

Report No.: EED32L00017401 Page 1 of 106

TEST REPORT

Product : Open Frame Trade mark : OUTFORM

UIO0421B-C02,UIO0418X-XYY, UIO0424X-XYY, UIO0421X-XYY,The 1st X is "A" or "B"

Model/Type reference: represents the agent or the client; The 2nd

X is A-Z represents the color; YY is client

number from "01" to "90"

Serial Number : N/A

Report Number : EED32L00017401

FCC ID : 2AO9X-UIO0421BC02

Date of Issue : May 14, 2019

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Outform Science and Technology Ltd.
No. A103 Medical Appliance and Industry Garden, #1019, Nanhai Road.
Nanshan district ,Shenzhen 518035 China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Compiled by:

Ware xin

Ware xin

Kevin lan

Kevin lan

May 14, 2019

Check No.:3096381924

Report Seal

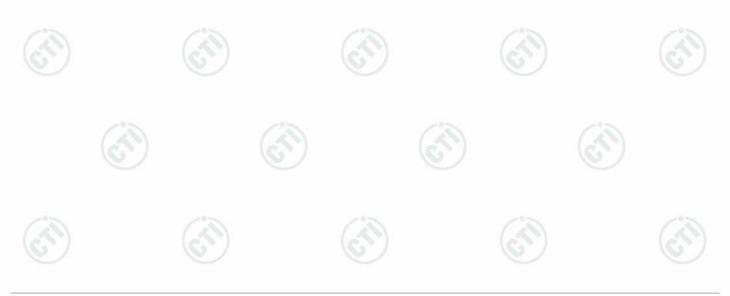
Page 2 of 106

2 Version

Version No.	Date	Description	
00	May 14, 2019	Original	
			/*5
	(1)		

Report No.: EED32L00017401 Page 3 of 106

3 Test Summary


o rest duminary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

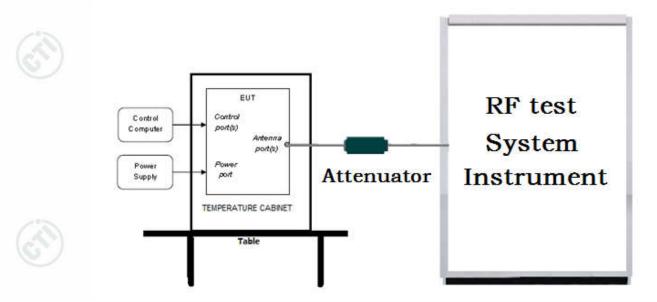
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Model No.: UIO0421B-C02,UIO0418X-XYY, UIO0424X-XYY, UIO0421X-XYY, The 1st X is "A" or "B" represents the agent or the client; The 2nd X is A-Z represents the color; YY is client number from "01" to "90" Only the model UIO0421B-C02 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being the color and model names due to difference agent and marketing pruposes.

4 Content

- 7						
1 COVE	R PAGE			•••••		1
2 VERSI	ON			•••••	••••	2
3 TEST	SUMMARY		•••••	•••••	••••	3
4 CONT	ENT					4
5 TEST	REQUIREMENT				•••••	5
5.1 5.1	ST SETUP	etup ons test setup				5 5
	ST ENVIRONMENTST CONDITION					
GENE	RAL INFORMATION	•••••		•••••	•••••	8
6.2 GH 6.3 PF 6.4 DH 6.5 TE 6.6 DH 6.7 AE 6.8 O	LIENT INFORMATION	EUT SUBJECTIVE TO THIS UNITS DS NDARD CONDITIONS JESTED BY THE CUS	STANDARD			
	MENT LIST					
B RADIC	TECHNICAL REQUIR	EMENTS SPECIF	ICATION			13
Api Api Api Api Api Api Api	pendix A): Conducted Poendix B): 6dB Occupie pendix C): Band-edge for pendix D): RF Conducted pendix E): Power Spect pendix F): Antenna Requendix F): AC Power Li pendix H): Restricted battendix H): Restricted Spu	eak Output Power. d Bandwidth or RF Conducted E ed Spurious Emission ral Density uirement ne Conducted Emis ands around fundar rious Emissions	missions ons ssion nental frequency ((Radiated)		14 22 25 32 36 37 40
РНОТО	GRAPHS OF TEST SE	ΓUΡ	•••••	••••••	•••••	91
РНОТО	GRAPHS OF EUT CON	STRUCTIONAL D	ETAILS			93



Report No.: EED32L00017401 Page 5 of 106

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

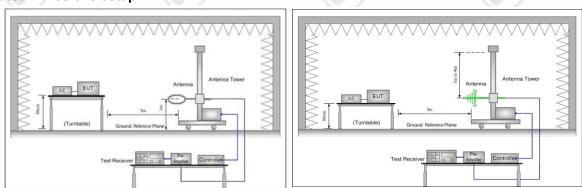
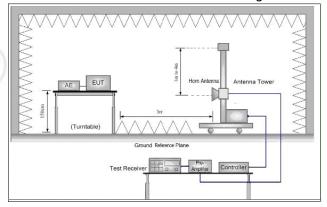
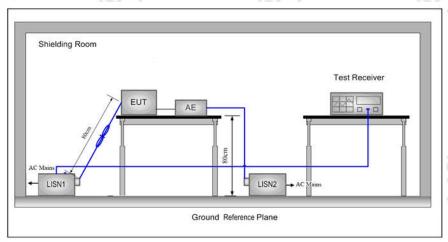


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz




Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		(4)
Temperature:	25.0 °C	
Humidity:	53 % RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Test Mode	Ty/Dy	RF Channel			
rest Mode	Tx/Rx	Low(L)	Middle(M)	High(H)	
902 11b/g/p/UT20\	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11	
802.11b/g/n(HT20)	24 12WIDZ ~2402 WIDZ	2412MHz	2437MHz	2462MHz	
Transmitting mode:	Keep the EUT in transmit data rate.	itting mode with all I	kind of modulation	and all kind of	

(in)

Report No.: EED32L00017401

Test mode:

Pre-scan under all rate at lowest channel 1

Mode	802.11b								
Data Rate	1Mb	ps 2N	bps	5.5Mbps	11Mbp	s			
Power(dBm)	13.8	38 14	.90	14.99	15.07		400		
Mode	80			302.11g					
Data Rate 6Mb		ps 9N	lbps	12Mbps	18Mbps	24Mbp	s 36Mbps	48Mbps	54Mbps
Power(dBm) 15.0)5 14	1.95	14.85	14.80	14.72	14.63	14.59	14.51
Mode				·	802.11n	(HT20)	·		
Data Rate 6.5Mbps 13Mbps 19.5Mbps 26Mbps		39Mbps	52Mbps	58.5Mbps	65Mbps				
Power(dBm)	14.58	14.5	U	14.42	14.33	14.27	14.22	14.19	14.08

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).

