read (dBu	ling Fac IV) (dB/	tor m)	Level	Limit	Margin			
1000.000	Frequenc (MHz)	y Read (dBu 0 50.8	ling Fac IV) (dB/ 36 5.6	tor m) 2	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1000.000 No.	Frequenc (MHz) 4960.000	xy Read (dBu 0 50.8 0 37.7	ling Fac IV) (dB/ 36 5.6 78 5.6	tor m) 2	Level (dBuV/m) 56.48	Limit (dBuV/m) 74.00	Margin (dB) -17.52	Detector peak		
1000.000 No. 1 2	Frequenc (MHz) 4960.000 4960.000	xy Read (dBu 0 50.8 0 37.7 0 47.6	ling Fac IV) (dB/ 36 5.6 78 5.6 55 9.0	tor m) 2 2 4	Level (dBuV/m) 56.48 43.40	Limit (dBuV/m) 74.00 54.00	Margin (dB) -17.52 -10.60	Detector peak AVG		
1000.000 No. 1 2 3	Frequence (MHz) 4960.000 4960.000 7440.000	xy Read (dBu 0 50.8 0 37.7 0 47.6 0 33.7	ling Fac IV) (dB/ 36 5.6 78 5.6 35 9.0 76 9.0	tor m) 2 2 4 4	Level (dBuV/m) 56.48 43.40 56.69	Limit (dBuV/m) 74.00 54.00 74.00	Margin (dB) -17.52 -10.60 -17.31	Detector peak AVG peak		
1000.000 No. 1 2 3 4	Frequence (MHz) 4960.000 4960.000 7440.000 7440.000	xy Read (dBu 0 50.8 0 37.7 0 47.6 0 33.7 0 42.1	ling Fac (dB/ 36 5.6 78 5.6 35 9.0 76 9.0 14 14.4	tor m) 2 2 4 4 4	Level (dBuV/m) 56.48 43.40 56.69 42.80	Limit (dBuV/m) 74.00 54.00 74.00 54.00	Margin (dB) -17.52 -10.60 -17.31 -11.20	Detector peak AVG peak AVG		
1000.000 No. 1 2 3 4 5	Frequence (MHz) 4960.000 4960.000 7440.000 7440.000 9520.000	xy Read (dBu) 50.8) 37.7) 47.6) 33.7) 42.1) 29.3	ling Fac (dB/ 36 5.6 78 5.6 35 9.0 76 9.0 14 14.4 34 14.4	tor m) 2 2 4 4 4 46 46	Level (dBuV/m) 56.48 43.40 56.69 42.80 56.60	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00	Margin (dB) -17.52 -10.60 -17.31 -11.20 -17.40	Detector peak AVG peak AVG peak		
1000.000 No. 1 2 3 4 5 6	Frequence (MHz) 4960.000 7440.000 7440.000 9520.000 9520.000 11008.000 11008.00	Read (dBu 0 50.8 0 37.7 0 47.6 0 33.7 0 42.1 0 29.3 0 41.4 0 27.9	ling Fac (dB/ 36 5.6 78 5.6 35 9.0 76 9.0 14 14.4 34 14.4 18 19.8	tor m) 2 4 4 4 46 46 32	Level (dBuV/m) 56.48 43.40 56.69 42.80 56.60 43.80 61.30 47.80	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	Margin (dB) -17.52 -10.60 -17.31 -11.20 -17.40 -10.20 -12.70 -6.20	Detector peak AVG peak AVG peak AVG		
