

Report No. : EED32K00200201 Page 1 of 71

TEST REPORT

Product: OF2006-CONTROL CENTER

Trade mark : OUTFORM Model/Type reference : UM101734

Serial Number : N/A

 Report Number
 : EED32K00200201

 FCC ID
 : 2AO9X-UM101734

Date of Issue : Aug. 24, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Outform Science and Technology Ltd.
No. A103 Medical Appliance and Industry Garden, #1019,
Nanhai road, Nanshan district, Shenzhen, China, 518035

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom chen (Test Project)

Compiled by:

pproved b

Report Seal

Kevin Lan (Project Engineer)

Reviewed by:

Kevin yang (Reviewer)

Sheek Luo (Lab supervisor)

Date:

Aug. 24, 2018

Check No.::3096370718

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 2 of 71

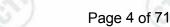
2 Version

Version No.	Date	Description
00	Aug. 24, 2018	Original

Page 3 of 71

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
100 /		160	

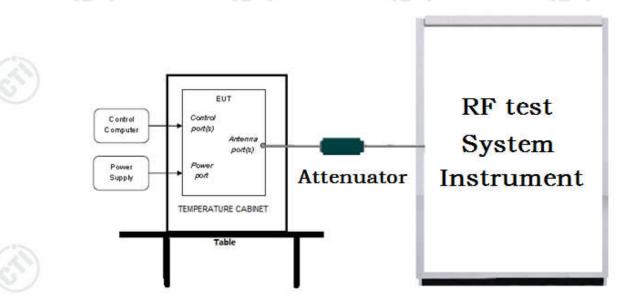

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

4 Content

2 VERSION				•••••	•••••	2
3 TEST SUMMAR	Y		•••••		•••••	3
4 CONTENT		•••••	•••••	•••••		4
5 TEST REQUIRE	MENT		•••••		•••••	5
5.1.1 For Co 5.1.2 For Ra 5.1.3 For Co 5.2 TEST ENVIR	nducted test setupdiated Emissions test senducted Emissions test somment	setupt setup				5 6 6
	ORMATION					
6.2 GENERAL DE 6.3 PRODUCT SI 6.4 DESCRIPTION 6.5 TEST LOCAT 6.6 DEVIATION F 6.7 ABNORMALIT 6.8 OTHER INFO	RMATION ESCRIPTION OF EUT PECIFICATION SUBJECTIVEN OF SUPPORT UNITS FROM STANDARDS FIES FROM STANDARD COMMENTAL OF SUPPORT UNITS	/E TO THIS STANDAI	RD			
	ENT UNCERTAINTY (95%					
	ST					
Appendix A): Appendix B): Appendix C) Appendix D): Appendix E): Appendix F): Appendix G) Appendix H)	CAL REQUIREMENTS Conducted Peak Outp 6dB Occupied Bandw Band-edge for RF Co RF Conducted Spurio Power Spectral Densi Antenna Requirement AC Power Line Cond Restricted bands arou Radiated Spurious Em	out Power ridth Inducted Emission ous Emissions ity t ucted Emission und fundamental fi	s	diated)		
185"/	OF TEST SETUP					
	OF EUT CONSTRUCT					
		(cii)				(chi)



5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

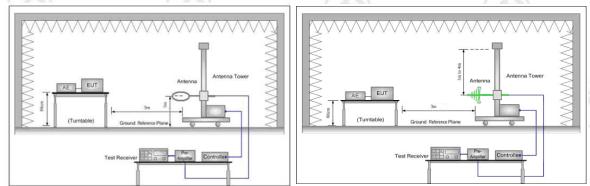


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

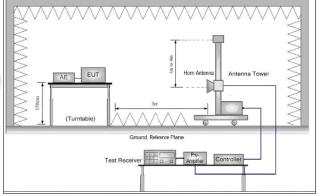
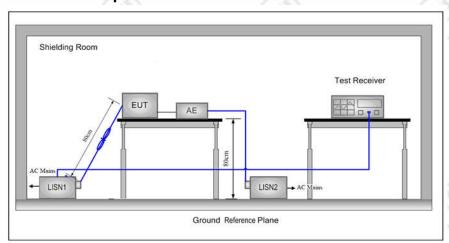


Figure 3. Above 1GHz



5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		((e	1	
Temperature:	26 °C		,	//	(9
Humidity:	60 % RH				
Atmospheric Pressure:	1010mbar		1846	Janes .	

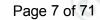
5.3 Test Condition

Test channel:

ot onamici.						
Toot Mode	Ty/Dy	RF Channel				
Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)		
902 11b/g/p/UT20)	14b/a/a/LITOO) 2442MH= 2462 MH=		Channel 6	Channel11		
802.11b/g/n(HT20)	2412MHz ~2462 MHz	2412MHz	2437MHz	2462MHz		
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.					

Test mode:

Pre-scan under all rate at lowest channel 1


Mode 802.11b		/						
Data Rate	1Mbp	s 2Mbp	s 5.5Mbp	s 11Mbps	8			
Power(dBm)	16.80	16.8	5 17.00	17.16		20%		
Mode			802	2.11g	(41)		0	
Data Rate	6Mbp	s 9Mbp	s 12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
Power(dBm) 21.4	1 21.3	0 21.11	20.98	21.07	21.18	21.24	21.13
Mode		802.11n			(HT20)			-
Data Rate	6.5Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	20.23	20.11	19.91	19.98	19.85	19.76	19.98	20.15

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20);

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

6 General Information

6.1 Client Information

Applicant:	Outform Science and Technology Ltd.			
Address of Applicant: No. A103 Medical Appliance and Industry Garden, #1019, Nanhai road Nanshan district, Shenzhen, China, 518035				
Manufacturer: Outform Science & Technology (Shenzhen) Co., Ltd				
Address of Manufacturer:	Room A103 and A105-1, Nanshan Medical Instrument Industry Park, No. 1019, Nanhai Avenue, Nanshan District Shenzhen, China.			
Factory: Outform Science & Technology (Shenzhen) Co., Ltd				
Address of Factory:	Room A103 and A105-1, Nanshan Medical Instrument Industry Park, No. 1019, Nanhai Avenue, Nanshan District Shenzhen, China.			

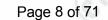
6.2 General Description of EUT

Product Name:	OF2006-CONTROL CENTER	
Model No.(EUT):	UM101734	
Trade Mark:	OUTFORM	
EUT Supports Radios application:	WiFi 802.11b/g/n(HT20): 2412MHz to 2462MHz	
Power Supply:	AC 120V, 60Hz	
Sample Received Date:	Aug. 7, 2018	
Sample tested Date:	Aug. 7, 2018 to Aug. 24, 2018	

6.3 Product Specification subjective to this standard

IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz	
IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels	
5MHz	100
IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20) : OFDM (64QAM, 16QAM, QPSK,BPSK)	6
N/A (manufacturer declare)	
RFTestTool (manufacturer declare)	
Antenna Type:Dipole Antenna and Antenna Gain:2.0dBi	
AC 120V, 60Hz	
	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels 5MHz IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20) : OFDM (64QAM, 16QAM, QPSK,BPSK) N/A (manufacturer declare) RFTestTool (manufacturer declare) Antenna Type:Dipole Antenna and Antenna Gain:2.0dBi

Operation Frequency each of channel(802.11b/g/n HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz	10	



6.4 Description of Support Units

The EUT has been tested with associated equipment below.

	Associated equipment Manufacture name		S/N model		Supplied by	Certification	
					serial number		
	AE1	AC Adapter	EDACPOWER Electronics Co., Ltd	EA10951C-165	E209833	Client	FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

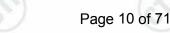
No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE nower conducted	0.31dB (30MHz-1GHz)		
2	RF power, conducted	0.57dB (1GHz-18GHz)		
3	Dadiated Spurious emission test	4.5dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)		
4	Conduction emission	3.6dB (9kHz to 150kHz)		
4	Conduction emission	3.2dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	2.8%		
7	DC power voltages	0.025%		

Page 9 of 71

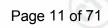
7 Equipment List

	RF test system							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019			
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019			
Signal Generator	Keysight	N5182B	MY53051549	11-16-2017	11-15-2018			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398- 002		01-10-2018	01-09-2019			
DC Power	Keysight	E3642A	MY54436035	03-13-2018	03-12-2019			
power meter & power sensor	R&S	OSP120	101374	04-11-2018	04-10-2019			
RF control unit	JS Tonscend	JS0806-2	2015860006	03-13-2018	03-12-2019			
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		03-29-2018	03-28-2019			
Temperature / Humidity Indicator	Defu	TH128		07-02-2018	07-01-2019			

Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Temperature / Humidity Indicator	Defu	TH128		07-02-2018	07-01-2019	
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019	
LISN	R&S	ENV216	100098	05-11-2018	05-10-2019	



3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019	
Spectrum Analyzer	Agilent	E4443A	MY45300910	11-16-2017	11-15-2018	
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019	
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-618	07-30-2018	07-29-2019	
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-25-2018	04-23-2021	
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019	
Microwave Preamplifier	Tonscend	EMC051845SE	980380	01-19-2018	01-18-2019	
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019	
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-05-2018	06-03-2021	
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041	06-05-2018	06-03-2021	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019	
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019	
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019	
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019	
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019	
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-10-2018	01-09-2019	
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-10-2018	01-09-2019	
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-10-2018	01-09-2019	
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001	(S)	01-10-2018	01-09-2019	