6 General Information

6.1 Client Information

Applicant:	Outform Science and Technology Ltd.
Address of Applicant:	No. A103 Medical Appliance and Industry Garden, #1019, Nanhai Road. Nanshan district ,Shenzhen 518035 China
Manufacturer:	Outform Science and Technology Ltd.
Address of Manufacturer:	No. A103 Medical Appliance and Industry Garden, #1019, Nanhai Road. Nanshan district ,Shenzhen 518035 China
Factory:	Outform Science and Technology Ltd.
Address of Factory:	No. A103 Medical Appliance and Industry Garden, #1019, Nanhai Road. Nanshan district ,Shenzhen 518035 China

6.2 General Description of EUT

Open Frame				
UIO0421B-C02,UIO0418X-XYY, UIO0424X-XYY, UIO0421X-XYY,The 1st X is "A" or "B" represents the agent or the client; The 2nd X is A-Z represents the color; YY is client number from "01" to "90"				
UIO0421B-C02				
OUTFORM				
	lle mode, 2402MHz to 2480MHz .11b/g/n(HT20): 2412MHz to 2462MHz			
Adapter	Model: EA10681U-120 Input: 100-240VAC~2.0A, 50~60Hz Output: 12V6A			
Jan. 24, 2019				
May 08, 2019 to	o May 09, 2019			
	UIO0421B-C02 X is "A" or "B" represents the of UIO0421B-C02 OUTFORM BT: 4.0 BT sing WiFi: IEEE 802 Adapter Jan. 24, 2019			

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to	o 2462MHz			
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels				
Channel Separation:	5MHz				
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPS IEEE for 802.11g :OFDM(64QAM, 16 IEEE for 802.11n(HT20) : OFDM (640	QAM, QPSK, BPSK)			
Antenna Type and Gain:	Type: omnidirectional antenna Gain: 5dBi	7'5	13		
Test Voltage:	AC 120V,60Hz	(67)	(6,2)		

Operation	Operation Frequency each of channel(802.11b/g/n HT20)								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz		
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz		
3	2422MHz	6	2437MHz	9	2452MHz				

6.4 Description of Support Units

The EUT has been tested independently.

Report No. : EED32L00017401 Page 9 of 106

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
(6	DE values applicated	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-18GHz)	
3	Dedicted Sourious emission test	4.3dB (30MHz-1GHz)	
٥	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Report No. : EED32L00017401 Page 10 of 106

7 Equipment List

		RF test	system			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020	
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020	
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020	
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398-0 02		01-09-2019	01-08-2020	
High-pass filter	MICRO-TRO NICS	SPA-F-63029-4		01-09-2019	01-08-2020	
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020	
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020	
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020	
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020	
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020	
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2)! 	03-01-2019	02-28-2020	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019	

Page 1	1	of	106	
--------	---	----	-----	--

	Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019		
Temperature/ Humidity Indicator	Defu	TH128	1	07-02-2018	07-01-2019		
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020		
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020		
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019		
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019		
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020		
Current Probe	rent Probe R&S		100106	05-30-2018	05-29-2019		
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020		

Report No. : EED32L00017401 Page 12 of 106

		(40		(1)	
3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy	
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019	
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019	
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020	
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021	
Horn Antenna	ETS-LINDGREN	3117	00057410	06-05-2018	06-03-2021	
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021	
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	08-08-2018	08-07-2019	
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019	
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019	
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019	
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019	
Multi device Controller	maturo	NCD/070/107 11112	9	01-09-2019	01-08-2020	
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019	
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019	
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020	
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019	
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020	
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020	
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020	
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020	
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020	
Communication test set High-pass filter	R&S Sinoscite	CMW500 FL3CX03WG 18NM12- 0398-002	104466	01-18-2019 01-09-2019	01-17-2020	
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001	<u>31)</u>	01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020	

Report No. : EED32L00017401 Page 13 of 106

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

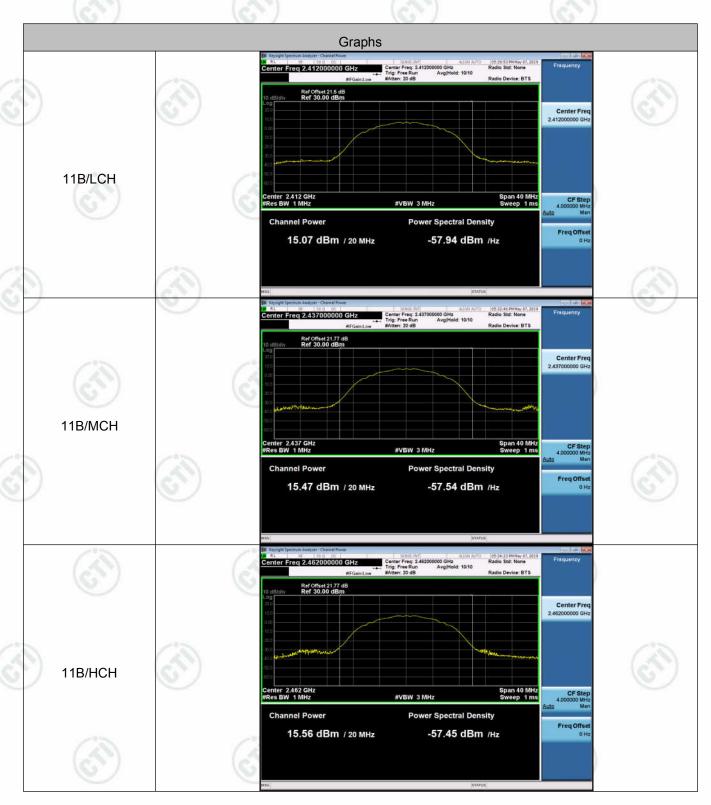
Test Results List:

out itecuite mich				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

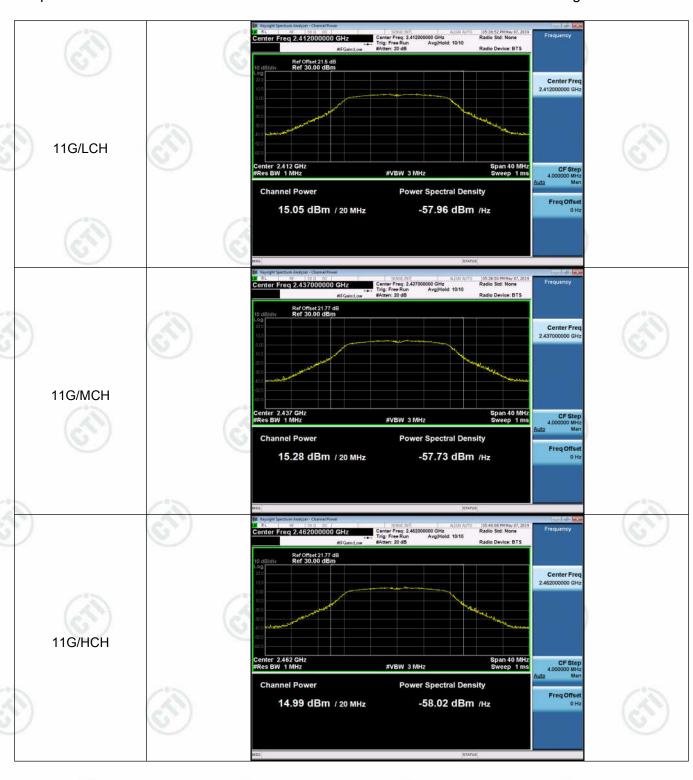
Appendix A): Conducted Peak Output Power

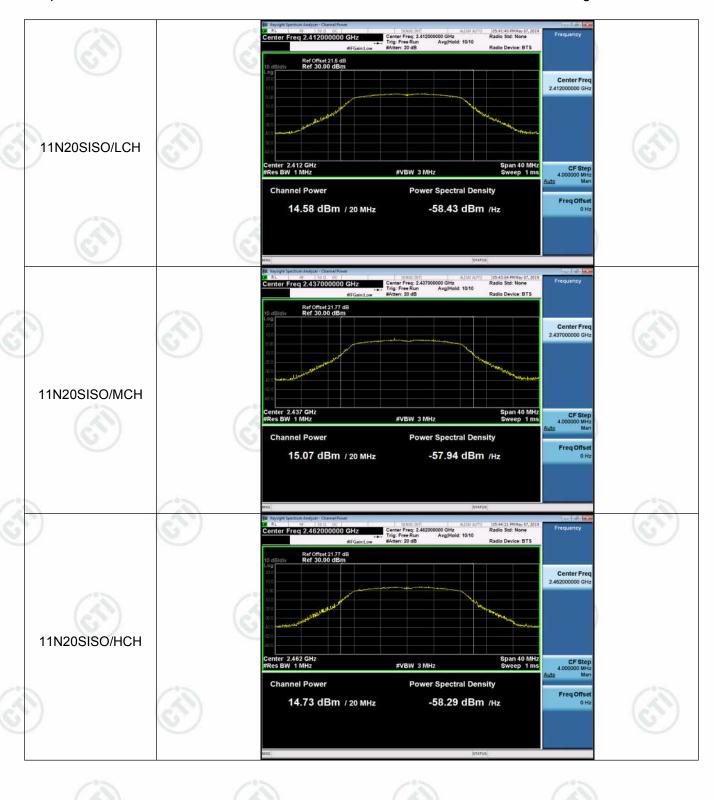
Result Table

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	15.07	PASS
11B	MCH	15.47	PASS
11B	HCH	15.56	PASS
11G	LCH	15.05	PASS
11G	MCH	15.28	PASS
11G	HCH	14.99	PASS
11N20SISO	LCH	14.58	PASS
11N20SISO	MCH	15.07	PASS
11N20SISO	нсн	14.73	PASS