1000.000 No. 1 2 3 4 5 6 7 8 9	Frequence (MHz) 4960.000 7440.000 7440.000 9520.000 9520.000 11008.00	Read (dBu 0 50.8 0 37.7 0 47.6 0 33.7 0 42.1 0 29.3 0 41.4 0 27.9	ling Fac (dB/ 36 5.6 78 5.6 35 9.0 76 9.0 14 14.4 34 14.4 18 19.8 98 19.8 71 17.2	tor m) 2 4 4 46 46 32 32 20	Level (dBuV/m) 56.48 43.40 56.69 42.80 56.60 43.80 61.30	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Margin (dB) -17.52 -10.60 -17.31 -11.20 -17.40 -10.20 -12.70	Detector peak AVG peak AVG peak AVG peak AVG		
1000.000 No. 1 2 3 4 5 6 7 8 9 10 *	Frequence (MHz) 4960.000 7440.000 7440.000 9520.000 9520.000 11008.00 12424.00 12424.00	Read (dBu 0 50.8 0 37.7 0 47.6 0 33.7 0 42.1 0 29.3 0 41.4 0 27.9 0 43.7 0 32.3	ling Fac (dB/ 36 5.6 78 5.6 55 9.0 76 9.0 14 14.4 34 14.4 34 14.4 18 19.8 98 19.8 71 17.2	tor m) 2 4 4 46 46 32 32 20 20	Level (dBuV/m) 56.48 43.40 56.69 42.80 56.60 43.80 61.30 61.30 47.80 60.91 49.50	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	Margin (dB) -17.52 -10.60 -17.31 -11.20 -17.40 -10.20 -12.70 -6.20 -13.09 -4.50	Detector peak AVG peak AVG peak AVG peak AVG		
1000.000 No. 1 2 3 4 5 6 7 8 9	Frequence (MHz) 4960.000 7440.000 7440.000 9520.000 9520.000 11008.000 12424.00	Read (dBu 0 50.8 0 37.7 0 47.6 0 33.7 0 42.1 0 29.3 0 41.4 0 27.9 0 43.7 0 32.3 0 42.9	ling Fac (dB/ 36 5.6 78 5.6 78 5.6 78 5.6 76 9.0 76 9.0 78 114.4 78 114.4	tor m) 2 2 4 4 4 4 6 32 32 32 20 20 04	Level (dBuV/m) 56.48 43.40 56.69 42.80 56.60 43.80 61.30 47.80 60.91	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Margin (dB) -17.52 -10.60 -17.31 -11.20 -17.40 -10.20 -12.70 -6.20 -13.09	Detector peak AVG peak AVG peak AVG peak AVG		

