

FCC TEST REPORT

Test report
On Behalf of
CE Labs, LLC.
For
Media Players

Model No.: CE440, CE640, CE420, CE220 FCC ID: 2AO9Q-2GCA6B

Prepared for: CE Labs, LLC.

3209 Wood Drive Garland TX US 75041

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Jan. 04, 2022 ~ Jan. 11, 2022

Date of Report: Jan. 11, 2022

Report Number: HK2201060061-2E

TEST RESULT CERTIFICATION

Applicant's name	CE	Labs.	LLC.
------------------	----	-------	------

Manufacture's Name...... CE Labs, LLC.

Product description

Trade Mark: N/A

Product name: Media Players

Model and/or type reference .: CE440, CE640, CE420, CE220

FCC Rules and Regulations Part 15 Subpart E Section

Standards 15.407

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test:

Date (s) of performance of tests Jan. 04, 2022 ~ Jan. 11, 2022

Test Result Pass

Testing Engineer :

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

TABLE OF CONTENTS

Report No.: HK2201060061-2

1.	Test Result Summary	5
	1.1. TEST PROCEDURES AND RESULTS	
	1.2. INFORMATION OF THE TEST LABORATORY	A HUAK I
	1.3. MEASUREMENT UNCERTAINTY	
2.		·····
	2.1. GENERAL DESCRIPTION OF EUT	
	2.2. OPERATION FREQUENCY EACH OF CHANNEL	
	2.3. OPERATION OF EUT DURING TESTING	8
	2.4. DESCRIPTION OF TEST SETUP	
3.	Genera Information	10
	3.1. TEST ENVIRONMENT AND MODE	
	3.2. DESCRIPTION OF SUPPORT UNITS	11
4.	Test Results and Measurement Data	12
	4.1. CONDUCTED EMISSION	12
	4.2. MAXIMUM CONDUCTED OUTPUT POWER	16
	4.3. 6dB Emission Bandwidth	
	4.4. 26dB Bandwidth and 99% Occupied Bandwidth	32
	4.5. Power Spectral Density	33
	4.6. BAND EDGE	
	4.7. Spurious Emission	62
	4.8. FREQUENCY STABILITY MEASUREMENT	
	4.9. ANTENNA REQUIREMENT	83
	4.10. PHOTOGRAPHS OF TEST SETUP	84

Page 4 of 86 Report No.: HK2201060061-2

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Jan. 11, 2022	Jason Zhou
Y TESTINE	TESTINE	ESTING Y TESTIN	Y TESTINE
HUA	HIN. HIN.	HUM	HUAN

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1. Test Result Summary

1.1. TEST PROCEDURES AND RESULTS

CFR 47 Section	Result
§15.203	PASS
§15.207	PASS
§15.407(a)	PASS
§15.407(e)	PASS
§15.407(a)	N/A NA
§15.407(a)	PASS
§15.407(b)/15.209/15.205	PASS
§15.407(b)/15.209/15.205	PASS
§15.407(g)	PASS
	§15.203 §15.207 §15.407(a) §15.407(e) §15.407(a) §15.407(b)/15.209/15.205 §15.407(b)/15.209/15.205

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. INFORMATION OF THE TEST LABORATORY

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

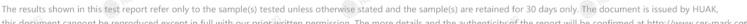
Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01.

FCC Designation Number is CN1229.

Canada IC CAB identifier is CN0045.

CNAS Registration Number is L9589.



Measurement Uncertainty

The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
n1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

2. EUT Description

2.1. GENERAL DESCRIPTION OF EUT

Equipment	Media Players	
Model Name	CE440	HUAKTES
Serial No.	CE640, CE420, CE220	STING
Trade Mark	N/A MATESTINE	UAKTESTING
Model Difference	All model's the function, software and ele same, only with a product color and mode sample model: CE440	
FCC ID	2AO9Q-2GCA6B	HUAKTES
Operation Frequency:	IEEE 802.11a/n/ac(HT20)5.745GHz-5.82 IEEE 802.11n/ac(HT40)5.755GHz-5.7950 IEEE 802.11ac(HT80) 5.775GHz	
Modulation Technology:	IEEE 802.11a/n/ac	
Modulation Type	OFDM	STIVE
Antenna Type	External Antenna	UAKTESTING
Antenna Gain	Antenna 1:3dBi Antenna 2:3dBi MIMO: 6.010dBi	THE OWN
Power Source	DC 12V from adapter	HUAKTESTING
Power Supply:	DC 12V from adapter	
Hardware Version:	V1.0	LOK TESTING
Software Version:	V1.0	

Note: The EUT incorporates a MIMO function. Physically, it provides two completed transmitt ers and receivers(2T2R), two transmit signals are completely correlated, then, Direction gain=GANT + Array Gain(Array Gain=10 log(2) dB for power spectral density; Array Gain=0 for power measurement)

2.2. Operation Frequency each of channel

802.11a/802.11n(HT20) 802.11ac(HT20)		, ,		802.11ac(HT80)		
P	Channel	Frequency	Channel	Frequency	Channel	Frequency
	149	5745	151	5755	155	5775
5	153	5765	159	5790	AKTESTIN	e)G
	157	5785		MAKTESTI	O HOW	MAKTESTI
Ī	161	5805			,G	
Ī	165	5825	Jan 1997		LAK TESTIL	

Note:

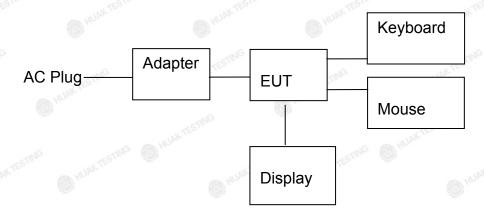
In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.3. Operation of EUT during testing

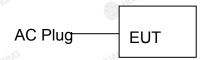
	Band IV (5725 - 5850 MH For 802.11a/n (HT20)/ac(HT	,
Channel Number	Channel	Frequency (MHz)
149	Low	5745
157	Mid	5785
165	High High	5825

For 8	02.11n (HT40)/ ac(F	IT <u>4</u> 0)
Channel Number	Channel	Frequency (MHz)
151	Low	5755
159	High	5795

	For 802.11ac(HT80)	
Channel Number	Channel	Frequency (MHz)
155	1	5775


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



2.4. DESCRIPTION OF TEST SETUP

Operation of EUT during conducted testing and below 1GHz Radiation testing:

Operation of EUT during Above1GHz Radiation testing:

 Display information Model: 24PFF3661/T3

Input: AC 120V/60Hz

Adapter information

Model: FJ-SW126G1201500N

Input: 100-240V ~ 50/60Hz 0.6A Max

Output: 12V 1.5A, 18.0W

Mouse information Model: OP-300 Input: DC 5V

Keyboard information

Model: KB-202 Input: DC 5V

3. Genera Information

3.1. Test environment and mode

Operating Environment:		
Temperature:	25.0 °C	HUAKTES
Humidity:	56 % RH	
Atmospheric Pressure:	1010 mbar	Y TESTING
Test Mode:		
Engineering mode:	Keep the EUT in continuous by select channel and modu value of duty cycle is 100%)	lations(The

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

TESTING	Mode	Data rate	
	802.11a	6 Mbps	HOM
MG	802.11n(HT20)	MCS0	a)G
	802.11n(HT40)	MCS0 MCS0	24
802.1	lac(HT20)/ac(HT40)/ac(HT80)	MCS0	
Final Te	st Mode:		
Oper	ation mode:	Keep the EUT in continuous transmitt	ing

with modulation

THE WHARTEST

Report No.: HK2201060061-2

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
	IG I HUANTESTI	I STING	I HUMA TESTIN	1 STING

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

4. Test Results and Measurement Data

4.1. Conducted Emission

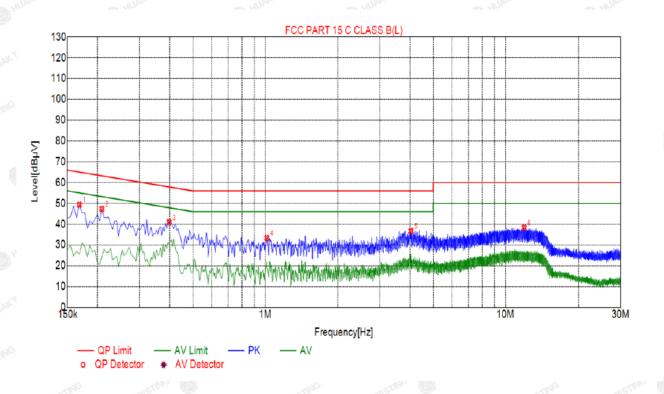
4.1.1. Test Specification

TIME	11/10	TURE .	TING TIN			
Test Requirement:	FCC Part15 C Section	15.207	HUAKTE			
Test Method:	ANSI C63.10:2013	STING				
Frequency Range:	150 kHz to 30 MHz	MILAN IL	OKTESTING			
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto			
	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Average			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Reference	ce Plane	-16			
Test Setup:	Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization No Test table height=0.8m	EMI Receiver	- AC power			
Test Mode:	Tx Mode	ING TES	TING			
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 					
Test Result:	N/A	- Olm	-			
	1151	756711				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