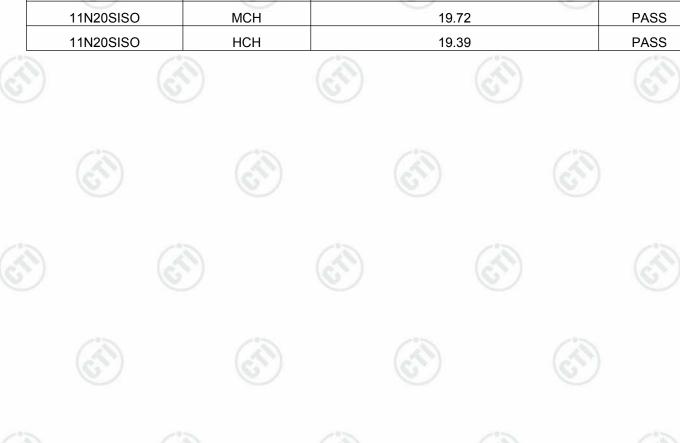
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

0	St Nesults List.	1.49			1.60
1	Test Requirement	Test method	Test item	Verdict	Note
	Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
	Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
	Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
	Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
	Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
	Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
	Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
	Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
	Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)



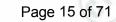
Appendix A): Conducted Peak Output Power

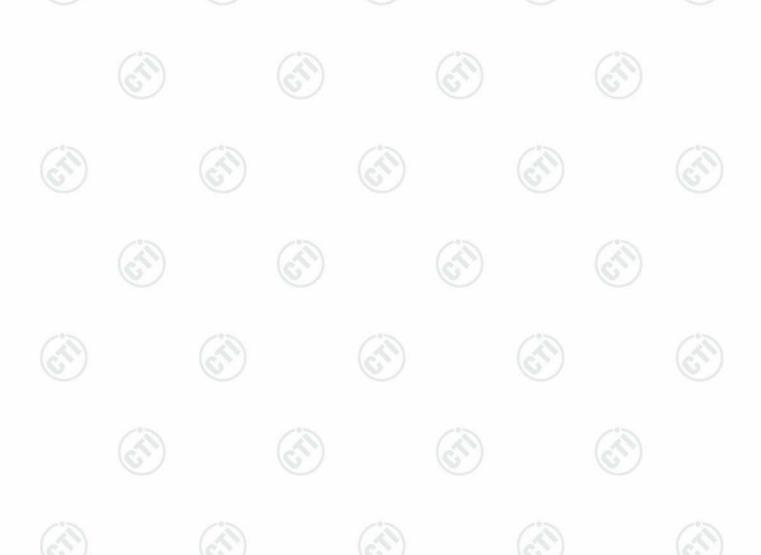
Result Table

TTO GUILT TURKET	147-7-1	Tarana and the same and the sam	
Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	17.16	PASS
11B	MCH	16.56	PASS
11B	НСН	16.36	PASS
11G	LCH	21.41	PASS
11G	MCH	20.93	PASS
11G	НСН	21.22	PASS
11N20SISO	LCH	20.23	PASS
11N20SISO	MCH	19.72	PASS
11N20SISO	HCH	19.39	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 14 of 71





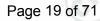
Page 16 of 71

Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
11B	LCH	9.443	14.153	PASS
11B	МСН	9.471	14.208	PASS
11B	нсн	9.463	14.164	PASS
11G	LCH	16.53	17.904	PASS
11G	MCH	16.73	17.925	PASS
11G	НСН	16.43	17.871	PASS
11N20SISO	LCH	18.04	18.586	PASS
11N20SISO	MCH	17.90	18.639	PASS
11N20SISO	HCH	17.56	18.536	PASS

Test Graph

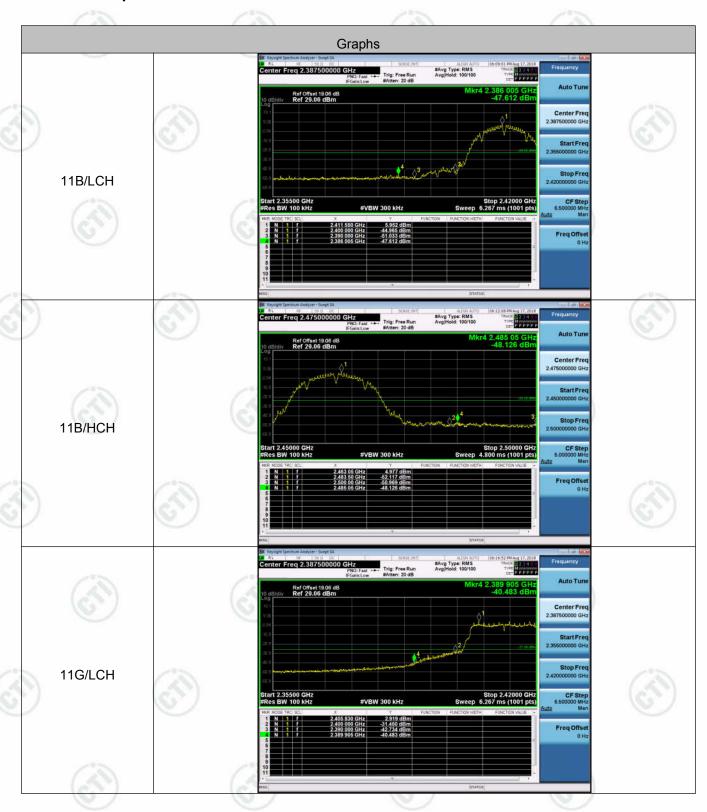


Page 20 of 71

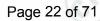
Appendix C): Band-edge for RF Conducted Emissions

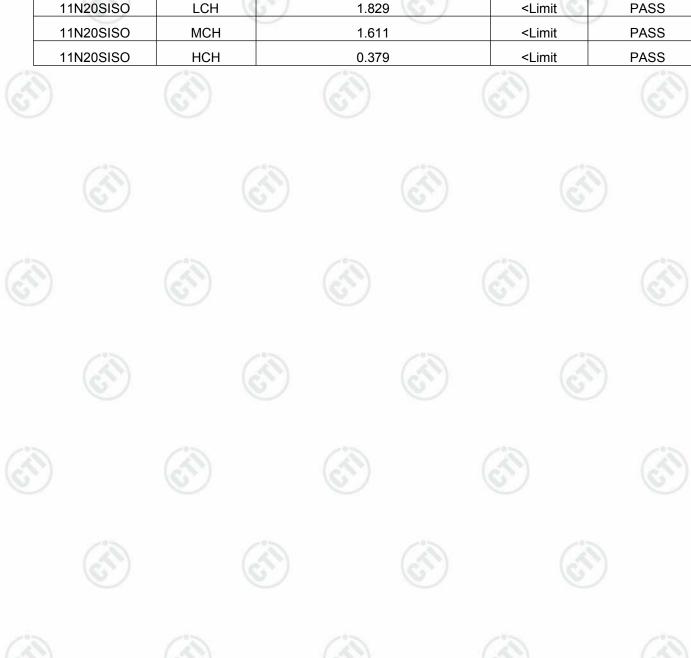
Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	5.952	-47.612	-24.05	PASS
11B	HCH	4.977	-48.126	-25.02	PASS
11G	LCH	2.919	-40.483	-27.08	PASS
11G	HCH	2.175	-40.145	-27.83	PASS
11N20SISO	LCH	1.510	-41.109	-28.49	PASS
11N20SISO	НСН	1.231	-40.842	-28.77	PASS

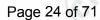


Test Graph





Page 23 of 71


Appendix D): RF Conducted Spurious Emissions

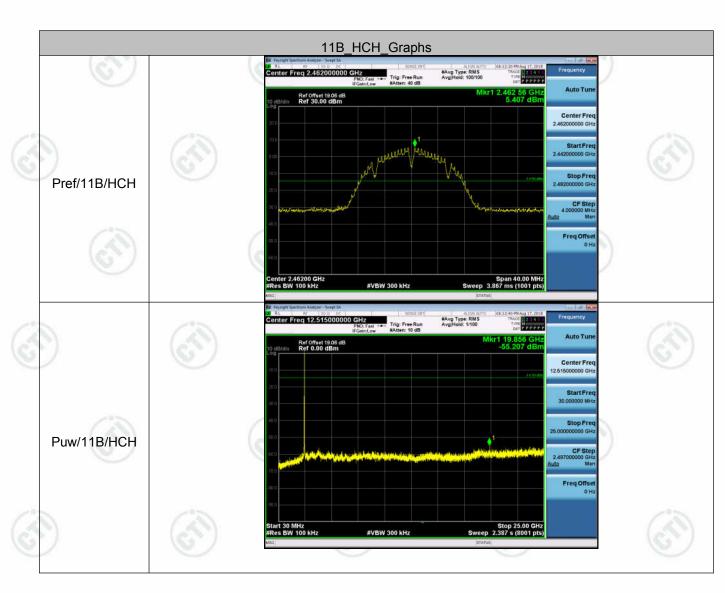
Result Table

1100ait Tabio	127.7	1,277,777	1,071,71	
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	5.985	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	5.312	<limit< td=""><td>PASS</td></limit<>	PASS
11B	HCH	5.407	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	2.925	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	2.559	<limit< td=""><td>PASS</td></limit<>	PASS
11G	НСН	2.651	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	1.829	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	1.611	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	нсн	0.379	<limit< td=""><td>PASS</td></limit<>	PASS