JT:	2.4GHz Wireless System for Saxophone		s System	Model Name	: E	3-6		
ressure:		01kPa		Polarization:	١	/ertical		
est voltage	e: D	DC 3.7V from battery		Test Mode:	Г	TX-2479MHz		
100.0 dBu	V/m							
90								
80						FCC ABOVE	1G-PK	
70			X 9	11				
60	1	3 ⁵	× 9	11 X		FCC ABOVE	1G-AV	
50			8 11 * *	0 12 X				
40	*							
30								
20								
10								
0.0								
1000.000	3400.00 5800.0	0 8200.00 10	1600.00 (Mł	Hz) 15400.00	17800.00 202	00.00 22600	.00 25000.0	
No.	Frequency (MHz)		Facto	r Level	Limit	Margin		
	Frequency	Reading	Facto	r Level		Margin	Detector	
No.	Frequency (MHz)	Reading (dBuV)	Facto (dB/m	r Level) (dBuV/n	Limit n) (dBuV/m	Margin) (dB)		
No.	Frequency (MHz) 4960.000	Reading (dBuV) 46.33	Facto (dB/m 5.62	r Level) (dBuV/n 51.95	Limit n) (dBuV/m 74.00 54.00	Margin (dB) -22.05	Detector peak	
No.	Frequency (MHz) 4960.000 4960.000	Reading (dBuV) 46.33 33.88	Facto (dB/m 5.62 5.62	r Level) (dBuV/n 51.95 39.50	Limit (dBuV/m 74.00 54.00 74.00	Margin (dB) -22.05 -14.50	Detector peak AVG	
No. 1 2 3	Frequency (MHz) 4960.000 4960.000 7440.000	Reading (dBuV) 46.33 33.88 42.86	Facto (dB/m 5.62 5.62 9.04	r Level (dBuV/n 51.95 39.50 51.90 39.80	Limit (dBuV/m 74.00 54.00 74.00 54.00	Margin (dB) -22.05 -14.50 -22.10	Detector peak AVG peak	
No. 1 2 3 4	Frequency (MHz) 4960.000 4960.000 7440.000 7440.000	Reading (dBuV) 46.33 33.88 42.86 30.76	Facto (dB/m 5.62 5.62 9.04 9.04	r Level (dBuV/n 51.95 39.50 51.90 39.80 56.33	Limit (dBuV/m 74.00 54.00 74.00 54.00 74.00 74.00	Margin (dB) -22.05 -14.50 -22.10 -14.20	Detector peak AVG peak AVG	
No. 1 2 3 4 5	Frequency (MHz) 4960.000 4960.000 7440.000 7440.000 9496.000	Reading (dBuV) 46.33 33.88 42.86 30.76 41.93 30.00	Facto (dB/m 5.62 5.62 9.04 9.04 14.40	r Level (dBuV/n 51.95 39.50 51.90 39.80 56.33 44.40	Limit (dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 54.00	Margin (dB) -22.05 -14.50 -22.10 -14.20 -17.67	Detector peak AVG peak AVG peak	
No. 1 2 3 4 5 6	Frequency (MHz) 4960.000 4960.000 7440.000 7440.000 9496.000 9496.000	Reading (dBuV) 46.33 33.88 42.86 30.76 41.93 30.00 41.99	Facto (dB/m 5.62 5.62 9.04 9.04 14.40 14.40	r Level (dBuV/n 51.95 39.50 51.90 39.80 56.33 44.40 61.74	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 74.00	Margin (dB) -22.05 -14.50 -22.10 -14.20 -17.67 -9.60	Detector peak AVG peak AVG peak AVG	
No. 1 2 3 4 5 6 7	Frequency (MHz) 4960.000 4960.000 7440.000 7440.000 9496.000 9496.000 10984.000	Reading (dBuV) 46.33 33.88 42.86 30.76 41.93 30.00 41.99 29.75	Facto (dB/m 5.62 5.62 9.04 9.04 14.40 14.40 19.75	r Level (dBuV/n 51.95 39.50 51.90 39.80 56.33 44.40 61.74 49.50	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 74.00 74.00	Margin (dB) -22.05 -14.50 -22.10 -14.20 -17.67 -9.60 -12.26	Detector peak AVG peak AVG peak AVG peak	
No. 1 2 3 4 5 6 7 8	Frequency (MHz) 4960.000 4960.000 7440.000 7440.000 9496.000 9496.000 10984.000 10984.000	Reading (dBuV) 46.33 33.88 42.86 30.76 41.93 30.00 41.99 29.75 42.59	Facto (dB/m 5.62 5.62 9.04 9.04 14.40 14.40 19.75 19.75	r Level (dBuV/n 51.95 39.50 51.90 39.80 56.33 44.40 61.74 49.50 60.13	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 74.00 74.00 74.00	Margin (dB) -22.05 -14.50 -22.10 -14.20 -17.67 -9.60 -12.26 -24.50	Detector peak AVG peak AVG peak AVG peak peak	
No. 1 2 3 4 5 6 7 8 9	Frequency (MHz) 4960.000 7440.000 7440.000 9496.000 9496.000 10984.000 10984.000 12784.000	Reading (dBuV) 46.33 33.88 42.86 30.76 41.93 30.00 41.99 29.75 42.59 31.26	Facto (dB/m 5.62 5.62 9.04 9.04 14.40 14.40 19.75 19.75 17.54	r Level (dBuV/n 51.95 39.50 51.90 39.80 56.33 44.40 61.74 49.50 60.13 48.80	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 54.00	Margin (dB) -22.05 -14.50 -22.10 -14.20 -14.20 -17.67 -9.60 -12.26 -24.50 -13.87	Detector peak AVG peak AVG peak AVG peak peak	