Test Graph



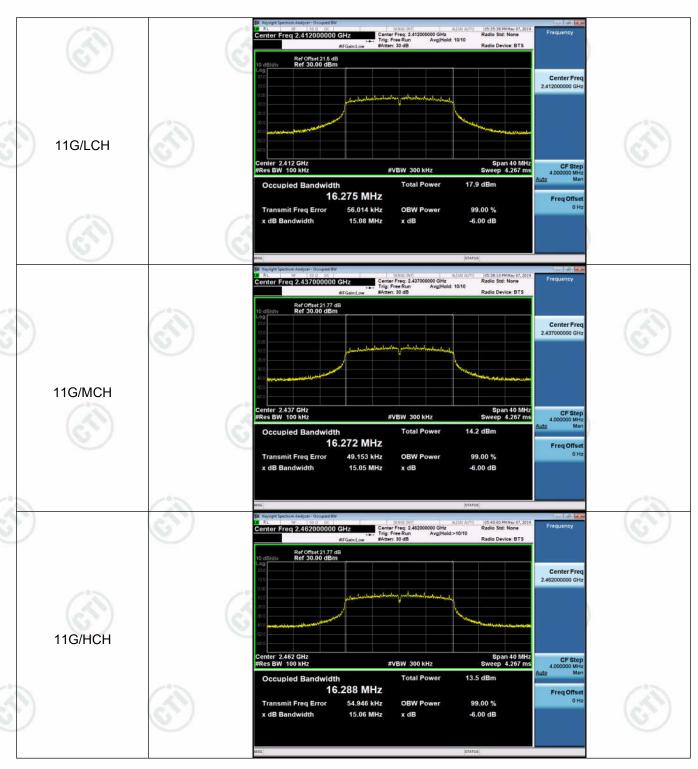


Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
11B	LCH	9.044	14.094	PASS
11B	МСН	8.520	14.081	PASS
11B	НСН	9.032	14.101	PASS
11G	LCH	15.08	16.275	PASS
11G	MCH	15.05	16.272	PASS
11G	НСН	15.06	16.288	PASS
11N20SISO	LCH	15.09	17.451	PASS
11N20SISO	MCH	15.11	17.457	PASS
11N20SISO	НСН	15.10	17.434	PASS

Test Graph



Page 21 of 106

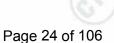
Report No. : EED32L00017401 Page 22 of 106

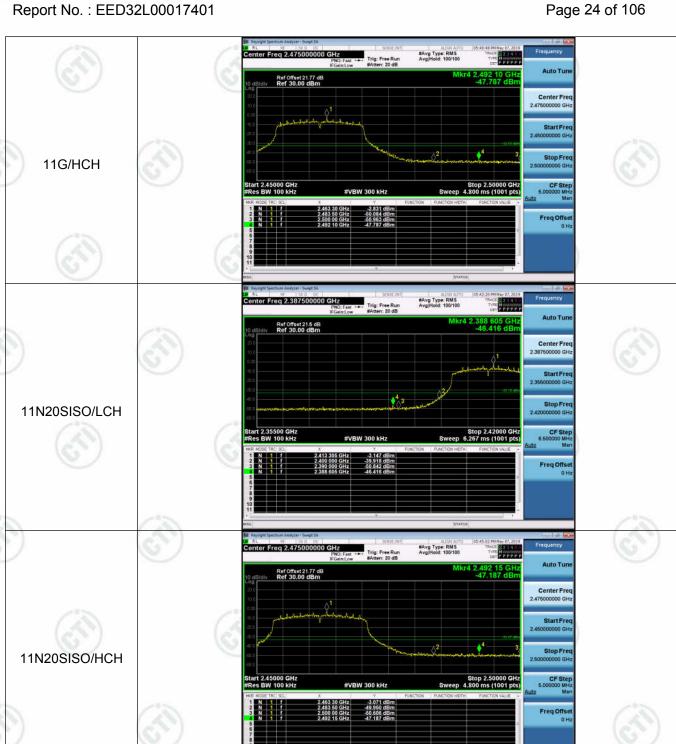
Appendix C): Band-edge for RF Conducted Emissions

Result Table

2.0	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
	11B	LCH	3.409	-46.852	-26.59	PASS
	11B	HCH	4.255	-46.960	-25.75	PASS
	11G	LCH	-2.804	-47.978	-32.8	PASS
	11G	НСН	-2.831	-47.787	-32.83	PASS
	11N20SISO	LCH	-3.147	-46.416	-33.15	PASS
	11N20SISO	нсн	-3.071	-47.187	-33.07	PASS

Test Graph



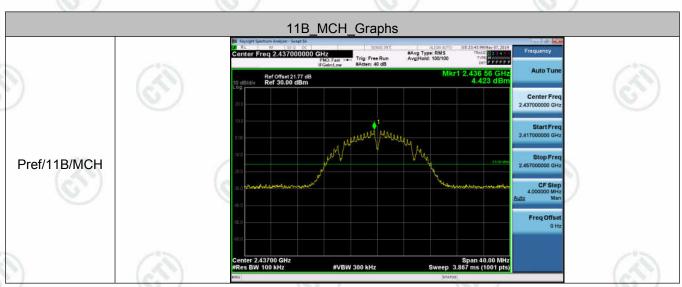


Report No. : EED32L00017401 Page 25 of 106

Appendix D): RF Conducted Spurious Emissions

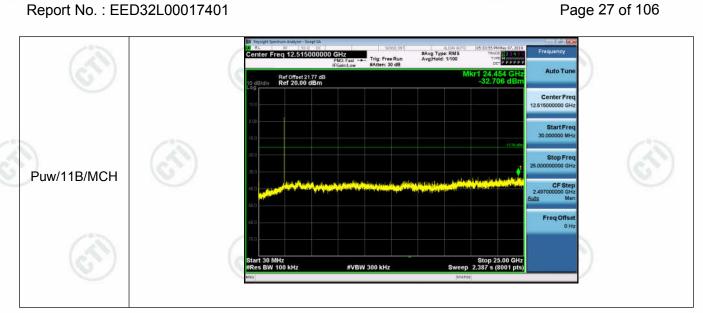
Result Table

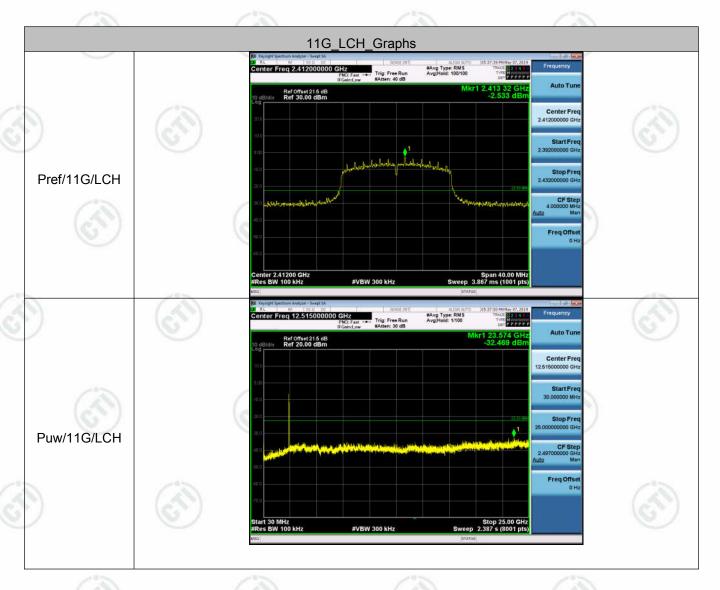
			3.367	
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	3.797	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	4.423	<limit< td=""><td>PASS</td></limit<>	PASS
11B	HCH	4.341	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-2.533	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-3.397	<limit< td=""><td>PASS</td></limit<>	PASS
11G	HCH	-2.894	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-3.369	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-3.291	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	HCH	-2.766	<limit< td=""><td>PASS</td></limit<>	PASS