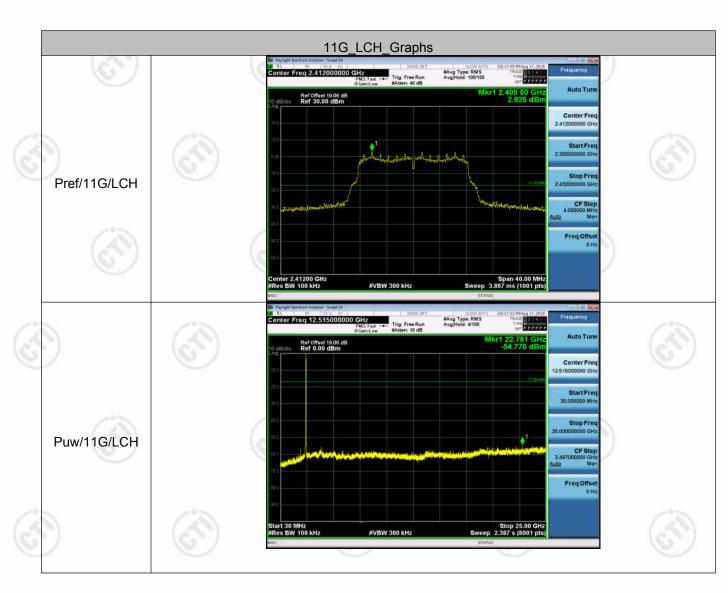
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Test Graph