AFICATION

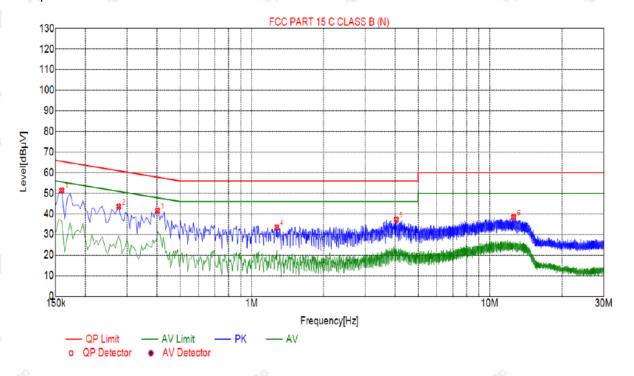
4.1.2. Test Instruments


Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Receiver	R&S	ESR-7	HKE-010	Dec. 09, 2021	Dec. 08, 2022	
LISN	R&S	ENV216	HKE-002	Dec. 09, 2021	Dec. 08, 2022	
Coax cable (9KHz-30MHz)	Times	381806-00	N/A	Dec. 09, 2021	Dec. 08, 2022	
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.1.3. Test data

Test Specification: Line


Sus	Suspected List									
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре		
1	0.1680	49.34	20.01	65.06	15.72	29.33	PK	L		
2	0.2085	47.33	20.04	63.26	15.93	27.29	PK	L		
3	0.3975	40.94	20.04	57.91	16.97	20.90	PK	L		
4	1.0140	33.33	20.06	56.00	22.67	13.27	PK	L		
5	4.0425	36.70	20.25	56.00	19.30	16.45	PK	L		
6	11.9625	38.29	19.99	60.00	21.71	18.30	PK	L		

Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

Sus	Suspected List								
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре	
1	0.1590	51.36	20.01	65.52	14.16	31.35	PK	N	
2	0.2760	43.55	20.04	60.94	17.39	23.51	PK	N	
3	0.4020	41.55	20.04	57.81	16.26	21.51	PK	N	
4	1.2750	33.39	20.09	56.00	22.61	13.30	PK	N	
5	4.0515	37.25	20.25	56.00	18.75	17.00	PK	N	
6	12.5970	38.35	19.98	60.00	21.65	18.37	PK	N	

Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

4.2. Maximum Conducted Output Power

4.2.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407(a)				
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02.r01 Section E				
Limit:	Frequency Band Limit				
	5725-5850 1 W				
Test Setup:	Power meter EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 				
Test Result:	PASS				
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power				

4.2.2. Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022		
Power meter	Agilent 💮	E4419B	HKE-085	Dec. 09, 2021	Dec. 08, 2022		
Power Sensor	Agilent	E9300A	HKE-086	Dec. 09, 2021	Dec. 08, 2022		
RF cable	Times	1-40G	HKE-034	Dec. 09, 2021	Dec. 08, 2022		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022		

Report No.: HK2201060061-2

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test Data

	Configuration Band IV (5725 - 5850 MHz)								
Mode	Test channel	Maximum Output Po	FCC Limit	Result					
	onamior	Antenna port 1	Antenna port 2	(dBm)					
11a	CH149	15.38	15.15	30	PASS				
11a	CH157	15.85	14.28	30	PASS				
11a	CH165	16.05	14.42	30	PASS				
11n(HT20)	CH149	15.93	14.45	30	PASS				
11n(HT20)	CH157	15.73	14.31	30	PASS				
11n(HT20)	CH165	15.95	14.81	30	PASS				
11n(HT40)	CH151	14.04	13.68	30	PASS				
11n(HT40)	CH159	13.48	13.56	30	PASS				
11ac(HT20)	CH149	16.04	14.70	30	PASS				
11ac(HT20)	CH157	14.35	14.48	30	PASS				
11ac(HT20)	CH165	14.49	14.70	30	PASS				
11ac(HT40)	CH151	13.51	13.34	30	PASS				
11ac(HT40)	CH159	13.50	12.90	30	PASS				
11ac(HT80)	CH155	13.92	13.98	30	PASS				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

CERT CI :-

Configuration Band IV (5725 - 5850 MHz)							
Mode Test channel		Maximum Conducted Output Power (dBm) MIMO	FCC Limit (dBm)	Result			
11n(HT20)	CH149	18.26	30	PASS			
11n(HT20)	CH157	18.09	30	PASS			
11n(HT20)	CH165	18.43	30 🔊	PASS			
11n(HT40)	CH151	16.87	30	PASS			
11n(HT40)	CH159	16.53	30	PASS			
11ac(HT20)	CH149	18.43	30	PASS			
11ac(HT20)	CH157	17.43	30	PASS			
11ac(HT20)	CH165	17.61	30	PASS			
11ac(HT40)	CH151	16.44	30	PASS			
11ac(HT40)	CH159	16.22	30	PASS			
11ac(HT80)	CH155	16.96	5TING 30	PASS			

4.3. 6dB Emission Bandwidth

4.3.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15	FCC CFR47 Part 15 Section 15.407(e)					
Test Method:	KDB789033 D02 General UNII Rules v01r04 Section C	KDB789033 D02 General UNII Test Procedures New Rules v01r04 Section C					
Limit:	>500kHz	HUAKTESTINE					
Test Setup:	Spectrum Analyzer	EUT NG TESTIV					
Test Mode:	Transmitting mode with modula	tion					
Test Procedure:	Rules v02r01 Section C 2. Set to the maximum power s EUT transmit continuously. 3. Make the measurement with resolution bandwidth (RBW) Video bandwidth (VBW) = 3 an accurate measurement. be greater than 500 kHz.	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must 					
Test Result:	PASS AND THE PASS	WESTING WAY TESTING					

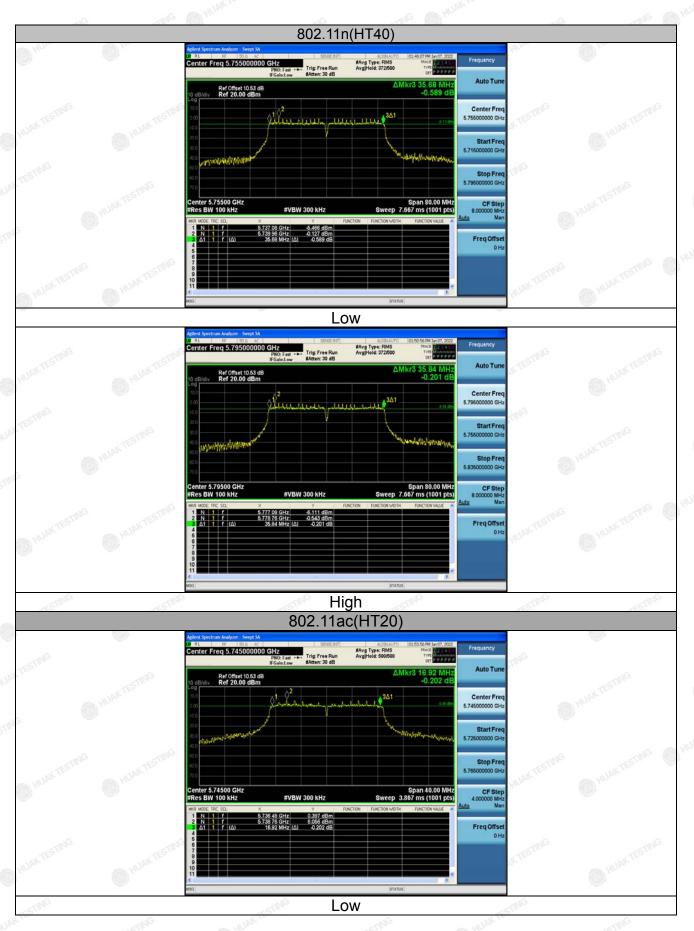
4.3.2. Test Instruments

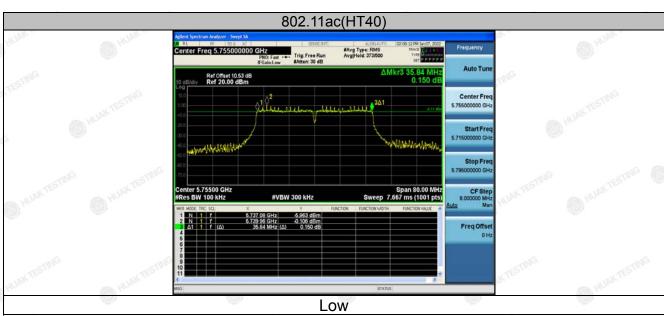
RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022	
RF cable	Times	1-40G	HKE-034	Dec. 09, 2021	Dec. 08, 2022	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.3.3. Test data