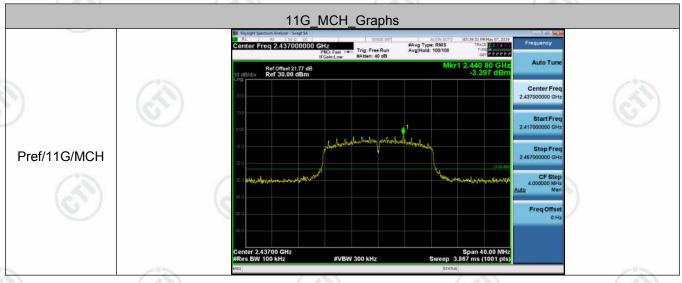


Report No. : EED32L00017401 Page 26 of 106

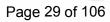
Test Graph

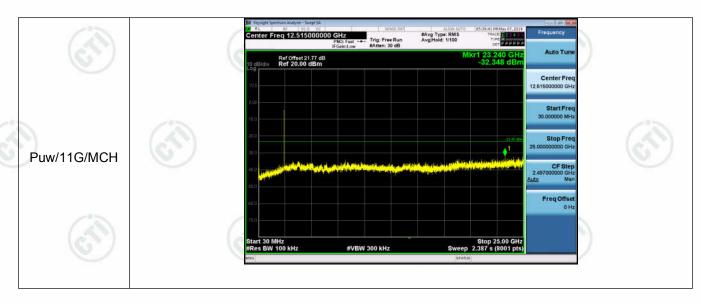


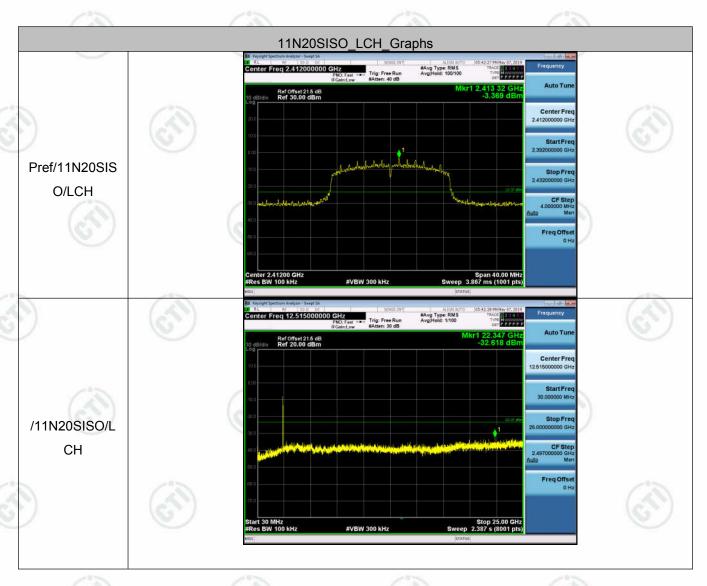


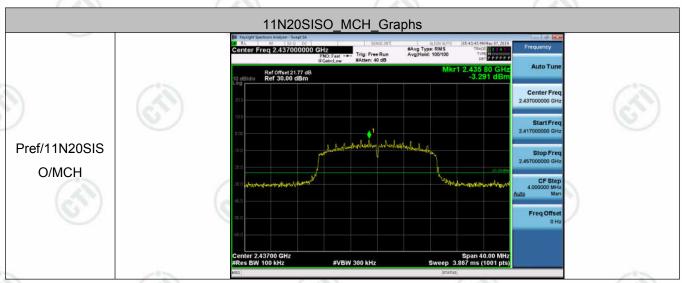


Report No. : EED32L00017401 Page 28 of 106

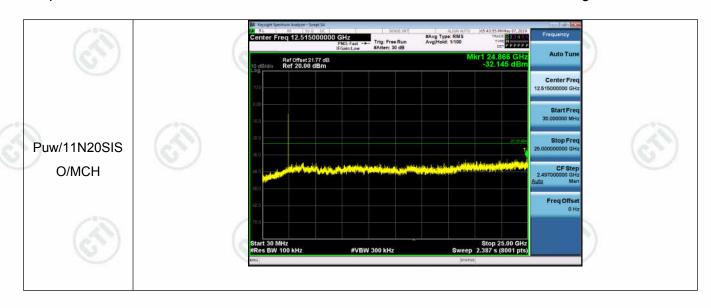








Report No. : EED32L00017401 Page 30 of 106



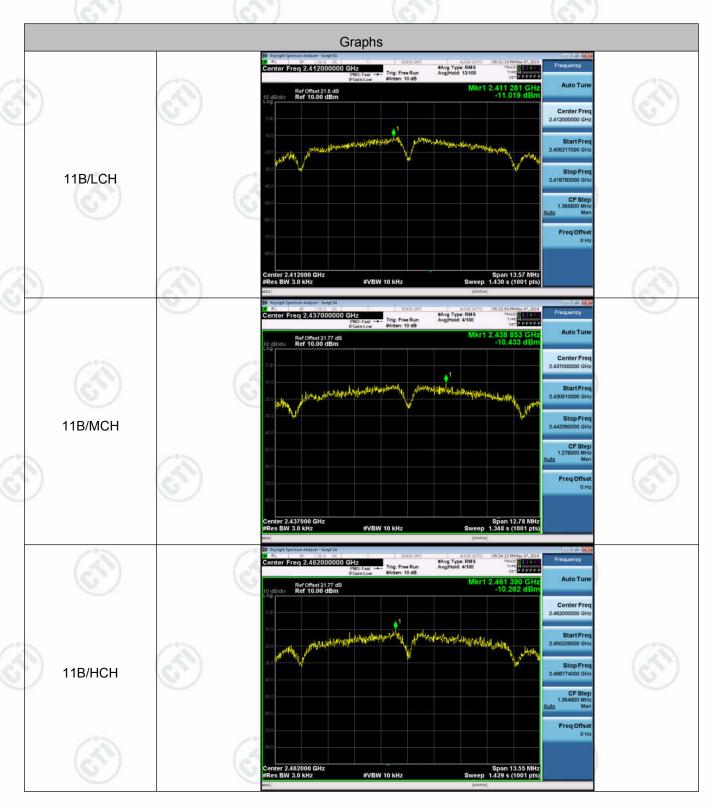


Report No.: EED32L00017401 Page 32 of 106

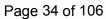
Appendix E): Power Spectral Density

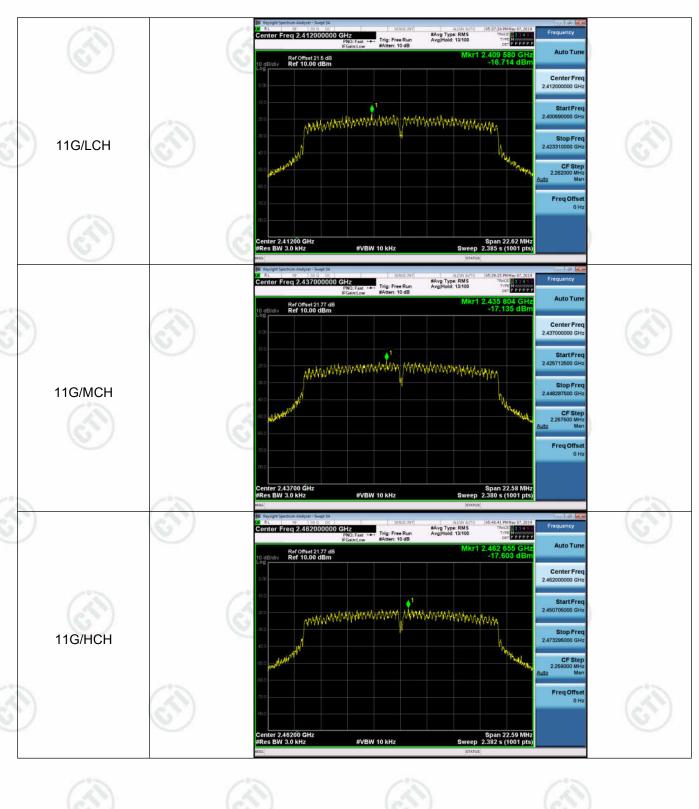
Result Table

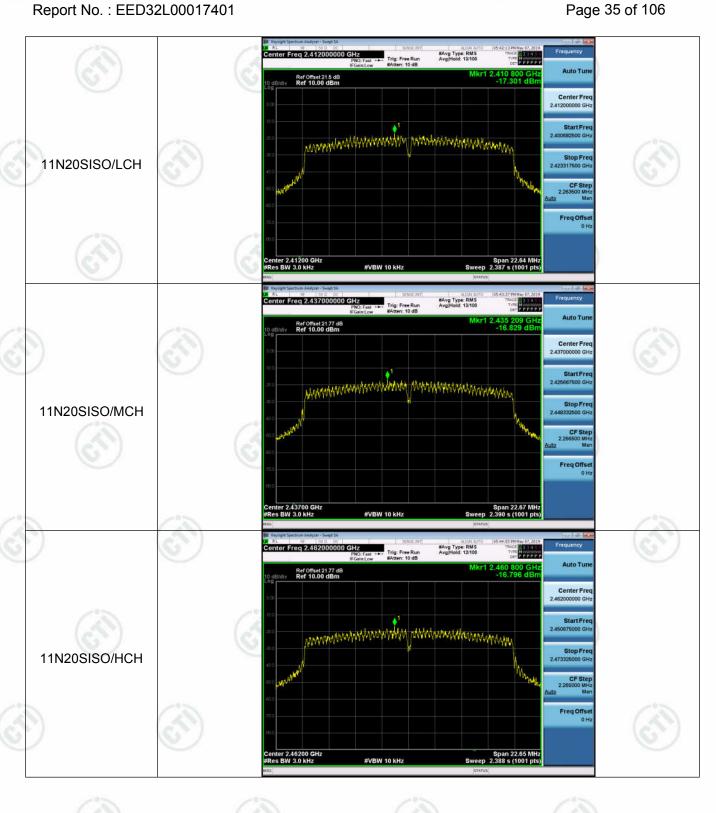
Mode	Mode Channel Power Spe		Verdict
11B	LCH	-11.019	PASS
11B	MCH	-10.433	PASS
11B	HCH	-10.262	PASS
11G	LCH	-16.714	PASS
11G	MCH	-17.135	PASS
11G	HCH	-17.603	PASS
11N20SISO	LCH	-17.301	PASS
11N20SISO	MCH	-16.829	PASS
11N20SISO	нсн	-16.796	PASS



Test Graph



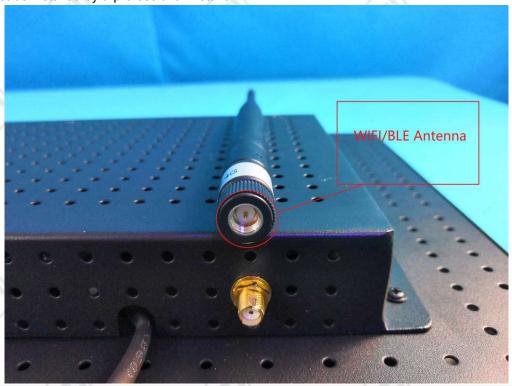






Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

WIFI and BLE use the same external omnidirectional antenna with 5 dBi gain and manufacturer declare the antenna must be installed by a professional installer.

Report No.: EED32L00017401 Page 37 of 106

Appendix G): AC Power Line Conducted Emission

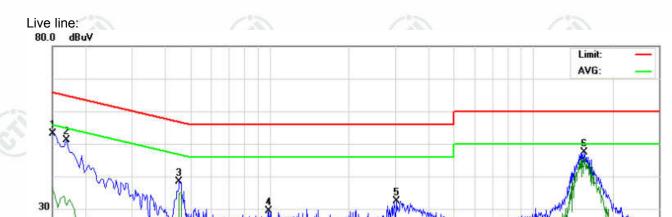
	Test frequency range :150KHz-30MHz								
	1)The mains terminal disturbar	nce voltage test was	conducted in a shielde	ed room.					
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not								
	exceeded.								
	3)The tabletop EUT was place reference plane. And for fluction horizontal ground reference	oor-standing arrange		•					
	4) The test was performed with shall be 0.4 m from the reference plane was bonded was placed 0.8 m from the reference plane for LISNs	vertical ground refect to the horizontal of boundary of the unit	erence plane. The v ground reference plan t under test and bonde	ertical ground e. The LISN 1 ed to a ground					
	distance was between the of the EUT and associated	closest points of the	LISN 1 and the EUT.	All other units					
		closest points of the equipment was at learn the relation of the relation.	LISN 1 and the EUT. ast 0.8 m from the LIS ive positions of equipi	All other units N 2. ment and all of					
Limit:	of the EUT and associated 5) In order to find the maximum the interface cables must	closest points of the equipment was at learn the relation of the relation.	LISN 1 and the EUT. ast 0.8 m from the LIS ive positions of equipi	All other units N 2. ment and all of					