Band edge-Field strength of fundamental 5.3.4

测

检

测

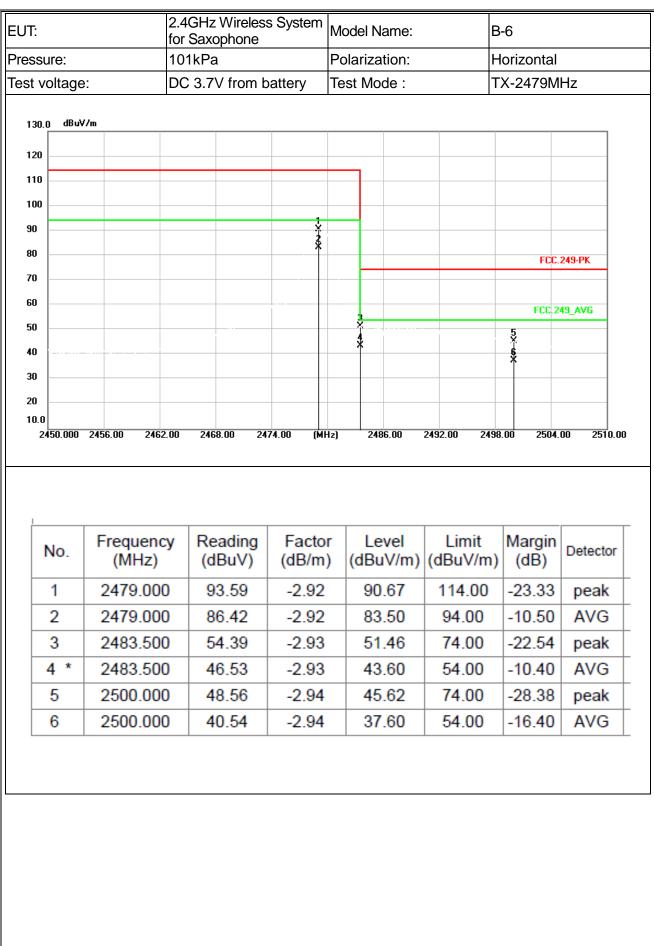
Frequency	Ant. Polarization	Emission level	Limits	Detector	Result
(MHz)	H/V	dBµV/m	dBµV/m		
2404	Н	90.61	114	PK	PASS
2404	Н	81.50	94	AV	PASS
2404	V	90.59	114	PK	PASS
2404	V	82.60	94	AV	PASS

Frequency	Ant. Polarization	Emission level	Limits	Detector	Result
(MHz)	H/V	dBµV/m	dBµV/m		
2441	Н	90.25	114	PK	PASS
2441	Н	82.26	94	AV	PASS
2441	V	90.13	114	PK	PASS
2441	V	82.37	94	AV	PASS

Frequency	Ant. Polarization	Emission level	Limits	Detector	Result
(MHz)	H/V	dBµV/m	dBµV/m		
2479	Н	90.67	114	PK	PASS
2479	Н	83.50	94	AV	PASS
2479	V	90.67	114	PK	PASS
2479	V	82.40	94	AV	PASS