		AIN	<u> </u>					
Band IV (5725	Band IV (5725 - 5850 MHz)							
Mode	Test channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result			
11a	CH149	5745	16.280	0.5	PASS			
11a	CH157	5785	16.320	0.5	PASS			
11a	CH165	5825	16.320	0.5	PASS			
11n(HT20)	CH149	5745	16.960	0.5	PASS			
11n(HT20)	CH157	5785	17.000	0.5	PASS			
11n(HT20)	CH165	5825	17.080	0.5	PASS			
11n(HT40)	CH151	5755	35.680	0.5	PASS			
11n(HT40)	CH159	5795	35.840	0.5	PASS			
11ac(HT20)	CH149	5745	16.920	0.5	PASS			
11ac(HT20)	CH157	5785	16.960	0.5	PASS			
11ac(HT20)	CH165	5825	16.760	0.5	PASS			
11ac(HT40)	CH151	5755	35.840	0.5	PASS			
11ac(HT40)	CH159	5795	35.440	0.5	PASS			
11ac(HT80)	CH155	5775	75.200	0.5	PASS			

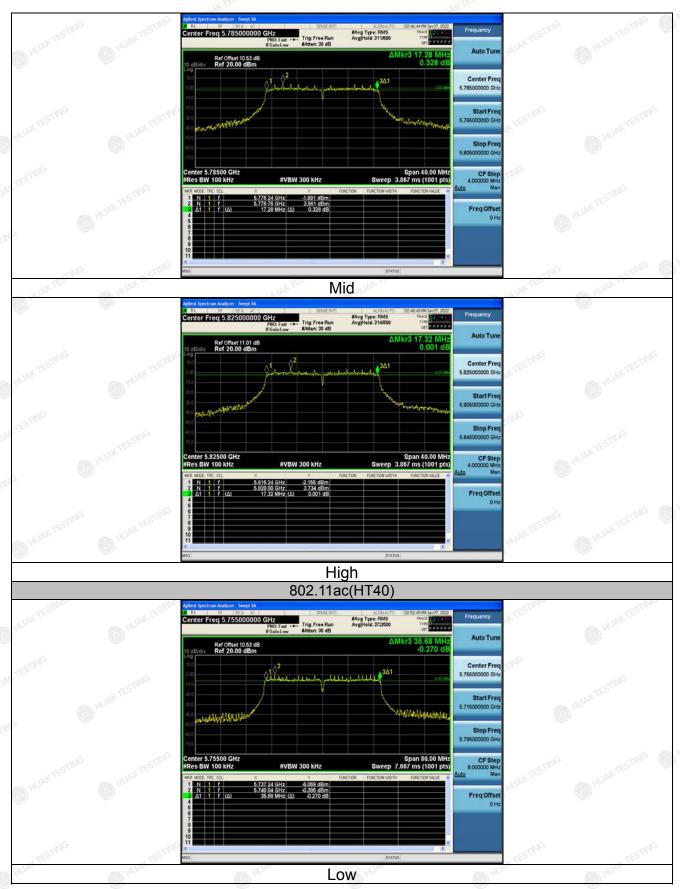

Test plots as follows:



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

ANT 2


Band IV (5725 - 5850 MHz)						
Test channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result		
CH149	5745	16.320	0.5	PASS		
CH157	5785	16.320	0.5	PASS		
CH161	5825	16.320	0.5	PASS		
CH149	5745	17.000	0.5	PASS		
CH157	5785	16.960	0.5	PASS		
CH161	5825	17.520	0.5	PASS		
CH151	5755	35.600	0.5	PASS		
CH159	5795	35.680	0.5	PASS		
CH149	5745	17.320	0.5	PASS		
CH157	5785	17.280	0.5	PASS		
CH165	5825	17.320	0.5	PASS		
CH151	5755	35.680	0.5	PASS		
CH159	5795	35.600	0.5	PASS		
CH155	5755	75.200	0.5	PASS		
	CH149 CH157 CH161 CH157 CH161 CH157 CH161 CH157 CH165 CH157 CH165 CH151 CH159	Test channel Frequency (MHz) CH149 5745 CH157 5785 CH161 5825 CH149 5745 CH157 5785 CH161 5825 CH151 5755 CH159 5795 CH149 5745 CH157 5785 CH157 5785 CH157 5785 CH159 5795 CH159 5795 CH159 5795	Test channel Frequency (MHz) 6 dB Bandwidth (MHz) CH149 5745 16.320 CH157 5785 16.320 CH161 5825 16.320 CH149 5745 17.000 CH157 5785 16.960 CH161 5825 17.520 CH151 5755 35.600 CH159 5795 35.680 CH157 5785 17.280 CH165 5825 17.320 CH151 5755 35.680 CH151 5755 35.680 CH151 5755 35.680 CH159 5795 35.600	Test channel Frequency (MHz) 6 dB Bandwidth (MHz) Limit (MHz) CH149 5745 16.320 0.5 CH157 5785 16.320 0.5 CH161 5825 16.320 0.5 CH149 5745 17.000 0.5 CH157 5785 16.960 0.5 CH161 5825 17.520 0.5 CH151 5755 35.600 0.5 CH159 5795 35.680 0.5 CH157 5785 17.320 0.5 CH165 5825 17.320 0.5 CH151 5755 35.680 0.5 CH151 5755 35.680 0.5 CH151 5755 35.680 0.5 CH159 5795 35.600 0.5		

Test plots as follows:

4.4. 26dB Bandwidth and 99% Occupied Bandwidth

4.4.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)					
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C					
Limit:	No restriction limits					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth RBW = 1% EBW, VBW≥3RBW, In order to make an accurate measurement. Measure and record the results in the test report. 					
Test Result:	N/A					

4.4.2. Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number Calibration Date		Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022	
RF cable	Times 💮	1-40G	HKE-034	Dec. 09, 2021	Dec. 08, 2022	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.4.3. Test Result

N/A

4.5. Power Spectral Density

4.5.1. Test Specification

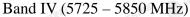
Test Requirement:	FCC Part15 E Section 15.407 (a)					
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F					
Limit:	≤30.00dBm/500KHz for Band IV 5725MHz-5850MHz					
Test Setup:	O HUAKTUSTUS					
	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	1. Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. 1. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. 2. Allow the sweeps to continue until the trace stabilizes. 3. Use the peak marker function to determine the maximum amplitude level. 4. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.					
Test Result:	PASS O HUME					

4.5.2. Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022		
RF cable	Times	1-40G	HKE-034	Dec. 09, 2021	Dec. 08, 2022		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022		

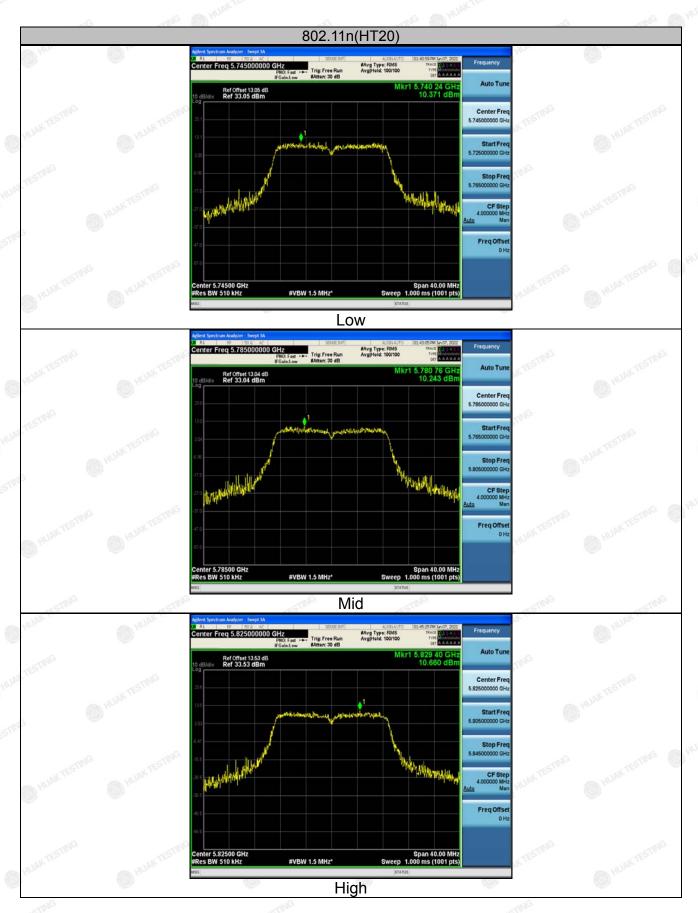
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.5.3. Test data