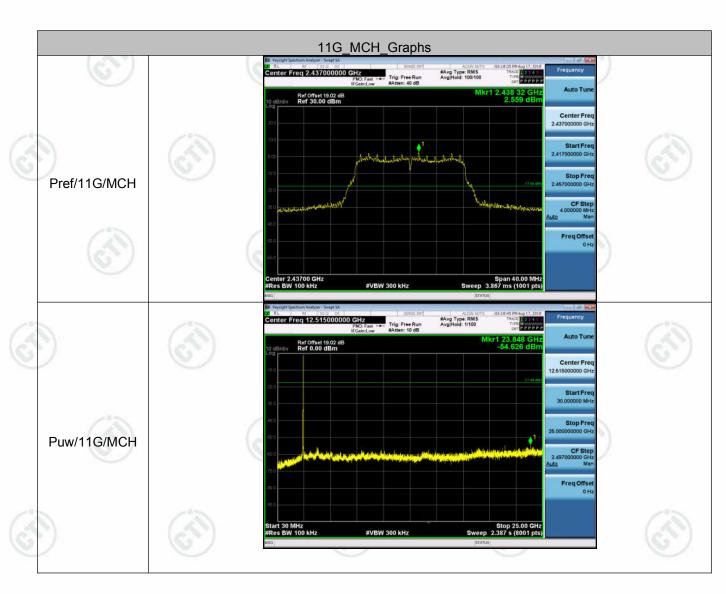
Page 25 of 71



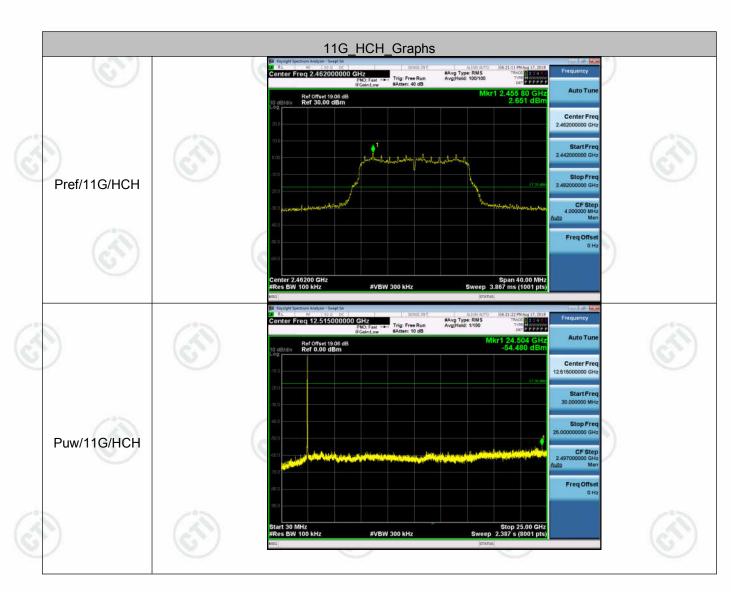
Page 26 of 71



Page 27 of 71

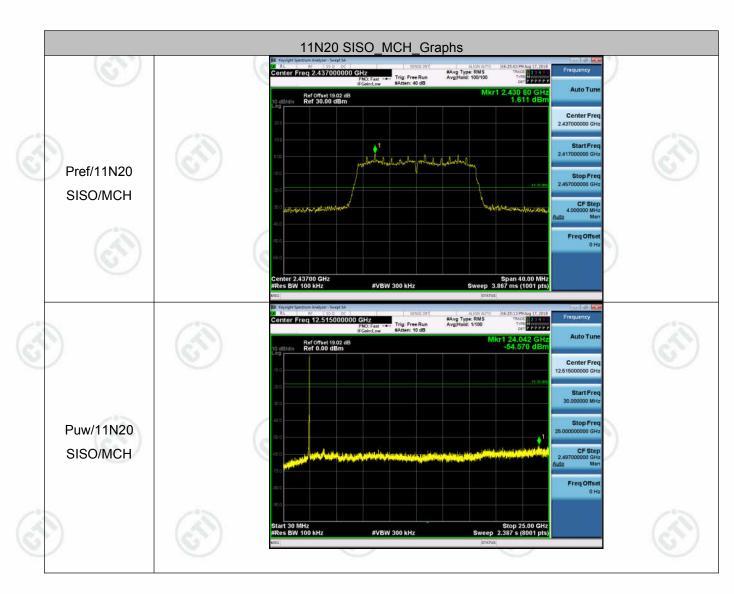


Page 28 of 71

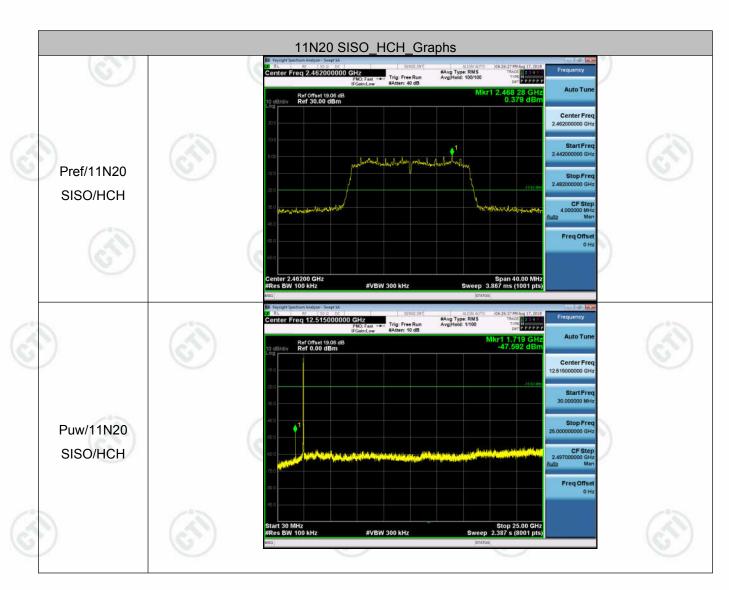


Page 29 of 71

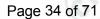
Page 30 of 71



Page 31 of 71



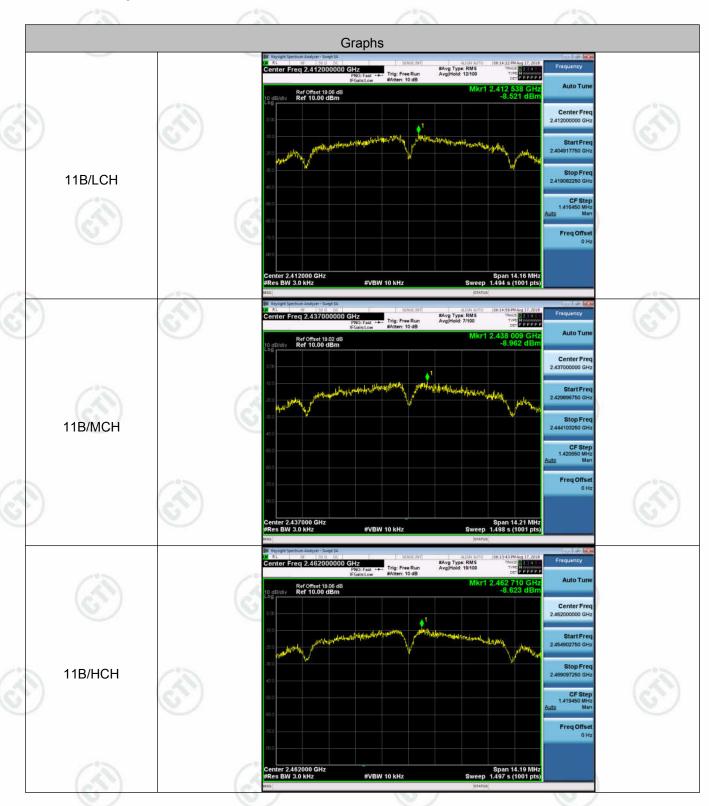
Page 32 of 71

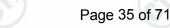

Page 33 of 71

Appendix E): Power Spectral Density

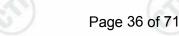
Result Table

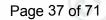
Mode	Channel	Power Spectral Density [dBm/3kHz]	Limit [dBm/3kHz]	Verdict	
11B	LCH	-8.521	8	PASS	
11B	MCH	-8.962	8	PASS	
11B	НСН	-8.623	8	PASS	
11G	LCH	-11.206	8	PASS	
11G	MCH	-11.133	8	PASS	
11G	НСН	-11.658	8	PASS	
11N20SISO	LCH	-12.640	8	PASS	
11N20SISO	MCH	-12.028	8	PASS	
11N20SISO	НСН	-13.116	8	PASS	











Appendix F): Antenna Requirement

15.203 requirement:

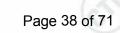
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

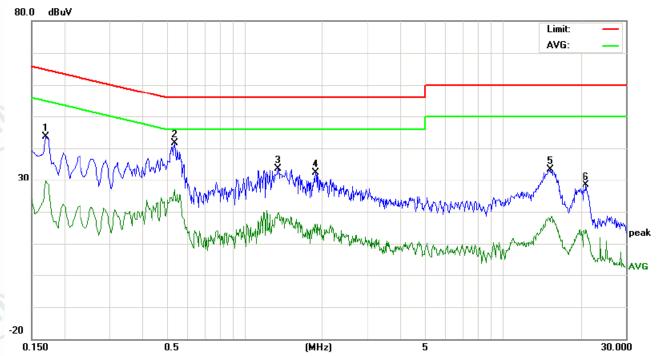
The antenna is Dipole Antenna and no consideration of replacement. The best case gain of the antenna is 2.0dBi



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Test Procedure:	Test frequency range :150KHz-30MHz 1)The mains terminal disturbance voltage test was conducted in a shielded room.							
	2) The EUT was connected to Stabilization Network) which power cables of all other which was bonded to the graph the unit being measured. A power cables to a single LIS exceeded. 3) The tabletop EUT was placed reference plane. And for flatorizontal ground reference with shall be 0.4 m from the reference plane was bonded was placed 0.8 m from the reference plane for LISNs distance was between the	o AC power source ch provides a 50Ω units of the EUT wordend reference plan multiple socket out SN provided the ration ced upon a non-metoor-standing arrange plane, in a vertical ground reset to the horizontal boundary of the un mounted on top of	through a LISN 1 (Line /50 μ H + 5 Ω linear imprere connected to a secone in the same way as the let strip was used to connect the LISN was not establic table 0.8m above perference plane. The reafference plane. The very ground reference plane it under test and bonded of the ground reference	e Impedance edance. The cond LISN 2 ne LISN 1 for multiple e the ground laced on the error of the EU rtical ground to a ground plane. This				
	of the EUT and associated	/-						
	 In order to find the maximum of the interface cables must measurement. 							
Limit:								
	[[]	Limit	(dBµV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* The limit decreases linearly w to 0.50 MHz. NOTE: The lower limit is applied	vith the logarithm of	the frequency in the ran	ge 0.15 MH				
Mossuromont Data		Silve						
Measurement Data								
n initial pre-scan wa	is performed on the live and neutr	al lines with peak de	etector.					
Quasi-Peak and Aver	rage measurement were performe	ed at the frequencies	s with maximized peak e	mission were				
letected.								

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Page 39 of 71

Live line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lin (dBı			rgin IB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1700	33.85	30.75	19.85	9.74	43.59	40.49	29.59	64.96	54.96	-24.47	-25.37	Р	
2	0.5380	31.93	28.53	17.27	9.73	41.66	38.26	27.00	56.00	46.00	-17.74	-19.00	Р	
3	1.3500	23.89	20.95	9.92	9.72	33.61	30.67	19.64	56.00	46.00	-25.33	-26.36	Р	
4	1.8940	22.75	19.75	6.27	9.72	32.47	29.47	15.99	56.00	46.00	-26.53	-30.01	Р	
5	15.3060	23.25	20.14	6.80	10.01	33.26	30.15	16.81	60.00	50.00	-29.85	-33.19	Р	
6	21.1380	18.20	16.75	4.23	10.09	28.29	26.84	14.32	60.00	50.00	-33.16	-35.68	Р	

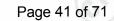
Page 40 of 71

Neutral line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1740	32.68	29.35	20.24	9.74	42.42	39.09	29.98	64.76	54.76	-25.67	-24.78	Р	
2	0.5380	31.83	28.92	23.98	9.73	41.56	38.65	33.71	56.00	46.00	-17.35	-12.29	Р	
3	1.2260	24.81	21.55	11.45	9.72	34.53	31.27	21.17	56.00	46.00	-24.73	-24.83	Р	
4	2.9539	20.86	18.52	7.80	9.69	30.55	28.21	17.49	56.00	46.00	-27.79	-28.51	Р	
5	15.2020	21.70	17.65	5.89	10.01	31.71	27.66	15.90	60.00	50.00	-32.34	-34.10	Р	
6	19.7939	19.10	16.57	4.08	10.06	29.16	26.63	14.14	60.00	50.00	-33.37	-35.86	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.



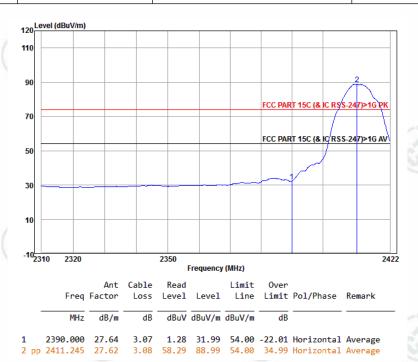
Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW VBW	Remark
	30MHz-1GHz	Quasi-peak 1	20kHz 300kHz	Quasi-peak
	Abaua 4011-	Peak	1MHz 3MHz	Peak
	Above 1GHz	Peak	1MHz 10Hz	Average
est Procedure:	Below 1GHz test proced	ure as below:	(3)	(c)
	a. The EUT was placed of at a 3 meter semi-ane determine the position b. The EUT was set 3 me was mounted on the total c. The antenna height is determine the maximular polarizations of the and d. For each suspected end the antenna was turned was turned from 0 degrounded by the analysis of the analysis	on the top of a rotate choic camber. The of the highest radial eters away from the op of a variable-heig varied from one means are set to make the company of the field of the heights from 1 forces to 360 degrees are was set to Peake the munical Hold Mode. The end of the restricted appliance. Also means trum analyzer plot. It channel we set to heights from 1 forces to 360 degrees are made of the restricted appliance. Also means trum analyzer plot. It channel we set to he test site, comber change form the company of the test site, comber change form the test site, comber change f	table was rotated ation. e interference-rece ght antenna tower. eter to four meters strength. Both ho ake the measurement as arranged to its meter to 4 meters es to find the maximal detect Function and detect because to the sure any emission Repeat for each position and the sure any emission Repeat for each position and the sure any emission Repeat for each position and the sure any emission Repeat for each position and the sure any emission repeat for each position and the sure any emission as 1.5 meter). Highest channel ed in X, Y, Z axis positioning which incies measured was	above the ground rizontal and verticent. worst case and the and the rotatable num reading. Ind Specified the transmit is in the restricted ower and modula. Anechoic Chamle. Anechoic Chamle. Someter (Above consitioning for it is worse case. as complete.
	Frequency 30MHz-88MHz	Limit (dBµV/m	<u> </u>	mark eak Value
	88MHz-216MHz	43.5		eak Value
	216MHz-960MHz	46.0	-	eak Value
	960MHz-1GHz	54.0		eak Value
	JOOIVII 12- TOT 12	*3*		
		5/1 0		ne Vallie
	Above 1GHz	54.0 74.0	1.673.77	ge Value Value



Page 42 of 71

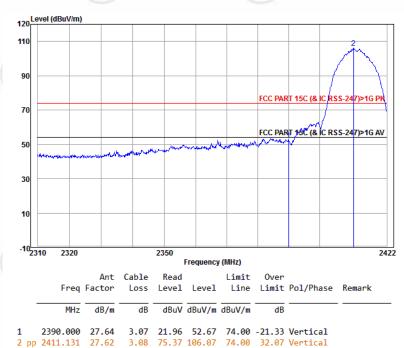
Test plot as follows:

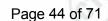

Worse case mode:

| 802.11b (11Mbps) | Test channel: Lowest | Polarization: Horizontal | Remark: Peak |