Limit:	of the EUT and associated 5) In order to find the maximun the interface cables must measurement.	closest points of the equipment was at lender of the ends of the relation be changed according to the changed according to the change of the change of the change of the ends of the change of the cha	LISN 1 and the EUT. ast 0.8 m from the LIS ive positions of equipi	All other units N 2. ment and all of					
Limit:	of the EUT and associated 5) In order to find the maximum the interface cables must	closest points of the equipment was at lender of the ends of the relation be changed according to the changed according to the change of the change of the change of the ends of the change of the cha	LISN 1 and the EUT. ast 0.8 m from the LIS ive positions of equipi ding to ANSI C63.10	All other units N 2. ment and all of					
Limit:	of the EUT and associated 5) In order to find the maximun the interface cables must measurement.	closest points of the equipment was at lean emission, the relation be changed accordant.	LISN 1 and the EUT. ast 0.8 m from the LIS ive positions of equipoling to ANSI C63.10 (dBµV)	All other units N 2. ment and all of					
Limit:	of the EUT and associated 5) In order to find the maximum the interface cables must measurement. Frequency range (MHz)	closest points of the equipment was at lean emission, the relatible changed accordance Limit Quasi-peak	LISN 1 and the EUT. ast 0.8 m from the LIS ive positions of equipating to ANSI C63.10 (dBµV) Average	All other units N 2. ment and all of					
Limit:	of the EUT and associated 5) In order to find the maximun the interface cables must measurement. Frequency range (MHz) 0.15-0.5	closest points of the equipment was at lean emission, the relatibe changed according to the changed according to the change of t	LISN 1 and the EUT. ast 0.8 m from the LIS ive positions of equipiding to ANSI C63.10 (dBµV) Average 56 to 46*	All other units N 2. ment and all of					
Limit:	of the EUT and associated 5) In order to find the maximum the interface cables must measurement. Frequency range (MHz) 0.15-0.5 0.5-5	closest points of the equipment was at least nemission, the relatible changed according to the c	LISN 1 and the EUT. ast 0.8 m from the LIS ive positions of equipred ing to ANSI C63.10 (dBµV) Average 56 to 46* 46 50 the frequency in the raise	All other units N 2. ment and all of on conducted					