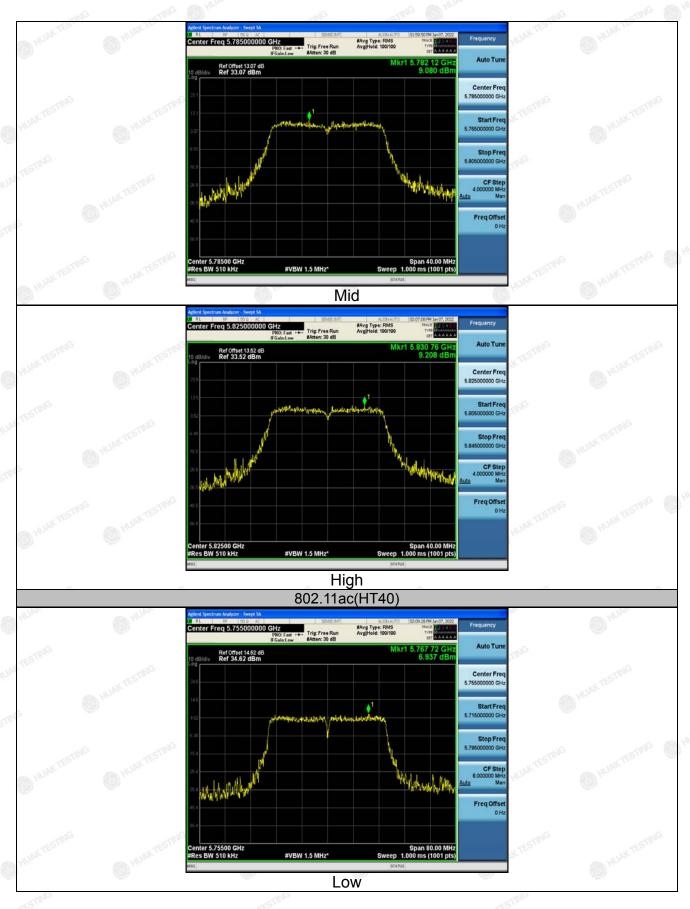

ANT 1

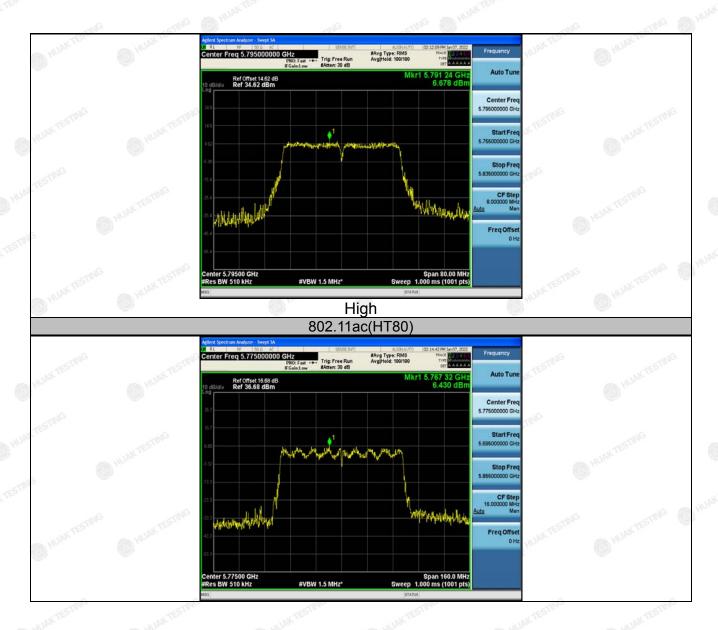

Report No.: HK2201060061-2

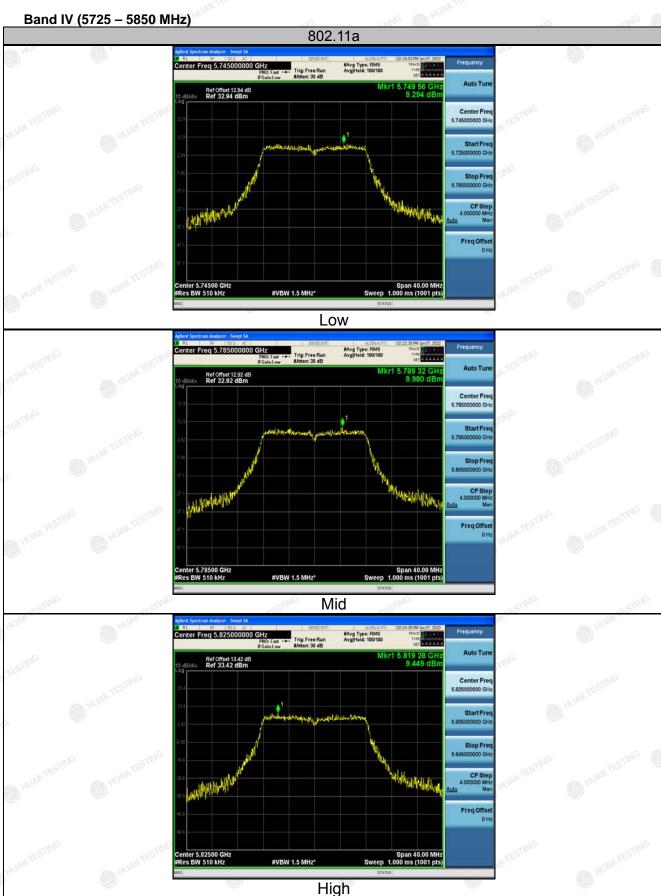
Configuration Band IV (5725 - 5850 MHz)								
Mode	Test channel	Level [dBm/510kHz]	10log(500/ 510)	Power Spectral Density	Limit (dBm/500kH z)	Result		
11a	CH149	9.57	-0.086	9.484	30	PASS		
11a	CH157	10.75	-0.086	10.664	30	PASS		
11a	CH165	10.97	-0.086	10.884	30	PASS		
11n HT20	CH149	10.37	-0.086	10.284	30	PASS		
11n HT20	CH157	10.24	-0.086	10.154	30	PASS		
11n HT20	CH165	10.66	-0.086	10.574	30	PASS		
11n HT40	CH151	6.31	-0.086	6.224	30	PASS		
11n HT40	CH159	6.35	-0.086	6.264	30	PASS		
11ac HT20	CH149	10.6	-0.086	10.514	30 and	PASS		
11ac HT20	CH157	9.08	-0.086	8.994	30	PASS		
11ac HT20	CH165	9.21	-0.086	9.124	30	PASS		
11ac HT40	CH151	6.94	-0.086	6.854	30	PASS		
11ac HT40	CH159	6.68	-0.086	6.594	30	PASS		
11ac HT80	CH155	6.43	-0.086	6.344	30	PASS		


Test plots as follows:

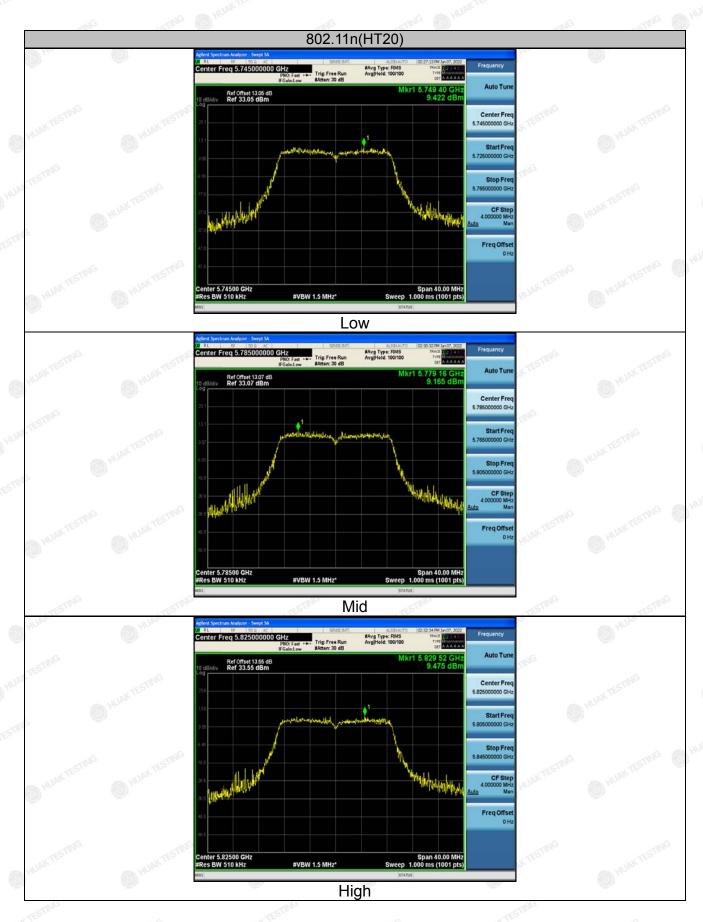




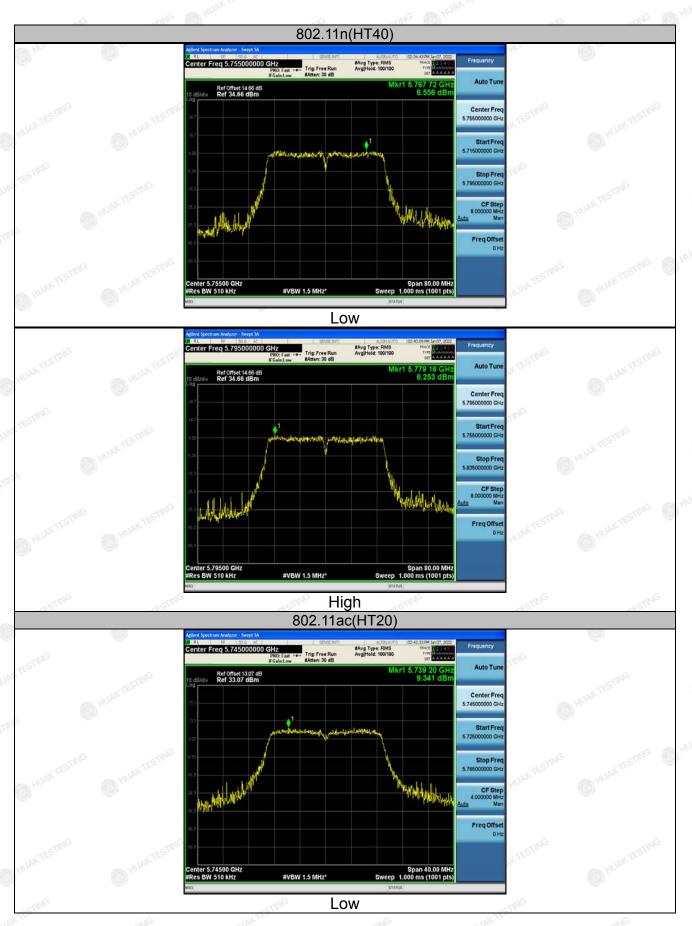


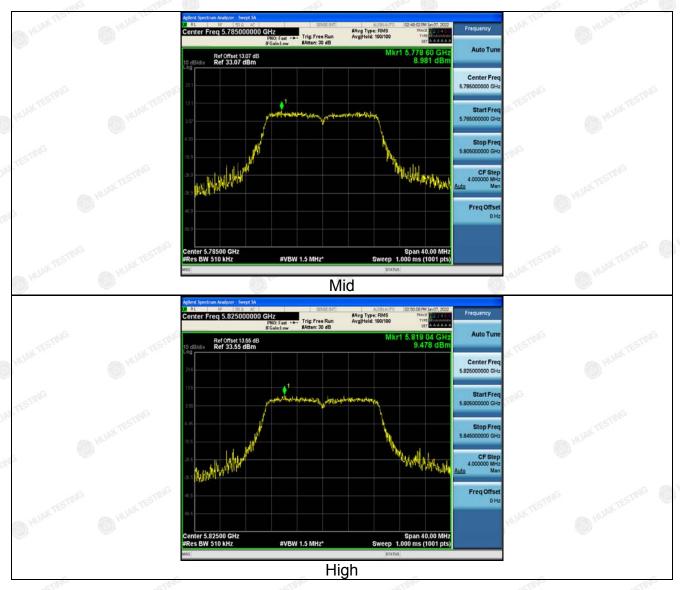


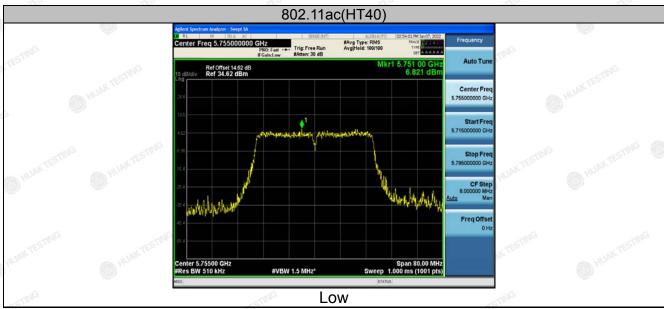
ANT 2


Configuration Band IV (5725 - 5850 MHz)									
Configuratio	n Band IV (5	7 23 - 383U WHZ	.)						
Mode	Test channel	Level [dBm/510kHz]	10log(500/5 10)	Power Spectral Density	Limit (dBm/500kH z)	Result			
₅₅₁₁₁₀ 11a	CH149	9.29	-0.086	9.204	₅ ¹⁰⁰ 30	PASS			
11a	CH157	9.98	-0.086	9.894	30	PASS			
11a	CH161	9.45	-0.086	9.364	30	PASS			
11n(HT20)	CH149	9.42	-0.086	9.334	30	PASS			
11n(HT20)	CH157	9.17	-0.086	9.084	30	PASS			
11n(HT20)	CH161	9.48	-0.086	9.394	30	PASS			
11n(HT40)	CH151	6.56	-0.086	6.474	30	PASS			
11n(HT40)	CH159	6.25	-0.086	6.164	30	PASS			
11ac(HT20)	CH149	9.34	-0.086	9.254	30	PASS			
11ac(HT20)	CH157	8.98	-0.086	8.894	30 and	PASS			
11ac(HT20)	CH161	9.48	-0.086	9.394	30	PASS			
11ac(HT40)	CH151	6.82	-0.086	6.734	30	PASS			
11ac(HT40)	CH159	6.65	-0.086	6.564	30	PASS			
11ac(HT80)	CH155	6.91	-0.086	6.824	30	PASS			
47-		ATTAL VI	430.000	40	A.A. 100.0007				

Test plots as follows:





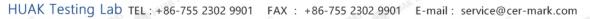


For MIMO antenna port 1+antenna port 2

Configuration Band IV (5725 - 5850 MHz)

TESTING	TESTING	TESTING	TESTINE	TESTING
Mode	Test channel	Power Density (dBm)	Limit (dBm)	Result
11a	CH149	/ KTESTING	30	KTESTING /
11a	CH157	() HO	30	/
11a	CH161	/	30	1
11n(HT20)	CH149	12.93	29.99	PASS
11n(HT20)	CH157	12.75	29.99	PASS
11n(HT20)	CH161	13.12	29.99	PASS
11n(HT40)	CH151	9.45	29.99	PASS
11n(HT40)	CH159	9.31	29.99	PASS
11ac(HT20)	CH149	13.03	29.99	PASS
11ac(HT20)	CH157	12.04	29.99	PASS
11ac(HT20)	CH161	12.36	29.99	PASS
11ac(HT40)	CH151	9.89	29.99	PASS
11ac(HT40)	CH159	9.68	29.99	PASS
11ac(HT80)	CH155	9.69	29.99	PASS
K TESTING		W, The end result is conv		Y TESTING

limit=30dBm-(direction gain-6dBi)=30-(3+10log2-6)=29.99dBm


Note: This product supports antenna 1 and antenna 2 launch, but only support 802.11 n/ac for MIMO mode, not support 802.11 a for MIMO mode.