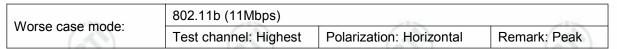
Worse case mode:

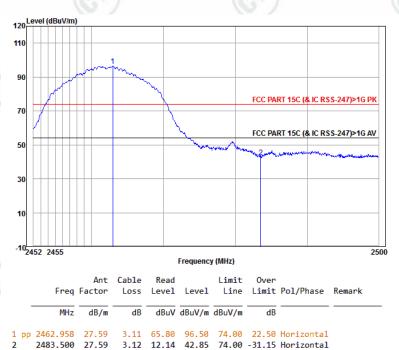
| 802.11b (11Mbps) | Test channel: Lowest | Polarization: Horizontal | Remark: Average

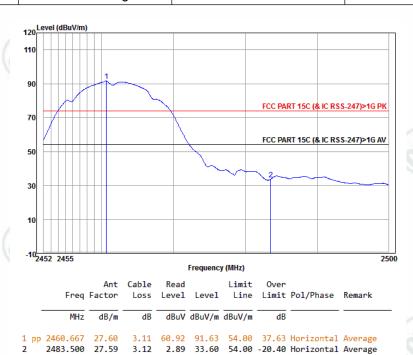




Worse case mode:


| 802.11b (11Mbps) | Test channel: Lowest | Polarization: Vertical | Remark: Average

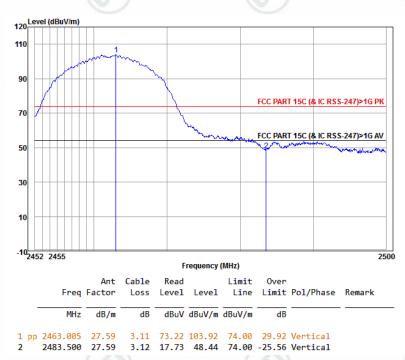


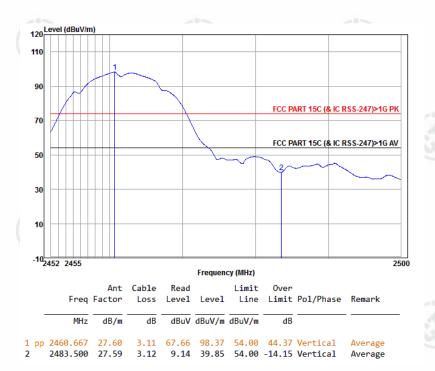


Worse case mode:

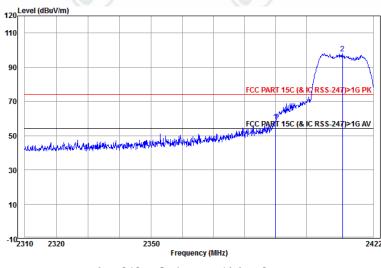
| 802.11b (11Mbps) | Test channel: Highest | Polarization: Horizontal | Remark: Average

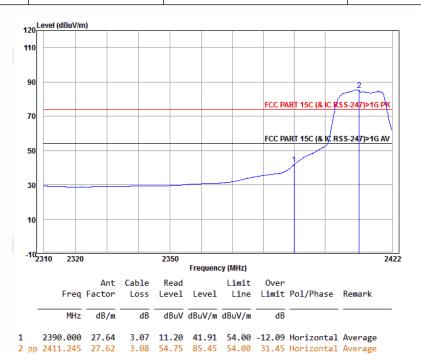






Worse case mode:	802.11b (11Mbps)		
worse case mode.	Test channel: Highest	Polarization: Vertical	Remark: Average

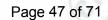


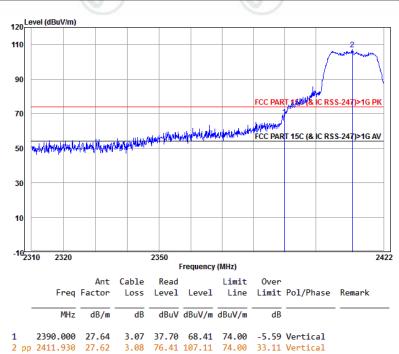


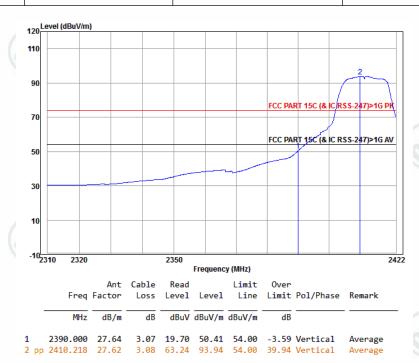
1 2390.000 27.64 3.07 27.61 58.32 74.00 -15.68 Horizontal 2 pp 2411.930 27.62 3.08 67.30 98.00 74.00 24.00 Horizontal

Worse case mode:

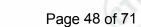
| 802.11g (6Mbps) | Test channel: Lowest | Polarization: Horizontal | Remark: Average |

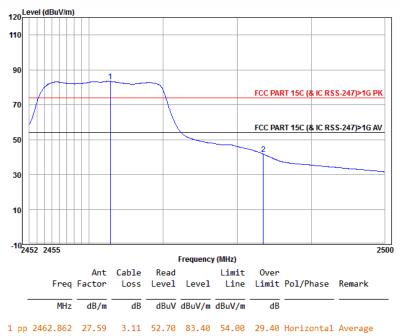






Worse case mode:	802.11g (6Mbps)		
vvorse case mode.	Test channel: Lowest	Polarization: Vertical	Remark: Average

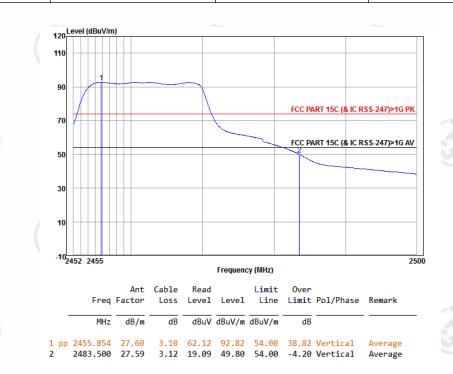




Worse case mode:	802.11g (6Mbps)	(6)	(0)
Worse case mode.	Test channel: Highest	Polarization: Horizontal	Remark: Average

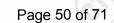
F	req	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark	
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			-
								Horizontal Horizontal	_	

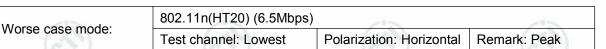


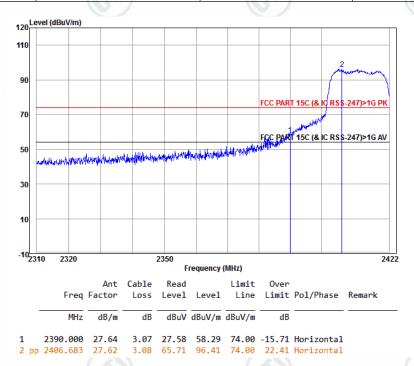


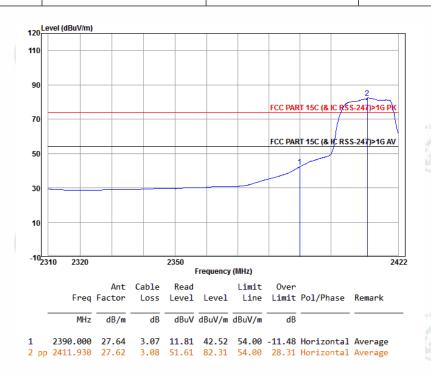
Page 49 of 71

Worse case mode:	802.11g (6Mbps)		
vvoise case mode.	Test channel: Highest	Polarization: Vertical	Remark: Average



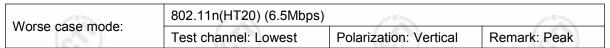


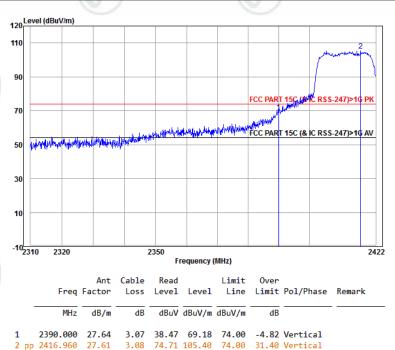


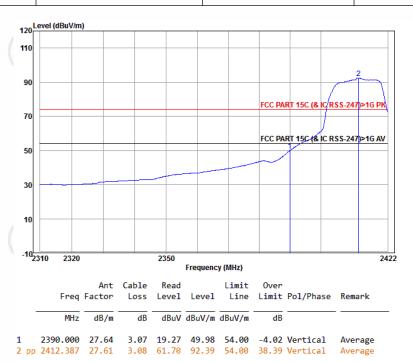


Worse case mode:

| 802.11n(HT20) (6.5Mbps) | Test channel: Lowest | Polarization: Horizontal | Remark: Average |