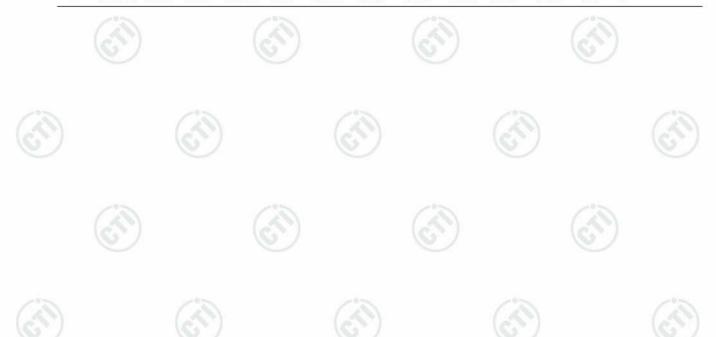
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

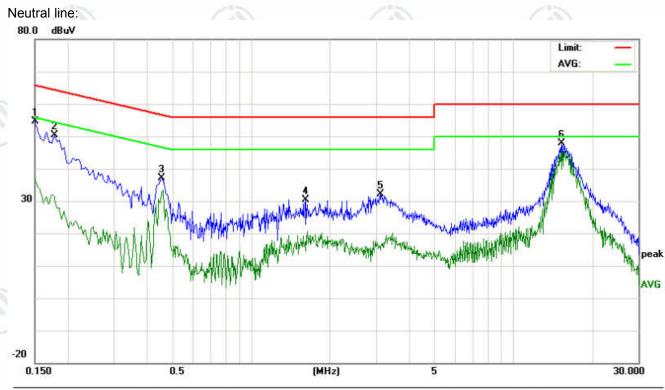
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



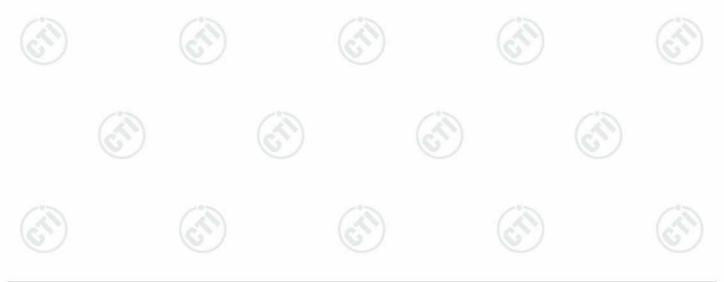




Report No.: EED32L00017401



0.15	0		0	.5			(MHz)		5					30.000
No.	Freq.	0 _		Correct Factor			Limit (dBuV)		Margin (dB)					
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	43.23	40.12	26.56	9.91	53.14	50.03	36.47	65.99	55.99	-15.96	-19.52	P	j
2	0.1700	41.23	38.45	21.23	9.91	51.14	48.36	31.14	64.96	54.96	-16.60	-23.82	P	R
3	0.4540	28.38	26.30	24.67	9.89	38.27	36.19	34.56	56.80	46.80	-20.61	-12.24	P	į.
4	0.9980	19.54	17.30	6.58	9.81	29.35	27.11	16.39	56.00	46.00	-28.89	-29.61	P	
5	3.0380	22.69	18.26	7.47	9.72	32.41	27.98	17.19	56.00	46.00	-28.02	-28.81	Р	V.
6	15.5660	37.47	34.50	35.61	9.97	47.44	44.47	45.58	60.00	50.00	-15.53	-4.42	P	ì



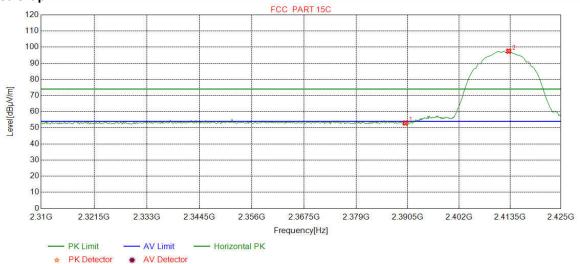
No.	Freq.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		vel	Correct Factor	Measurement (dBuV)		Limit (dBuV)		Margin (dB)				
		Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	44.62	42.30	26.92	9.91	54.53	52.21	36.83	65.99	55.99	-13.78	-19.16	P	b
2	0.1780	40.47	37.50	21.48	9.91	50.38	47.41	31.39	64.57	54.57	-17.16	-23.18	P	ii.
3	0.4580	27.23	25.46	22.99	9.89	37.12	35.35	32.88	56.73	46.73	-21.38	-13.85	P	1
4	1.6180	20.63	18.45	7.82	9.75	30.38	28.20	17.57	56.00	46.00	-27.80	-28.43	Р	ŭ.
5	3.1180	22.43	19.30	5.07	9.72	32.15	29.02	14.79	56.00	46.00	-26.98	-31.21	P	ĺ
6	15.3460	37.97	34.52	35.86	9.98	47.95	44.50	45.84	60.00	50.00	-15.50	-4.16	P	N

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	About 4015	Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak 1MHz		10Hz	Average	6
Test Procedure:	Below 1GHz test proceds a. The EUT was placed of at a 3 meter semi-ane determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximular polarizations of the and d. For each suspected end the antenna was tuned was turned from 0 degree. The test-receiver systems Bandwidth with Maximular f. Place a marker at the frequency to show corrections.	ure as below: on the top of a rotal choic camber. The of the highest rad eters away from the pof a variable-he varied from one man value of the field tenna are set to manission, the EUT varies to 360 degreem was set to Peal um Hold Mode.	ating table table wa iation. e interfere ight anter eter to fo d strength ake the m was arran meter to es to find k Detect I	o.8 meters rotated 3 ence-receinna tower. ur meters n. Both horneasurement of the maxing the maxing anction a losest to the second control of the maxing anction a losest to the second control of the maxing anction a losest to the second control of the second contr	rs above the gas of the growing antenna, above the growing antenna, above the growing and the rotate and the rotate num reading, and Specified the transmit	o , whi ound ertica ad the able
	bands. Save the spect for lowest and highest	rum analyzer plot.				
	bands. Save the spect	rum analyzer plot. channel ure as below: ve is the test site, nber change form 1 meter and table west channel, the ments are perforn d found the X axis	change fr table 0.8 is 1.5 me e Highest ned in X, s positioni	or each po om Semi- meter to 1 eter). channel Y, Z axis p ng which i	Anechoic Change of the control of th	ambove
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the low. The radiation measure Transmitting mode, and	rum analyzer plot. channel ure as below: ve is the test site, nber change form 1 meter and table west channel, the ments are perforn d found the X axis	change fr table 0.8 is 1.5 me e Highest ned in X, s positioni	or each po om Semi- meter to 1 eter). channel Y, Z axis p ng which i	Anechoic Change of the control of th	amb ove
_imit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above 18GHz the distance is h. Test the EUT in the lowest in the radiation measure transmitting mode, and j. Repeat above procedure.	rum analyzer plot. channel ure as below: ve is the test site, ber change form 1 meter and table west channel, the ments are perforn d found the X axis ures until all freque	change fr table 0.8 is 1.5 me e Highest ned in X, s positioni	or each poor om Semi-meter to 1 eter). channel Y, Z axis poor gwhich is easured ware Rei	Anechoic Change Anechoic Change Anechoic Change Aneter (About About Anechoic Change Anechoic	amb ove
_imit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the loi. The radiation measure Transmitting mode, and j. Repeat above procedure.	rum analyzer plot. channel ure as below: ve is the test site, nber change form 1 meter and table west channel, the ements are perform d found the X axis ures until all freque	change fr table 0.8 is 1.5 me e Highest ned in X, s positioni	om Semi- meter to 1 eter). channel Y, Z axis p ng which i asured wa	Anechoic Change of the control of th	amb ove
_imit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Channel 18GHz the distance is heart the EUT in the low in the radiation measure Transmitting mode, and jet in the procedure of the second state of the s	rum analyzer plot. channel ure as below: ve is the test site, ber change form 1 meter and table west channel, the ements are perforn d found the X axis ures until all freque Limit (dBµV/m 40.0	change fr table 0.8 is 1.5 me e Highest ned in X, s positioni	om Semi- meter to 1 eter). channel Y, Z axis p ng which i asured wa Rei Quasi-pe	Anechoic Change of the control of th	amb ove
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Channal 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz	rum analyzer plot. channel ure as below: ve is the test site, ober change form 1 meter and table ewest channel, the ements are performed found the X axis ures until all frequents. Limit (dBµV/m 40.0 43.5	change fr table 0.8 is 1.5 me e Highest ned in X, s positioni	om Semi- meter to 1 eter). channel Y, Z axis p ng which i asured wa Rei Quasi-pe Quasi-pe	Anechoic Change of the control of th	amb ove
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Channel 18GHz the distance is how the fully the fully in the low in the radiation measured that Transmitting mode, and it is requency and the fully service of the fully service of the formation of the fully service of the full service of the full service of the fully service of the full service o	rum analyzer plot. channel ure as below: ve is the test site, nber change form 1 meter and table west channel , the ements are perform d found the X axis ures until all freque Limit (dBµV/m 40.0 43.5 46.0	change fr table 0.8 is 1.5 me e Highest ned in X, s positioni	or each poor om Semi-meter to 1 eter). channel Y, Z axis poor gwhich is asured ware Rer Quasi-poor	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete. mark eak Value eak Value	ambe