4.6. Band edge

4.6.1. Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407						
Test Method:	ANSI C63.10 2013						
Limit:	(1)For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The limit of frequency below 1GHz and which fall in restricted bands should complies 15.209.						
Test Setup:	Ant. feed point 3 m 1-4 m Ground Plane Receiver Amp.						
Test Mode:	Transmitting mode with modulation						
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 						

VATA Y	HUAK TESTING
--------	--------------

5. The test-receiver system was set to Peak Detect
Function and Specified Bandwidth with Maximum Hold
Mode.
6. If the emission level of the EUT in peak mode was
10dB lower than the limit specified, then testing could be
stopped and the peak values of the EUT would be
reported. Otherwise the emissions that did not have
10dB margin would be re-tested one by one using peak,
quasipeak or average method as specified and then
reported in a data sheet.

Test Result:

PASS

Report No.: HK2201060061-2

Hf antenna

RF cable

RF cable

Horn Antenna

Spectrum analyzer

Schwarzbeck

Tonscend

Times

Schewarzbeck

R&S

4.6.2. Test Instruments

Radiated Emission Test Site (966) Serial Name of Calibration **Calibration Due Manufacturer** Model Number **Equipment Date** R&S ESRP3 HKE-005 Dec. 09, 2021 Dec. 08, 2022 Receiver N9020A HKE-048 Dec. 09, 2021 Dec. 08, 2022 Spectrum analyzer Agilent EMC051845S Preamplifier **EMCI** HKE-015 Dec. 09, 2021 Dec. 08, 2022 Dec. 09, 2021 Preamplifier 83051A HKE-016 Dec. 08, 2022 Agilent HKE-014 FMZB 1519 B Loop antenna Schwarzbeck Dec. 09, 2021 Dec. 08, 2022 Broadband antenna Schwarzbeck **VULB 9163** HKE-012 Dec. 09, 2021 Dec. 08, 2022 Schwarzbeck Dec. 09, 2021 Dec. 08, 2022 Horn antenna 9120D HKE-013 Antenna Mast Keleto CC-A-4M N/A N/A N/A Dec. 08, 2022 Position controller Dec. 09, 2021 Taiwan MF MF7802 HKE-011 Radiated test TS+ Rev N/A Tonscend HKE-082 N/A software 2.5.0.0 RF cable N/A **Times** 381806-001 N/A N/A (9KHz-1GHz)

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

HKE-031

HKE-099

HKE-034

HKE-017

HKE-025

Dec. 09, 2021

Dec. 08, 2022

LB-180400-KF

1-18G

1-40G

BBHA 9170

FSP40

4.6.3. Test Data

All modes of operation were investigated and the worst-case emissions of ANT.1 are reported. Operation Mode: 802.11a Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	51.33	-2.06	49.27	68.2	-18.93	peak
5700	90.74	-1.96	88.78	105.2	-16.42	peak
5720	95.68	-2.87	92.81	110.8	-17.99	peak
5725	110.25	-2.14	108.11	122.2	-14.09	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	52.17	-2.06	50.11	68.2	-18.09	peak
5700	95.13	-1.96	93.17	105.2	-12.03	peak
5720	96.39	-2.87	93.52	110.8	-17.28	peak
5725	115.72	-2.14	113.58	122.2	-8.62	peak
- CLINC	CIME	A	100	TIME	ETING	-CTINC

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata X Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	111.64	-1.97	109.67	122.2	-12.53	peak
5855	96.34	-2.13	94.21	110.8	-16.59	peak
5875	89.34	-2.65	86.69	105.2	-18.51	peak
5925	57	-2.28	54.72	68.2	-13.48	peak

Vertical:

TEST	1752711	TESTIN	1783		TEST	1753
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	105.34	-1.97	103.37	122.2	-18.83	peak
5855	93.67	-2.13	91.54	110.8	-19.26	peak
5875	88.24	-2.65	85.59	105.2	-19.61	peak
5925	54.54	-2.28	52.26	68.2	-15.94	peak
	-	(6)33			(5)533	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11n20 Mode with 5.8G TX CH Low

Horizontal

requency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata # Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	57.41	-2.06	55.35	68.2	-12.85	peak
5700	92.35	-1.96	90.39	105.2	-14.81	peak
5720	96.35	-2.87	93.48	110.8	-17.32	peak
5725	112.34	-2.14	110.2	122.2	-12	peak
	(MHz) 5650 5700 5720	(MHz) (dBμV) 5650 57.41 5700 92.35 5720 96.35	(MHz) (dBμV) (dB) 5650 57.41 -2.06 5700 92.35 -1.96 5720 96.35 -2.87	(MHz) (dBμV) (dB) (dBμV/m) 5650 57.41 -2.06 55.35 5700 92.35 -1.96 90.39 5720 96.35 -2.87 93.48	(MHz) (dBμV) (dB) (dBμV/m) (dBμV/m) 5650 57.41 -2.06 55.35 68.2 5700 92.35 -1.96 90.39 105.2 5720 96.35 -2.87 93.48 110.8	(MHz) (dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 5650 57.41 -2.06 55.35 68.2 -12.85 5700 92.35 -1.96 90.39 105.2 -14.81 5720 96.35 -2.87 93.48 110.8 -17.32

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
61.35	-2.06	59.29	68.2	-8.91	peak
96.34	-1.96	94.38	105.2	-10.82	peak
94.68	-2.87	91.81	110.8	-18.99	peak
112.34	-2.14	110.2	122.2	-12	peak
	61.35 96.34 94.68	(dBµV) (dB) 61.35 -2.06 96.34 -1.96 94.68 -2.87	(dBμV) (dB) (dBμV/m) 61.35 -2.06 59.29 96.34 -1.96 94.38 94.68 -2.87 91.81	(dBμV) (dB) (dBμV/m) (dBμV/m) 61.35 -2.06 59.29 68.2 96.34 -1.96 94.38 105.2 94.68 -2.87 91.81 110.8	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 61.35 -2.06 59.29 68.2 -8.91 96.34 -1.96 94.38 105.2 -10.82 94.68 -2.87 91.81 110.8 -18.99

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Operation Mode: TX CH High with 5.8G

Horizontal

Meter Reading	Factor	Emission Level	Limits	Margin	Data atom Tuma
) (dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
111.25	-1.97	109.28	122.2	-12.92	peak
95.68	-2.13	93.55	110.8	-17.25	peak
89.89	-2.65	87.24	105.2	-17.96	peak
54.16	-2.28	51.88	68.2	-16.32	peak
	(dBµV) 111.25 95.68 89.89	(dBμV) (dB) 111.25 -1.97 95.68 -2.13 89.89 -2.65	(dBμV) (dB) (dBμV/m) 111.25 -1.97 109.28 95.68 -2.13 93.55 89.89 -2.65 87.24	(dBμV) (dB) (dBμV/m) (dBμV/m) 111.25 -1.97 109.28 122.2 95.68 -2.13 93.55 110.8 89.89 -2.65 87.24 105.2	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 111.25 -1.97 109.28 122.2 -12.92 95.68 -2.13 93.55 110.8 -17.25 89.89 -2.65 87.24 105.2 -17.96

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Elimits	Margin	Detector Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	107.98	-1.97	106.01	122.2	-16.19	peak
5855	94.35	-2.13	92.22	110.8	-18.58	peak
5875	88.25	-2.65	85.6	105.2	-19.6	peak
5925	57.66	-2.28	55.38	68.2	-12.82	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

S FIL

Operation Mode: 802.11n40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data da Ting
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	57.49	-2.06	55.43	68.2	-12.77	peak
5700	93.25	-1.96	91.29	105.2	-13.91	peak
5720	94.94	-2.87	92.07	110.8	-18.73	peak
5725	112.06	-2.14	109.92	122.2	-12.28	peak

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
52.01	-2.06	49.95	68.2	-18.25	peak
96.17	-1.96	94.21	105.2	-10.99	peak
96.33	-2.87	93.46	110.8	-17.34	peak
112.76	-2.14	110.62	122.2	-11.58	peak
	(dBµV) 52.01 96.17 96.33	(dBµV) (dB) 52.01 -2.06 96.17 -1.96 96.33 -2.87	(dBμV) (dB) (dBμV/m) 52.01 -2.06 49.95 96.17 -1.96 94.21 96.33 -2.87 93.46	(dBμV) (dB) (dBμV/m) (dBμV/m) 52.01 -2.06 49.95 68.2 96.17 -1.96 94.21 105.2 96.33 -2.87 93.46 110.8	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 52.01 -2.06 49.95 68.2 -18.25 96.17 -1.96 94.21 105.2 -10.99 96.33 -2.87 93.46 110.8 -17.34