5.3.5 Band edge-radiated

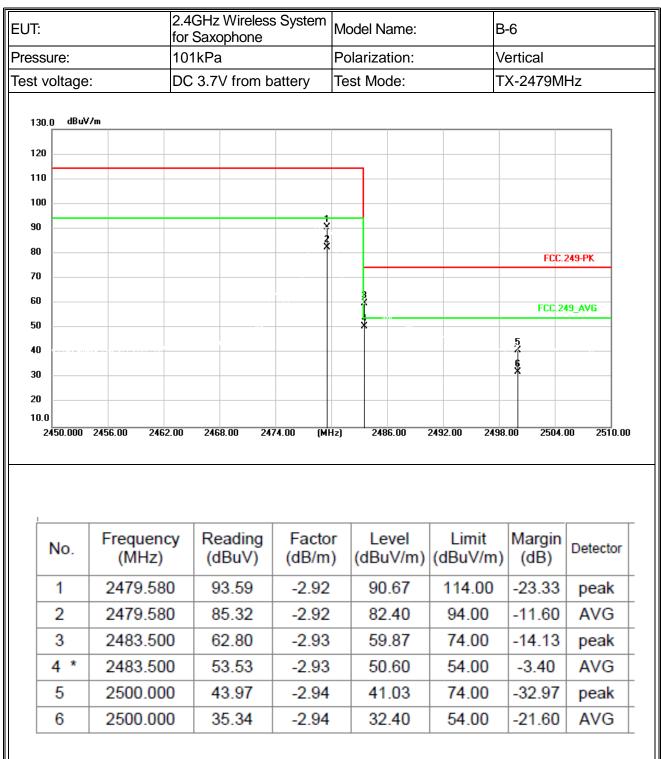
fc		2.4GHz for Saxc		s System	Model N	ame:		B	-6	
ssure:		101kPa	l		Polariza	ition:		Н	orizontal	
st voltage	:	DC 3.7V from battery		Test Mode: T			X-2404MHz			
130.0 dBuV	//m									
120									FCC	.249-PK
110										
100					-				FCC.2	249_AVG
90								-7 X		
80					-			8 *		
70										
60										
50						2				
40 \$						3 X				
30						. 3				
30						×				
20						*				
	2322.00 2334.	00 234	6.00 23	58.00 (MF	z] 238	¥ 32.00	2394.00	2406	.00 2418	.00 2430.0
20	2322.00 2334.	00 234	6.00 23	58.00 (MI	lz) 238	32.00	2394.00	2406	.00 2418	.00 2430.0
20	2322.00 2334.	00 234	6.00 23	58.00 (MH	lz) 238	32.00	2394.00	2406	.00 2418	.00 2430.0
20 10.0 2310.000	2322.00 2334.		6.00 23	58.00 (MI		32.00	2394.00		00 2418 Margin	
20	I	y Re			r Le		Lin	nit	Margin	
20 10.0 2310.000	Frequenc	y Re (d	eading	Facto	r Le) (dBu	evel	Lin	nit V/m)	Margin	Detector
20 10.0 2310.000	Frequency (MHz)	y Re (d	eading IBuV)	Facto (dB/m	r Le) (dBu 40	evel JV/m)	Lir (dBu	nit V/m) 00	Margin (dB)	Detector peak
20 10.0 2310.000	Frequency (MHz) 2310.000	y Re (d) 4	eading IBuV) 4.50	Facto (dB/m -3.61	r Le) (dBu 40 32	evel JV/m) 0.89	Lir (dBu' 74.	nit V/m) 00 00	Margin (dB) -33.11	Detector peak AVG
20 10.0 2310.000	Frequency (MHz) 2310.000 2310.000	y Re (d) 4) 3) 4	eading IBuV) 4.50 6.11	Facto (dB/m -3.61 -3.61	r Le) (dBu 40 32 42	evel JV/m) 0.89 2.50	Lin (dBu 74. 54.	nit V/m) 00 00	Margin (dB) -33.11 -21.50	Detector peak AVG peak
20 10.0 2310.000 No. 1 2 3	Frequency (MHz) 2310.000 2310.000 2390.000	y Re (d) 4) 3) 4) 3	eading IBuV) 4.50 6.11 5.85	Facto (dB/m -3.61 -3.61 -2.93	r Le) (dBu 40 32 42 34	evel JV/m) 0.89 2.50 2.92	Lin (dBu 74. 54. 74.	nit V/m) 00 00 00	Margin (dB) -33.11 -21.50 -31.08	Detector peak AVG peak AVG
20 10.0 2310.000 No. 1 2 3 4	Frequency (MHz) 2310.000 2310.000 2390.000 2390.000	y Re (d) 4) 3) 4) 3) 6	eading IBuV) 4.50 6.11 5.85 7.33	Facto (dB/m -3.61 -3.61 -2.93 -2.93	r Le) (dBu 40 32 42 34 59	evel JV/m) 0.89 2.50 2.92 1.40	Lin (dBu 74. 54. 74. 54.	nit V/m) 00 00 00 00	Margin (dB) -33.11 -21.50 -31.08 -19.60	Detector peak AVG peak AVG
20 10.0 2310.000 No. 1 2 3 4 5	Frequency (MHz) 2310.000 2310.000 2390.000 2390.000 2400.000	y Re (d) 4) 3) 4) 3) 6) 5	eading IBuV) 4.50 6.11 5.85 7.33 2.37	Facto (dB/m -3.61 -3.61 -2.93 -2.93 -2.84	r Le) (dBu 32 42 34 59 50	evel JV/m) 0.89 2.50 2.92 1.40 0.53	Lir (dBu) 74. 54. 74. 54. 74.	nit V/m) 00 00 00 00 00	Margin (dB) -33.11 -21.50 -31.08 -19.60 -14.47	Detector peak AVG peak AVG peak AVG