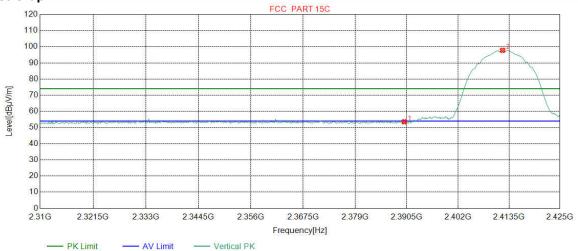


Report No.: EED32L00017401 Page 41 of 106

Test plot as follows:

1	Mode:	802.11b (11Mbps)	Channel:	2412
	Remark:	Peak		

Test Graph

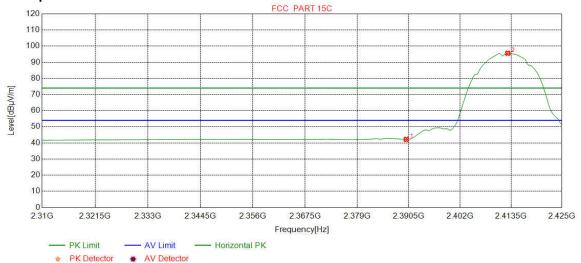


N	OI	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	49.78	52.96	74.00	21.04	Pass	Horizontal
	2	2413.1977	32.28	13.36	-42.43	94.28	97.49	74.00	-23.49	Pass	Horizontal

	.42.	F (3)		
Mode:	802.11b (11Mbps)	Channel:	2412	
Remark:	Peak		/	

Test Graph

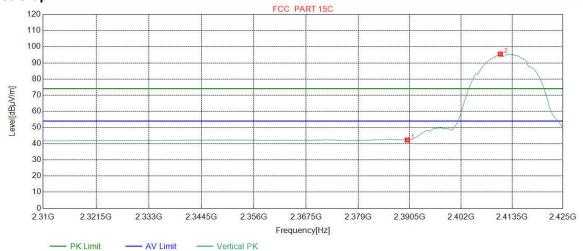
* AV Detector


	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1	2390.0000	32.25	13.37	-42.44	50.39	53.57	74.00	20.43	Pass	Vertical
١	2	2412.0463	32.28	13.36	-42.44	94.56	97.76	74.00	-23.76	Pass	Vertical

Report No. : EED32L00017401 Page 42 of 106

Mode:	802.11b (11Mbps)	Channel:	2412
Remark:	Peak		

Test Graph

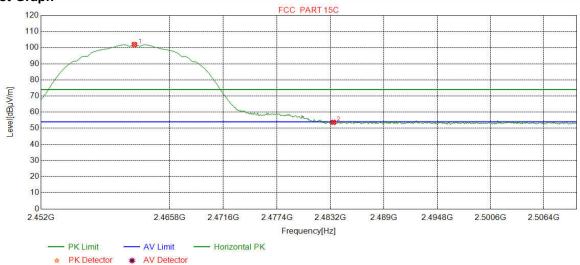


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	39.00	42.18	54.00	11.82	Pass	Horizontal
2	2412.7660	32.28	13.36	-42.43	92.39	95.60	54.00	-41.60	Pass	Horizontal

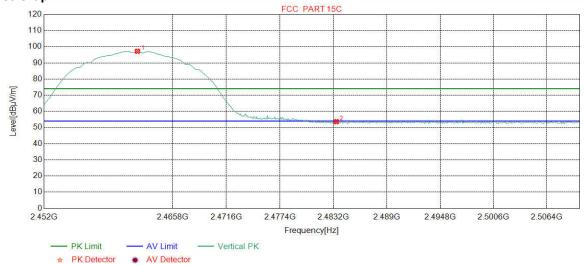
Mode:	802.11b (11Mbps)	Channel:	2412	(,
Remark:	Peak			

Test Graph

* AV Detector


	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1	2390.0000	32.25	13.37	-42.44	39.07	42.25	54.00	11.75	Pass	Vertical
	2	2410.8949	32.28	13.35	-42.43	92.24	95.44	54.00	-41.44	Pass	Vertical

Report No.: EED32L00017401 Page 43 of 106

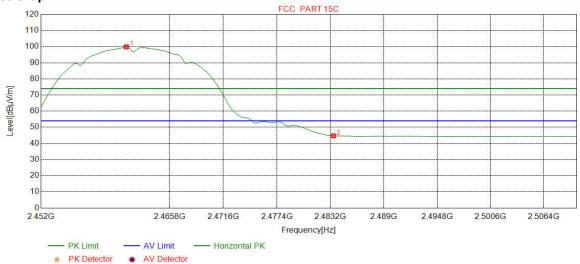


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.0175	32.35	13.47	-42.41	98.51	101.92	74.00	-27.92	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	50.37	53.73	74.00	20.27	Pass	Horizontal

Mode: 802.11b (11Mbps) Channel: 2462

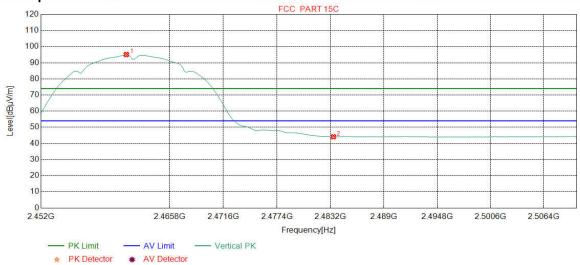
Remark: Peak

Test Graph


٨	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
7	1	2462.0175	32.35	13.47	-42.41	93.79	97.20	74.00	-23.20	Pass	Vertical
	2	2483.5000	32.38	13.38	-42.40	50.27	53.63	74.00	20.37	Pass	Vertical