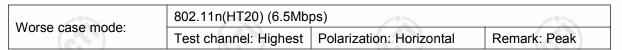


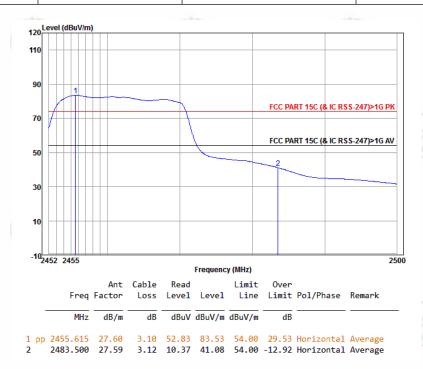



Page 51 of 71

Worse case mode:

| 802.11n(HT20) (6.5Mbps) | Test channel: Lowest | Polarization: Vertical | Remark: Average |



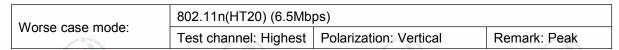


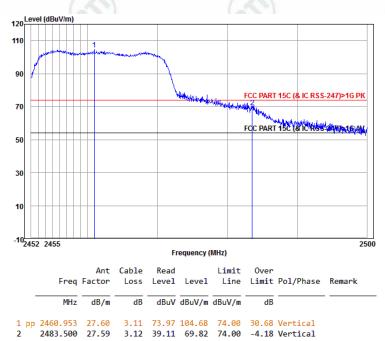
Worse case mode:

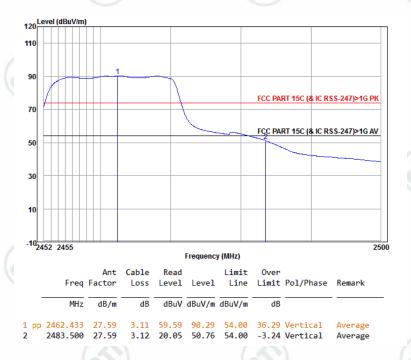
Frequency:
2483.5MHz

802.11n(HT20) (6.5Mbps)

Test channel: Highest Polarization: Horizontal Remark:Average







Page 53 of 71

Worse sees made:	802.11n(HT20) (6.5Mb	ps)	
Worse case mode:	Test channel: Highest	Polarization: Vertical	Remark: Average

Note:

1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); and then Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 54 of 71

Appendix I): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 4011-	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)...
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	:1.
ım	HT.
	im

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	70-	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 55 of 71

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

WiFi 802.11b

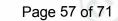
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	51.7323	12.92	0.81	-32.10	41.87	23.50	40.00	16.50	Pass	V
2	92.0924	9.73	1.11	-32.08	44.28	23.04	43.50	20.46	Pass	V
3	208.9038	11.13	1.71	-31.94	43.74	24.64	43.50	18.86	Pass	V
4	375.0010	14.85	2.31	-31.88	39.73	25.01	46.00	20.99	Pass	V
5	666.2533	19.53	3.08	-32.06	43.48	34.03	46.00	11.97	Pass	V
6	742.5105	20.27	3.26	-32.11	40.58	32.00	46.00	14.00	Pass	V
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
NO 1		Factor	loss	gain	_			_	Result Pass	Polarity H
	[MHz]	Factor [dB]	loss [dB]	gain [dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]		
1	[MHz] 68.8078	Factor [dB] 9.31	loss [dB] 0.94	gain [dB] -32.05	[dBµV] 46.57	[dBµV/m]	[dBµV/m] 40.00	[dB]	Pass	Н
1 2	[MHz] 68.8078 182.9026	Factor [dB] 9.31 9.28	loss [dB] 0.94 1.59	gain [dB] -32.05 -31.99	[dBµV] 46.57 46.73	[dBµV/m] 24.77 25.61	[dBµV/m] 40.00 43.50	[dB] 15.23 17.89	Pass Pass	H H
1 2 3	[MHz] 68.8078 182.9026 375.0010	Factor [dB] 9.31 9.28 14.85	loss [dB] 0.94 1.59 2.31	gain [dB] -32.05 -31.99 -31.88	[dBµV] 46.57 46.73 39.66	[dBµV/m] 24.77 25.61 24.94	[dBµV/m] 40.00 43.50 46.00	[dB] 15.23 17.89 21.06	Pass Pass Pass	H H H

WiFi 802.11g

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	74.2408	8.19	1.00	-32.05	47.20	24.34	40.00	15.66	Pass	V
2	120.0340	9.19	1.30	-32.06	43.58	22.01	43.50	21.49	Pass	V
3	208.9038	11.13	1.71	-31.94	44.01	24.91	43.50	18.59	Pass	V
4	499.9620	17.00	2.67	-31.91	42.64	30.40	46.00	15.60	Pass	V
5	665.6711	19.53	3.08	-32.06	42.08	32.63	46.00	13.37	Pass	V
6	742.5105	20.27	3.26	-32.11	41.15	32.57	46.00	13.43	Pass	V

N	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	72.4945	8.53	0.98	-32.06	47.29	24.74	40.00	15.26	Pass	Н
	2	120.0340	9.19	1.30	-32.06	46.02	24.45	43.50	19.05	Pass	Н
	3	183.2907	9.31	1.59	-31.98	46.94	25.86	43.50	17.64	Pass	Н
	4	375.0010	14.85	2.31	-31.88	39.45	24.73	46.00	21.27	Pass	Н
	5	499.9620	17.00	2.67	-31.91	40.38	28.14	46.00	17.86	Pass	Н
	6	742.5105	20.27	3.26	-32.11	40.57	31.99	46.00	14.01	Pass	Н

Page 56 of 71


WiFi 802.11n(HT20)

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	52.5085	12.80	0.82	-32.10	43.57	25.09	40.00	14.91	Pass	V
2	208.9038	11.13	1.71	-31.94	42.11	23.01	43.50	20.49	Pass	V
3	499.9620	17.00	2.67	-31.91	42.77	30.53	46.00	15.47	Pass	٧
4	674.4029	19.60	3.10	-32.09	40.14	30.75	46.00	15.25	Pass	V
5	742.5105	20.27	3.26	-32.11	40.17	31.59	46.00	14.41	Pass	V
6	897.7415	22.07	3.60	-31.59	41.64	35.72	46.00	10.28	Pass	V

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	86.2713	8.54	1.07	-32.08	45.86	23.39	40.00	16.61	Pass	Н
2	185.0370	9.48	1.60	-31.99	46.46	25.55	43.50	17.95	Pass	Н
3	375.0010	14.85	2.31	-31.88	42.28	27.56	46.00	18.44	Pass	Н
4	499.9620	17.00	2.67	-31.91	43.46	31.22	46.00	14.78	Pass	Н
5	665.6711	19.53	3.08	-32.06	42.42	32.97	46.00	13.03	Pass	Н
6	742.5105	20.27	3.26	-32.11	39.06	30.48	46.00	15.52	Pass	Н

Transmitter Emission above 1GHz

WiFi	802.11b			Tes	t channel: L	.owest	Remark: Peak			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	3286.6787	33.31	4.55	-36.80	46.56	47.62	74.00	26.38	Pass	Н
2	4824.0000	34.50	4.61	-36.11	40.48	43.48	74.00	30.52	Pass	Н
3	5902.8653	35.64	5.07	-36.23	43.70	48.18	74.00	25.82	Pass	Н
4	7236.0000	36.34	5.79	-36.44	40.62	46.31	74.00	27.69	Pass	Н
5	8429.3429	36.57	6.37	-36.35	43.87	50.46	74.00	23.54	Pass	Н
6	9648.0000	37.66	6.72	-36.92	41.93	49.39	74.00	24.61	Pass	Н
7	1748.1496	30.04	3.23	-36.79	49.10	45.58	74.00	28.42	Pass	V
8	4824.0000	34.50	4.61	-36.11	40.74	43.74	74.00	30.26	Pass	V
9	5844.3594	35.55	5.07	-36.01	43.41	48.02	74.00	25.98	Pass	V
10	7236.0000	36.34	5.79	-36.44	42.19	47.88	74.00	26.12	Pass	V
11	7714.5965	36.51	6.25	-36.41	43.59	49.94	74.00	24.06	Pass	V
12	9648.0000	37.66	6.72	-36.92	41.99	49.45	74.00	24.55	Pass	V
35)		(6))		(0,0)		(0,1)		(6	3V)

		100	All I							
WiFi	802.11b			Tes	st channel: I	Middle	Remark: Peak			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	4441.1941	34.42	4.78	-36.20	43.51	46.51	74.00	27.49	Pass	Н
2	4874.0000	34.50	4.78	-36.09	40.47	43.66	74.00	30.34	Pass	Н
3	7311.0000	36.41	5.85	-36.31	39.96	45.91	74.00	28.09	Pass	Н
4	7720.4470	36.51	6.25	-36.43	43.10	49.43	74.00	24.57	Pass	Н
5	8422.5173	36.57	6.36	-36.33	43.64	50.24	74.00	23.76	Pass	Н
6	9748.0000	37.70	6.77	-36.79	42.90	50.58	74.00	23.42	Pass	Н
7	2689.9380	32.70	4.11	-36.70	47.63	47.74	74.00	26.26	Pass	V
8	4301.7552	34.22	4.40	-36.13	43.92	46.41	74.00	27.59	Pass	V
9	4874.0000	34.50	4.78	-36.09	40.53	43.72	74.00	30.28	Pass	V
10	6343.6094	35.87	5.46	-36.14	42.29	47.48	74.00	26.52	Pass	V
11	7311.0000	36.41	5.85	-36.31	40.96	46.91	74.00	27.09	Pass	V
12	9748.0000	37.70	6.77	-36.79	42.07	49.75	74.00	24.25	Pass	V

Page	58	of	71
. 490		٠.	