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	106.35	-1.97	104.38	122.2	-17.82	peak
5855	95.25	-2.13	93.12	110.8	-17.68	peak
5875	88.74	-2.65	86.09	105.2	-19.11	peak
5925	54.21	-2.28	51.93	68.2	-16.27	peak
Remark: Factor	= Antenna Factor	+ Cable Loss	- Pre-amplifier.	0	TESTING	AK TESTING

Vertical:

Detector Typ	Margin	Limits	Emission Level	Factor	Meter Reading	Frequency
Detector Typ	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV)	(MHz)
peak	-16.92	122.2	105.28	-1.97	107.25	5850
peak	-17.59	110.8	93.21	-2.13	95.34	5855
peak	-19.08	105.2	86.12	-2.65	88.77	5875
peak	-16.13	68.2	52.07	-2.28	54.35	5925

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11ac20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	57.14	-2.06	55.08	68.2	-13.12	peak
5700	88.32	-1.96	86.36	105.2	-18.84	peak
5720	95.34	-2.87	92.47	110.8	-18.33	peak
5725	110.25	-2.14	108.11	122.2	-14.09	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	58.17	-2.06	56.11	68.2	-12.09	peak
5700	91.35	-1.96	89.39	105.2	-15.81	peak
5720	95.36	-2.87	92.49	110.8	-18.31	peak
5725	110.25	-2.14	108.11	122.2	-14.09	peak
Remark: Factor	= Antenna Factor	Cable Loss	Pre-amplifier.			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Operation Mode: TX CH High with 5.8G

Horizontal

TES	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata * Tura
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
NG	5850	112.35	-1.97	110.38	122.2	-11.82	peak
	5855	95.72	-2.13	93.59	110.8	-17.21	peak
	5875	89.56	-2.65	86.91	105.2	-18.29	peak
	5925	54.21	-2.28	51.93	68.2	-16.27	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D. HUAK TE
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	111.39	-1.97	109.42	122.2	-12.78	peak
5855	93.25	-2.13	91.12	110.8	-19.68	peak
5875	92.34	-2.65	89.69	105.2	-15.51	peak
5925	56.23	-2.28	53.95	68.2	-14.25	peak

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: 802.11ac40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata E Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	58.14	-2.06	56.08	68.2	-12.12	peak
5700	89.65	-1.96	87.69	105.2	-17.51	peak
5720	94.94	-2.87	92.07	110.8	-18.73	peak
5725	112.37	-2.14	110.23	122.2	-11.97	peak
Domark: Factor	r = Antenna Factor -	L Cabla L aga	Dro amplifier		TESTING	V TESTING

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	57.24	-2.06	55.18	68.2	-13.02	peak
5700	89.32	-1.96	87.36	105.2	-17.84	peak
5720	94.35	-2.87	91.48	110.8	-19.32	peak
5725	111.02	-2.14	108.88	122.2	-13.32	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

TES	requency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
NG	5850	110.25	-1.97	108.28	122.2	-13.92	peak
	5855	95.34	-2.13	93.21	110.8	-17.59	peak
	5875	89.37	-2.65	86.72	105.2	-18.48	peak
	5925	56.28	-2.28	54	68.2	-14.2	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	HAKTESTIL
		(60)	(60)	(60)		Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
5850	112.36	-1.97	110.39	122.2	-11.81	peak
5855	93.14	-2.13	91.01	110.8	-19.79	peak
5875	89.27	-2.65	86.62	105.2	-18.58	peak
5925	60.25	-2.28	57.97	68.2	-10.23	peak
	•	(6)97			5373	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Operation Mode: 802.11ac80 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
se 5650	57.19	-2.06	55.13	68.2	-13.07	peak
5700	89.16	-1.96	87.2	105.2	-18	peak
5720	94.25	-2.87	91.38	110.8	-19.42	peak
5725	112.35	-2.14	110.21	122.2	-11.99	peak
Damerky Facto	r = Antonno Footor	ı Cabla I aas	Dro amplifiar	-	STING	TESTAND

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

and UV.	UV.	and the second s	arts VIV	and DIV	N. VAV	
Detector Type	Margin	Limits	Emission Level	Factor	Meter Reading	Frequency
Detector Type	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV)	(MHz)
peak	-12.42	68.2	55.78	-2.06	57.84	5650
peak	-15.82	105.2	89.38	-1.96	91.34	5700
peak	-16.42	110.8	94.38	-2.87	97.25	5720
peak	-13.23	122.2	108.97	-2.14	111.11	5725

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reporduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	112.02	-1.97	110.05	122.2	-12.15	peak
5855	95.34	-2.13	93.21	110.8	-17.59	peak
5875	89.89	-2.65	87.24	105.2	-17.96	peak
5925	52.33	-2.28	50.05	68.2	-18.15	peak

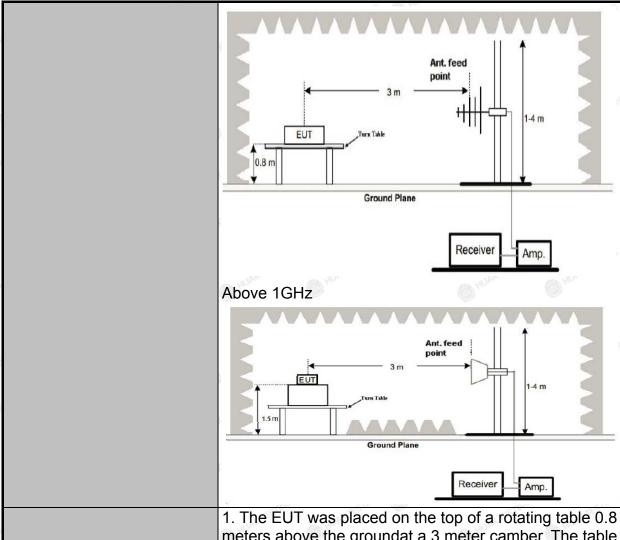
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	HUAK TE
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	110.25	-1.97	108.28	122.2	-13.92	peak
5855	95.34	-2.13	93.21	110.8	-17.59	peak
5875	89.34	-2.65	86.69	105.2	-18.51	peak
5925	56.02	-2.28	53.74	68.2	-14.46	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

4.7. Spurious Emission


4.7.1.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407 & 15.209 & 15.205						
Test Method:	KDB 789033	D02 v02r0	1 (HUAR	HUAR		
Frequency Range:	9kHz to 40G	Hz		STING			
Measurement Distance:	3 m	A TESTING	M HIL	AKTE	A TESTING		
Antenna Polarization:	Horizontal &	Vertical		.0	O HOS		
Operation mode:	Transmitting	mode with	modulat	ion			
	Frequency 9kHz- 150kHz	Detector Quasi-peak	RBW 200Hz	VBW 1kHz	Remark Quasi-peak Value		
Receiver Setup:	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value		
·	30MHz-1GHz	Quasi-peak Peak	120KHz 1MHz	300KHz 3MHz	Quasi-peak Value Peak Value		
	Above 1GHz	Peak	1MHz	10Hz	Average Value		
Limit:	an e.i.r.p. of -2 (2) For transmi emissions outs an e.i.r.p. of -2 (3) For transmi emissions outs an e.i.r.p. of -2 (4) For transmi (i) All emission MHz or more a to 10 dBm/MH from 25 MHz a to a level of 15 edge, and from linearly to a lev The limit of free ands should	side of the 5.27 dBm/MHz itters operation of the 5.27 dBm/MHz itters operation of the 5.27 dBm/MHz itters operation of the 5.28 dBm/MHz itters operation of 25 dBm/MHz itters of 25 dBm/MHz in 5 dBm/MHz	15-5.35 G . ng in the 5 15-5.35 G . ng in the 5 47-5.725 G . ng in the 5 hited to a l bw the bar above or bw the bar above or bw the bar at 5 MHz we or below n/MHz at 1 w 1GHz at 209.	5.25-5.35 GHz band s 5.47-5.725 GHz band 5.725-5.85 evel of -2 nd edge in below the nd edge in a bove or w the band the band of	GHz band: All shall not exceed GHz band: All shall not exceed GHz band: All shall not exceed GHz band: GHz		
Test setup:	ands should complies 15.209. For radiated emissions below 30MHz RX Antenna Ground Plane Receiver						