Report No. : EED32L00017401 Page 44 of 106

Test Graph

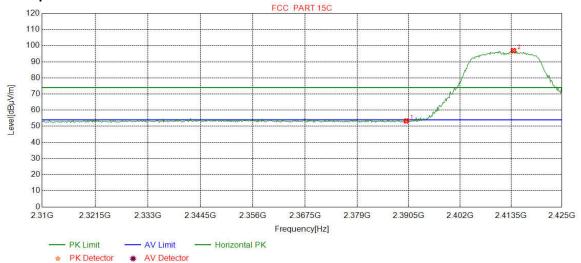


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.1464	32.35	13.48	-42.41	96.45	99.87	54.00	-45.87	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	41.33	44.69	54.00	9.31	Pass	Horizontal

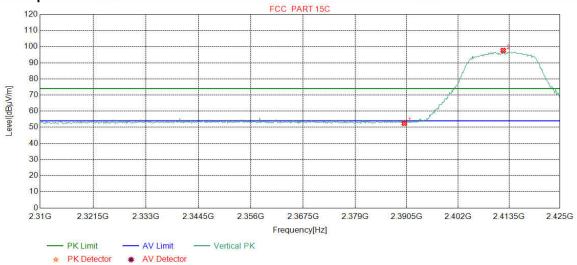
Mode: 802.11b (11Mbps) Channel: 2462

Remark: Peak

Test Graph


	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2461.1464	32.35	13.48	-42.41	91.68	95.10	54.00	-41.10	Pass	Vertical
(2	2483.5000	32.38	13.38	-42.40	40.78	44.14	54.00	9.86	Pass	Vertical

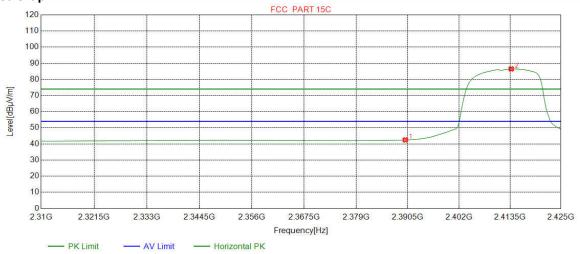
Report No.: EED32L00017401 Page 45 of 106


Test Graph

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.14	53.32	74.00	20.68	Pass	Horizontal
2	2414.0613	32.28	13.36	-42.42	93.67	96.89	74.00	-22.89	Pass	Horizontal

Mode:	802.11g (6Mbps)	Channel:	2412
Remark:	Peak		

Test Graph

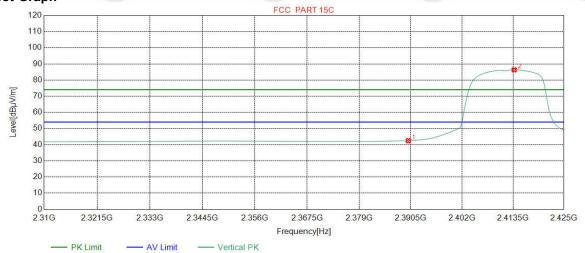

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.30	52.48	74.00	21.52	Pass	Vertical
2	2412.1902	32.28	13.36	-42.44	94.44	97.64	74.00	-23.64	Pass	Vertical

Report No. : EED32L00017401 Page 46 of 106

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	39.28	42.46	54.00	11.54	Pass	Horizontal
2	2413.7735	32.28	13.36	-42.43	83.30	86.51	54.00	-32.51	Pass	Horizontal

Mode: 802.11g (6Mbps) Channel: 2412


Remark: Peak

Test Graph

♠ PK Detector

* AV Detector

* AV Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	39.30	42.48	54.00	11.52	Pass	Vertical
2	2413.7735	32.28	13.36	-42.43	83.14	86.35	54.00	-32.35	Pass	Vertical

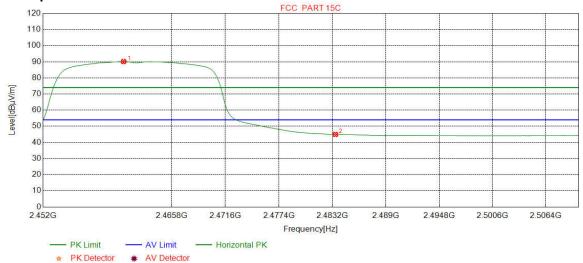
♠ PK Detector

AV Detector

Report No. : EED32L00017401 Page 47 of 106

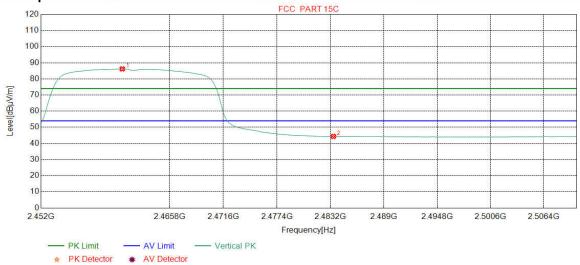
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.4205	32.34	13.48	-42.40	97.47	100.89	74.00	-26.89	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	50.16	53.52	74.00	20.48	Pass	Horizontal

Gra	aph								
12	20			4	FCC PART	15C		1 3	
11	10								
10	00								
	90	~ % ~~~~	monmon						
	and a second		¥						
	80			My N					
. /	70			W. W.					
. 6	60			- 4,	Manya	2			
6	50								
4	40				-				
3	30					-			
2	20				ļ			ļ	
1	10							ļ	
	0								
2	2.452G	2.46	58G 2.4	716G 2.4	774G 2.4	4832G 2	2.489G 2.49	948G 2.5006	G 2.5064G


NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.8723	32.35	13.48	-42.41	93.84	97.26	74.00	-23.26	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.91	53.27	74.00	20.73	Pass	Vertical

Report No.: EED32L00017401 Page 48 of 106

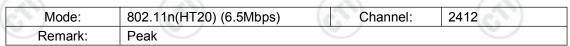
Test Graph

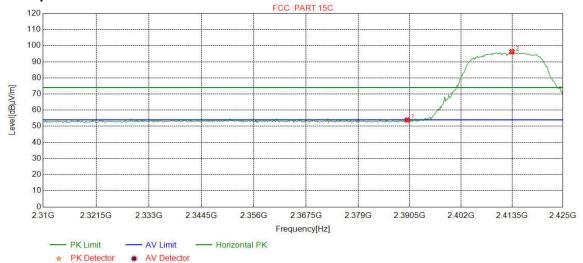


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.6383	32.34	13.48	-42.40	86.72	90.14	54.00	-36.14	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	41.60	44.96	54.00	9.04	Pass	Horizontal

 Mode:
 802.11g (6Mbps)
 Channel:
 2462

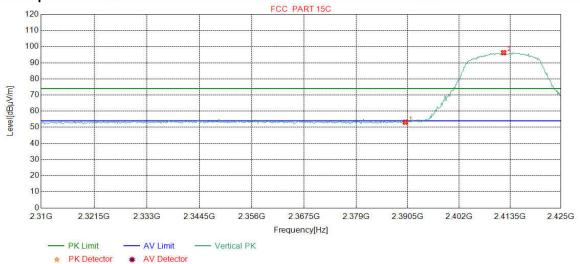
 Remark:
 Peak


Test Graph


	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2460.7109	32.34	13.48	-42.40	82.78	86.20	54.00	-32.20	Pass	Vertical
(2	2483.5000	32.38	13.38	-42.40	40.98	44.34	54.00	9.66	Pass	Vertical

Report No.: EED32L00017401 Page 49 of 106

Test Graph



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.73	53.91	74.00	20.09	Pass	Horizontal
2	2413.4856	32.28	13.36	-42.43	93.01	96.22	74.00	-22.22	Pass	Horizontal

 Mode:
 802.11n(HT20) (6.5Mbps)
 Channel:
 2412

 Remark:
 Peak

Test Graph

				*							
N	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	49.98	53.16	74.00	20.84	Pass	Vertical
7	2	2412 0463	32 28	13.36	-42 44	93.05	96.25	74 00	-22 25	Pass	Vertical