WiFi	802.11b			Tes	t channel: H	lighest	Remark: Peak			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	3196.9697	33.28	4.65	-36.71	46.28	47.50	74.00	26.50	Pass	Н
2	4924.0000	34.50	4.85	-36.17	41.30	44.48	74.00	29.52	Pass	Н
3	5708.8209	35.33	5.01	-36.12	43.86	48.08	74.00	25.92	Pass	Н
4	7386.0000	36.49	5.85	-36.34	40.33	46.33	74.00	27.67	Pass	Н
5	8442.0192	36.58	6.39	-36.40	43.79	50.36	74.00	23.64	Pass	Н
6	9848.0000	37.74	6.83	-36.93	42.92	50.56	74.00	23.44	Pass	Η
7	2800.7602	32.88	4.24	-36.89	47.65	47.88	74.00	26.12	Pass	V
8	4924.0000	34.50	4.85	-36.17	40.91	44.09	74.00	29.91	Pass	V
9	6340.6841	35.87	5.46	-36.15	42.84	48.02	74.00	25.98	Pass	V
10	7386.0000	36.49	5.85	-36.34	40.07	46.07	74.00	27.93	Pass	V
11	8380.5881	36.55	6.27	-36.43	44.02	50.41	74.00	23.59	Pass	V
12	9848.0000	37.74	6.83	-36.93	40.71	48.35	74.00	25.65	Pass	V

WiFi	802.11g			Tes	t channel: L	.owest	Remark: Peak			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	1997.7996	31.69	3.47	-36.74	47.78	46.20	74.00	27.80	Pass	Н
2	3921.4671	33.74	4.34	-36.06	44.96	46.98	74.00	27.02	Pass	Н
3	4824.0000	34.50	4.61	-36.11	40.19	43.19	74.00	30.81	Pass	Н
4	7236.0000	36.34	5.79	-36.44	39.98	45.67	74.00	28.33	Pass	Н
5	8418.6169	36.57	6.36	-36.33	44.20	50.80	74.00	23.20	Pass	Н
6	9648.0000	37.66	6.72	-36.92	42.75	50.21	74.00	23.79	Pass	Н
7	3167.7168	33.27	4.60	-36.87	46.05	47.05	74.00	26.95	Pass	V
8	4382.6883	34.34	4.54	-36.23	44.38	47.03	74.00	26.97	Pass	V
9	4824.0000	34.50	4.61	-36.11	41.91	44.91	74.00	29.09	Pass	V
10	7236.0000	36.34	5.79	-36.44	40.66	46.35	74.00	27.65	Pass	V
11	8251.8752	36.50	6.21	-36.61	43.88	49.98	74.00	24.02	Pass	V
12	9648.0000	37.66	6.72	-36.92	43.36	50.82	74.00	23.18	Pass	V

Page	50	of 7	71
Page	วษ	OT A	

WiFi 802.11g				Tes	Test channel: Middle			Remark: Peak				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity		
1	3373.4623	33.35	4.54	-36.68	46.44	47.65	74.00	26.35	Pass	Н		
2	4874.0000	34.50	4.78	-36.09	40.48	43.67	74.00	30.33	Pass	Н		
3	5717.5968	35.35	4.99	-36.12	43.90	48.12	74.00	25.88	Pass	Н		
4	6325.0825	35.87	5.46	-36.18	42.88	48.03	74.00	25.97	Pass	Н		
5	7311.0000	36.41	5.85	-36.31	40.56	46.51	74.00	27.49	Pass	Н		
6	9748.0000	37.70	6.77	-36.79	41.83	49.51	74.00	24.49	Pass	Н		
7	1749.3499	30.05	3.23	-36.79	50.16	46.65	74.00	27.35	Pass	V		
8	4874.0000	34.50	4.78	-36.09	39.91	43.10	74.00	30.90	Pass	V		
9	5568.4068	35.11	5.13	-36.07	43.34	47.51	74.00	26.49	Pass	V		
10	7311.0000	36.41	5.85	-36.31	40.96	46.91	74.00	27.09	Pass	V		
11	8422.5173	36.57	6.36	-36.33	44.18	50.78	74.00	23.22	Pass	V		
12	9748.0000	37.70	6.77	-36.79	42.81	50.49	74.00	23.51	Pass	V		

WiFi	802.11g			Tes	Test channel: Highest			Remark: Peak				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity		
1	3330.5581	33.33	4.54	-36.74	47.75	48.88	74.00	25.12	Pass	Н		
2	4924.0000	34.50	4.85	-36.17	40.68	43.86	74.00	30.14	Pass	Н		
3	6364.0864	35.87	5.42	-36.19	43.41	48.51	74.00	25.49	Pass	Н		
4	7386.0000	36.49	5.85	-36.34	40.09	46.09	74.00	27.91	Pass	Н		
5	8404.9655	36.56	6.34	-36.28	43.43	50.05	74.00	23.95	Pass	Н		
6	9848.0000	37.74	6.83	-36.93	42.26	49.90	74.00	24.10	Pass	Н		
7	3096.5347	33.24	4.73	-36.82	47.03	48.18	74.00	25.82	Pass	V		
8	4924.0000	34.50	4.85	-36.17	40.18	43.36	74.00	30.64	Pass	V		
9	5542.0792	35.07	5.16	-36.06	43.47	47.64	74.00	26.36	Pass	V		
10	7386.0000	36.49	5.85	-36.34	40.67	46.67	74.00	27.33	Pass	V		
11	8427.3927	36.57	6.37	-36.35	44.26	50.85	74.00	23.15	Pass	V		
12	9848.0000	37.74	6.83	-36.93	41.04	48.68	74.00	25.32	Pass	V		

WiFi	WiFi 802.11n(HT20)				Test channel: Lowest			Remark: Peak				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity		
1	3023.4023	33.21	4.88	-36.79	46.22	47.52	74.00	26.48	Pass	Н		
2	4824.0000	34.50	4.61	-36.11	41.17	44.17	74.00	29.83	Pass	Н		
3	6395.2895	35.88	5.32	-36.32	43.64	48.52	74.00	25.48	Pass	Н		
4	7236.0000	36.34	5.79	-36.44	40.87	46.56	74.00	27.44	Pass	Н		
5	8442.0192	36.58	6.39	-36.40	44.31	50.88	74.00	23.12	Pass	Н		
6	9648.0000	37.66	6.72	-36.92	43.31	50.77	74.00	23.23	Pass	Н		
7	2962.7926	33.14	4.44	-36.79	46.81	47.60	74.00	26.40	Pass	V		
8	4824.0000	34.50	4.61	-36.11	41.14	44.14	74.00	29.86	Pass	V		
9	5652.2652	35.24	4.97	-36.02	43.96	48.15	74.00	25.85	Pass	V		
10	7236.0000	36.34	5.79	-36.44	41.78	47.47	74.00	26.53	Pass	V		
11	7716.5467	36.51	6.25	-36.42	44.16	50.50	74.00	23.50	Pass	V		
12	9648.0000	37.66	6.72	-36.92	43.15	50.61	74.00	23.39	Pass	V		

WiFi	WiFi 802.11n(HT20)				Test channel: Middle			Remark: Peak				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity		
1	2878.3757	33.01	4.32	-36.76	47.12	47.69	74.00	26.31	Pass	Н		
2	4565.0315	34.50	4.84	-36.31	44.24	47.27	74.00	26.73	Pass	Н		
3	4874.0000	34.50	4.78	-36.09	40.57	43.76	74.00	30.24	Pass	Н		
4	6395.2895	35.88	5.32	-36.32	43.47	48.35	74.00	25.65	Pass	Н		
5	7311.0000	36.41	5.85	-36.31	40.18	46.13	74.00	27.87	Pass	Н		
6	9748.0000	37.70	6.77	-36.79	42.98	50.66	74.00	23.34	Pass	Н		
7	1855.7712	30.75	3.38	-36.93	48.70	45.90	74.00	28.10	Pass	V		
8	4874.0000	34.50	4.78	-36.09	40.81	44.00	74.00	30.00	Pass	V		
9	6344.5845	35.87	5.46	-36.14	43.53	48.72	74.00	25.28	Pass	V		
10	7311.0000	36.41	5.85	-36.31	40.87	46.82	74.00	27.18	Pass	V		
11	8434.2184	36.57	6.38	-36.37	44.13	50.71	74.00	23.29	Pass	V		
12	9748.0000	37.70	6.77	-36.79	42.52	50.20	74.00	23.80	Pass	V		