fo		2.4GHz Wireless System for Saxophone		Model Name:	E	B-6		
ressure:		101kP	а		Polarization:	V	/ertical	
est voltage	voltage: D0		DC 3.7V from battery		Test Mode:		X-2404M	Hz
130.0 dBu	√/m							
120							FCC	249-PK
110							100.	
100							FCC.2	49_AVG
90								
80						×		
70								
60								
50								
40 X					P			
40 X 30 X								
\$	2322.00 2334	1.00 23	46.00 23	358.00 (MI		2394.00 2400	5.00 2418.	00 2430.00
30 ×	2322.00 2334 Frequenc (MHz)	y Re	46.00 23 eading IBuV)	Factor	z) 2382.00	2394.00 2400	Margin	
30 * 20 10.0 2310.000	Frequenc	y Re (d	eading	Factor	z) 2382.00	2394.00 2400	Margin	
30 × 20 10.0 2310.000	Frequenc (MHz)	y Re (d	eading IBuV)	Factor (dB/m)	Level (dBuV/m)	2394.00 2400 Limit (dBuV/m)	Margin (dB)	Detector
30 * 20 10.0 2310.000	Frequenc (MHz) 2310.000	y Re (d) 4	eading IBuV) I4.77	Factor (dB/m) -3.61	Level (dBuV/m) 41.16	2394.00 2400 Limit (dBuV/m) 74.00	Margin (dB) -32.84	Detector peak
30 × 20 10.0 2310.000	Frequenc (MHz) 2310.000 2310.000	y Re (d) 4) 3) 4	eading IBuV) 14.77 36.41	Factor (dB/m) -3.61 -3.61	Level (dBuV/m) 41.16 32.80	Limit (dBuV/m) 74.00 54.00	Margin (dB) -32.84 -21.20	Detector peak AVG
30 20 10.0 2310.000 No. 1 2 3	Frequenc (MHz) 2310.000 2310.000 2390.000	y Re (d) 4) 3) 4) 3	eading IBuV) 14.77 36.41 16.38	Factor (dB/m) -3.61 -3.61 -2.93	Level (dBuV/m) 41.16 32.80 43.45	Limit (dBuV/m) 74.00 54.00 74.00	Margin (dB) -32.84 -21.20 -30.55	Detector peak AVG peak
30 20 10.0 2310.000 NO. 1 2 3 4	Frequenc (MHz) 2310.000 2310.000 2390.000 2390.000	y Re (d) 4) 3) 4) 3) 4) 3) 6	eading IBuV) 14.77 36.41 16.38 39.33	Factor (dB/m) -3.61 -3.61 -2.93 -2.93	Level (dBuV/m) 41.16 32.80 43.45 36.40	Limit (dBuV/m) 74.00 54.00 74.00 54.00	Margin (dB) -32.84 -21.20 -30.55 -17.60	Detector peak AVG peak AVG
30 20 10.0 2310.000 No. 1 2 3 4 5	Frequenc (MHz) 2310.000 2310.000 2390.000 2390.000 2400.000	y Re (d) 4) 3) 4) 3) 6) 6	eading IBuV) 14.77 36.41 46.38 39.33 50.21	Factor (dB/m) -3.61 -3.61 -2.93 -2.93 -2.84	Level (dBuV/m) 41.16 32.80 43.45 36.40 57.37	Limit (dBuV/m) 74.00 54.00 74.00 54.00 74.00 74.00	Margin (dB) -32.84 -21.20 -30.55 -17.60 -16.63	Detector peak AVG peak AVG peak

Microtest 微测检测

- Page 29 of 35 -

Report No.: MTi210427012-04E1



Microtest 微测检测

- Page 30 of 35 -

Report No.: MTi210427012-04E1

Note:

1. All Readings are Peak Value (VBW=3MHz) and AV Value (VBW=10Hz).

- 2. Emission Level= Antenna Factor + Cable Loss + Read Level Preamp Factor.
- 3. All other emissions more than 20dB below the limit.

5.4 20dB and 99% bandwidth

5.4.1 Limits

FCC §15.215(c)

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in § 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

5.4.2 Test method

Use the following spectrum analyzer settings:

For 20 dB bandwidth

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

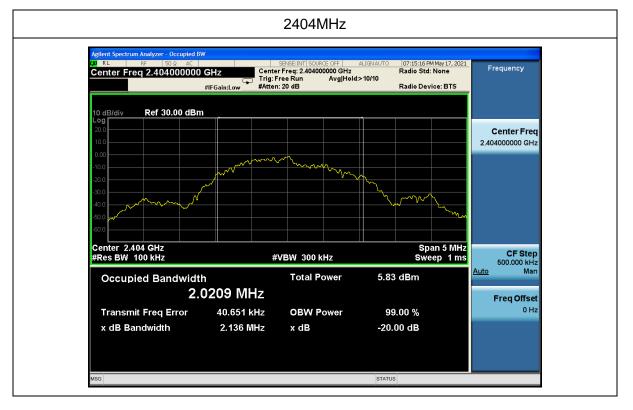
RBW ≥1% of the 20 dB bandwidth

VBW ≥RBW

Sweep = auto

Detector function = peak

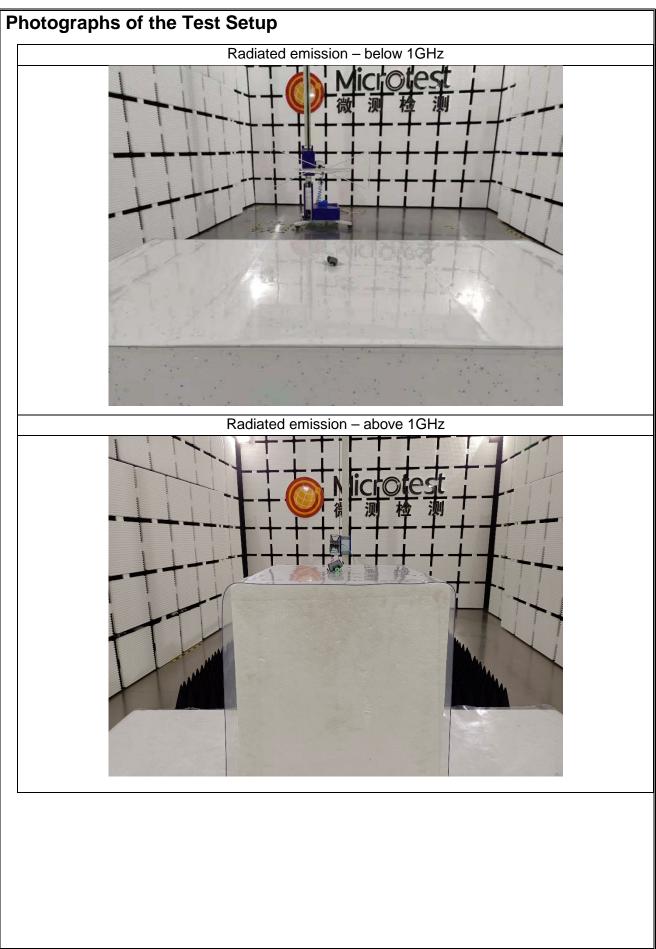
Trace = max hold


The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth and 99% occupied bandwidth of the emission

5.4.3 Test result

Frequency (MHz)	20dB bandwidth (MHz)
2404	2.136
2441	2.221
2479	2.296

Test plots



测

- Page 33 of 35 -

Photographs of the EUT

See the APPENDIX 1- EUT PHOTO.

----END OF REPORT----