Page 61 of 71

	WiFi 802.11n(HT20)				Tes	Test channel: Highest			Remark: Peak				
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity		
	1	3080.9331	33.23	4.76	-36.83	47.06	48.22	74.00	25.78	Pass	Н		
	2	5884.3384	35.61	5.07	-36.17	43.26	47.77	74.00	26.23	Pass	Н		
	3	6226.5977	35.85	5.29	-36.32	41.04	45.86	74.00	28.14	Pass	Н		
	4	7386.0000	36.49	5.85	-36.34	40.32	46.32	74.00	27.68	Pass	Н		
-	5	7707.7708	36.52	6.26	-36.40	43.88	50.26	74.00	23.74	Pass	Н		
	6	9848.0000	37.74	6.83	-36.93	41.00	48.64	74.00	25.36	Pass	Н		
	7	3326.6577	33.33	4.55	-36.75	46.73	47.86	74.00	26.14	Pass	V		
	8	4924.0000	34.50	4.85	-36.17	40.93	44.11	74.00	29.89	Pass	V		
	9	6157.3657	35.83	5.25	-36.21	43.69	48.56	74.00	25.44	Pass	V		
	10	7386.0000	36.49	5.85	-36.34	41.33	47.33	74.00	26.67	Pass	V		
	11	8413.7414	36.57	6.35	-36.31	44.35	50.96	74.00	23.04	Pass	V		
ú	12	9848.0000	37.74	6.83	-36.93	41.88	49.52	74.00	24.48	Pass	V		

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 62 of 71

PHOTOGRAPHS OF TEST SETUP

Test Model No.: UM101734

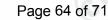
Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Page 63 of 71

Radiated spurious emission Test Setup-3(Above 1GHz)

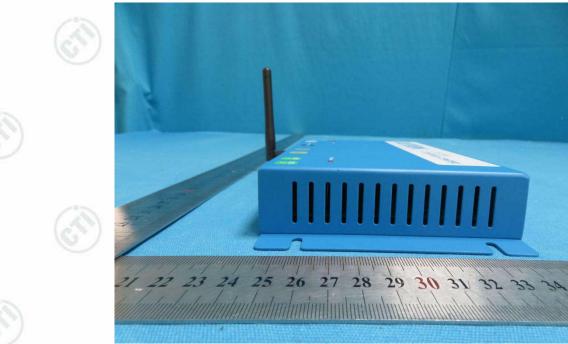
Conducted Emissions Test Setup

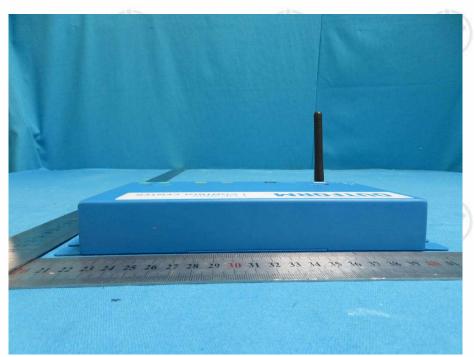


PHOTOGRAPHS OF EUT Constructional Details

Test model No.: UM101734

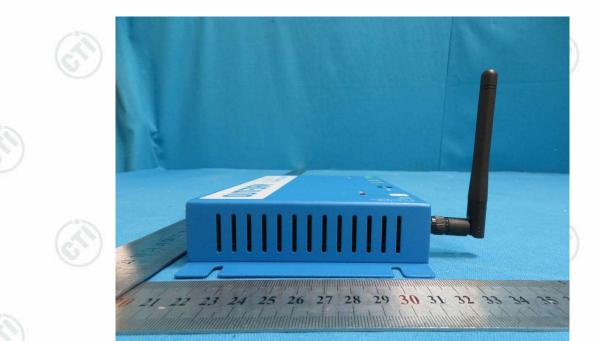
View of Product-1

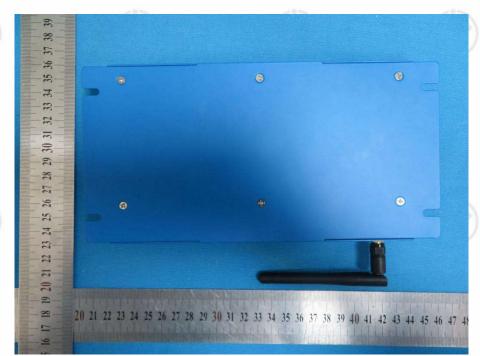




Page 65 of 71

View of Product-4





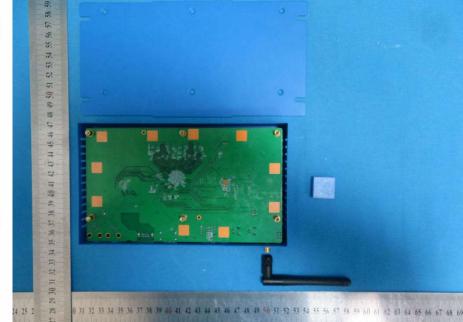
Page 66 of 71

View of Product-5

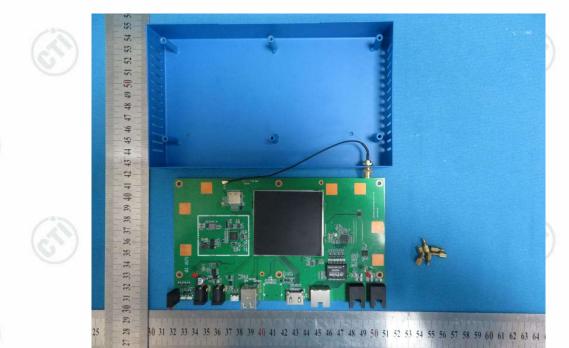
View of Product-6

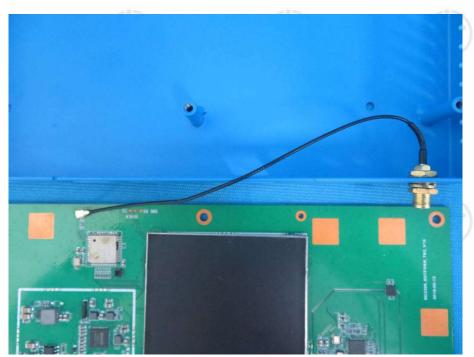
Page 67 of 71

View of Product-7



View of Product-8

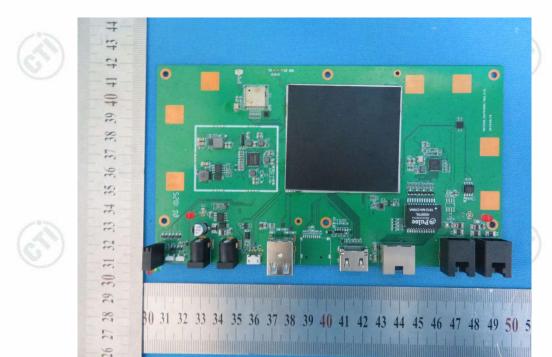


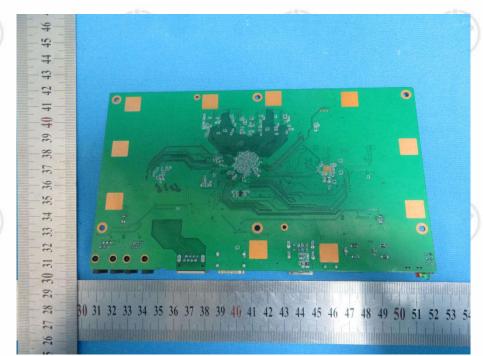


Page 68 of 71

View of Product-9

View of Product-10



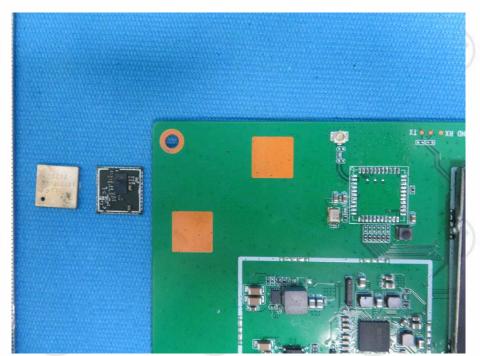


Page 69 of 71

View of Product-11

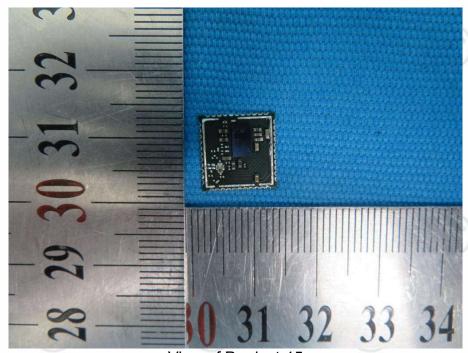
View of Product-12

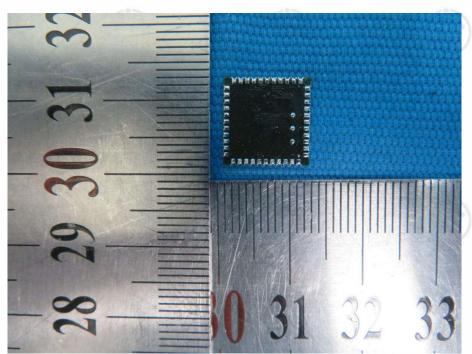
Page 70 of 71



View of Product-13

View of Product-14





View of Product-15

View of Product-16
*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.