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have

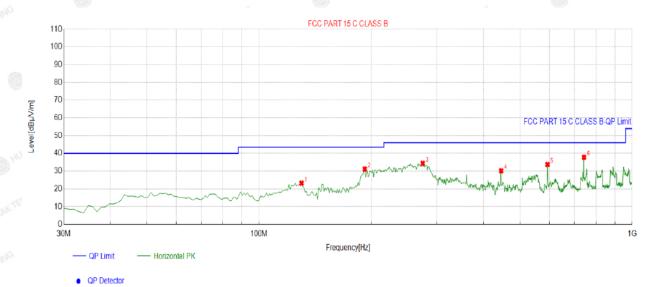
The results s

Test Procedure:

is document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Page 64 of 86 Report No.: HK2201060061-2

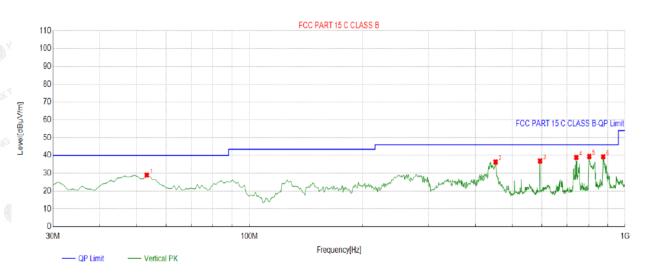
	10dB margin would bere-tested one by one using peak, quasi-peak or average method as specified andthen reported in a data sheet.
Test results:	PASS


4.7.2. Test Data

test mode: TX 802.11a 5745MHz

All the test modes completed for test. The worst case of Radiated Emission; the test data of this mode was reported.

Below 1GHz


Horizontal

Suspected List Freq. Factor Reading Level Limit Margin Height Angle NO Polarity [MHz] [dB] $[dB\mu V/m]$ $[dB\mu V/m]$ $[dB\mu V/m]$ [dB] [cm] [°] 130.0100 -18.57 41.78 23.21 43.50 20.29 100 338 Horizontal 2 192.1522 -15.81 46.96 31.15 43.50 12.35 100 317 Horizontal 274.6847 -13.47 47.90 34.43 46.00 11.57 100 314 Horizontal 3 445.5756 -9.18 39.34 30.16 46.00 15.84 100 29 4 Horizontal 275 5 -6.57 40.37 33.80 46.00 12.20 100 593.1632 Horizontal 6 742.6927 -4.02 41.88 37.86 46.00 8.14 100 246 Horizontal

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Vertical

QP Detector

S	Suspected List									
< 1	NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
	1	53.3033	-14.15	43.10	28.95	40.00	11.05	100	167	Vertical
	2	452.3724	-8.91	45.23	36.32	46.00	9.68	100	347	Vertical
>	3	594.1341	-6.50	43.39	36.89	46.00	9.11	100	318	Vertical
	4	741.7217	-4.06	42.93	38.87	46.00	7.13	100	326	Vertical
	5	802.8929	-3.07	42.54	39.47	46.00	6.53	100	328	Vertical
	6	874.7447	-2.16	41.48	39.32	46.00	6.68	100	331	Vertical

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequen	ıcy (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
		-1G	(D) `
	LOK TES		ON TESTI
TING	- STING AR	TING STING	THE STING
OKTES	MAKIN	MYTES! WAKTE	AKTES - WAKTE

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Above 1GHz

All modes of operation were investigated and the worst-case of Ant 1 are reported.

LOW CH 149 (802.11 a Mode with 5.8G)/5745

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Ture
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	56.38	-4.59	51.79	68.2	-16.41	peak
11096	50.25	4.21	54.46	74	-19.54	peak
11096	38.69	4.21	42.9	54	-11.1	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	59.32	-4.59	54.73	68.2	-13.47	peak
11096	54.14	4.21	58.35	74	-15.65	peak
11096	37.28	4.21	41.49	54	-12.51	AVG
14.	3					(00)

MID CH157 (802.11 a Mode with 5.8G)/5785

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	58.69	-4.59	54.1	68.2	-14.1	peak
10523	54.21	4.21	58.42	68.2	-9.78	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	57.64	-4.59	53.05	68.2	-15.15	peak
10523	56.32	4.21	60.53	68.2	-7.67	peak
	CTING	THE HUAN	CTING	The second	110	CTING

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH 165 (802.11a Mode with 5.8G)/5825

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	59.34	-4.59	54.75	74	-19.25	peak
2705	48.17	-4.59	43.58	54	-10.42	AVG
11717	54.21	4.84	59.05	74	-14.95	peak
11717	37.69	4.84	42.53	54	-11.47	AVG
LAKTE	MAR	· AA	THE HUAR		IAKTE	THE HUAR

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	MAKTESTA
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	60.32	-4.59	55.73	74	-18.27	peak
2705	45.12	-4.59	40.53	54	-13.47	AVG
11717	51.24	4.84	56.08	74 TEST	-17.92	peak
11717	39.87	4.84	44.71	54	-9.29	AVG
1016	JUPA	101	- 10 kg		IARTE	- UDA

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11n20 Mode

LOW CH 149

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	58.39	-4.59	53.8	68.2	-14.4	peak
11096	57.57	4.21	61.78	74	-12.22	peak
11096	40.33	4.21	44.54	54	-9.46	AVG

Report No.: HK2201060061-2

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	54.38	-4.59	49.79	68.2	-18.41	peak
11096	56.24	4.21	60.45	74	-13.55	peak
11096	38.17	4.21	42.38	54	_o -11.62	AVG
		TES		TES		•

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	60.35	-4.59	55.76	68.2	-12.44	peak
10523	49.27	4.21	53.48	68.2	-14.72	peak

Vertical:

Frequency N	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	55.25	-4.59	50.66	68.2	-17.54	peak
10523	52.14	4.21	56.35	68.2	-11.85	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

HIGH CH165

Horizontal:

(MHz) (dBμV) (dB) (dBμV/m 2705 60.28 -4.59 55.69 2705 45.16 -4.59 40.57	n) (dBµV/m)) (dB) -18.31	Detector Type
ESTING IN AR	74	-18.31	peak
2705 45.16 -4.59 40.57	-110-	47.71	-100
	54	-13.43	AVG
11717 56.34 4.84 61.18	74	-12.82	peak
11717 39.28 4.84 44.12	54	-9.88	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

			ALC:			-0.1
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	60.28	-4.59	55.69	74	-18.31	peak
2705	49.22	-4.59	44.63	54	-9.37	AVG
11717	53.35	4.84	58.19	74 KTEST	-15.81	peak
11717	38.74	4.84	43.58	54	-10.42	AVG
10%	110 ho	10/2	- 10ho		10/4	- 110hm

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11n40 Mode

LOW CH 151

Horizontal:

las.	4 164	4 120	41/2		47 1/4	4 1/4
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	60.28	-4.59	55.69	68.2	-12.51	peak
11096	57.14	4.21	61.35	74	-12.65	peak
11096	39.25	4.21	43.46	54	-10.54	AVG

Vertical:

- 1/-	44	- 1/- 1/-	- W 1-			
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	58.17	-4.59	53.58	68.2	-14.62	peak
11096	59.33	4.21	63.54	74	-10.46	peak
11096	38.69	4.21	42.9	54	-11.1	AVG
csim	TES		STILL TES		csilin	TES

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH159

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	58.14	-4.59	53.55	68.2	-14.65	peak
10523	54.32	4.21	58.53	68.2	-9.67	peak

Vertical:

NO.		ATTAC MA	Diction, 1		ATTAC MAN	Particular, 1
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	57.14	-4.59	52.55	68.2	-15.65	peak
10523	52.69	4.21	56.9	68.2	-11.3	peak
The		STING	1		STING	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac20 Mode

LOW CH 149

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	62.35	-4.59	57.76	68.2	-10.44	peak
11096	52.14	4.21	56.35	74	-17.65	peak
11096	38.47	4.21	42.68	54	-11.32	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	62.35	-4.59	57.76	68.2	-10.44	peak
11096	57.14	4.21	61.35	74	-12.65	peak
11096	38.22	4.21	42.43	54 (1571)	-11.57	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	57.69	-4.59	53.1	68.2	-15.1	peak
10523	55.03	4.21	59.24	68.2	-8.96	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	55.17	-4.59	50.58	68.2	-17.62	peak
10523	50.22	4.21	54.43	68.2	-13.77	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH165

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	61.34	-4.59	56.75	74	-17.25	peak
2705	45.65	-4.59	41.06	54	-12.94	AVG
11717	52.28	4.84	57.12	74	-16.88	peak
11717	37.16	4.84	42	54	-12	AVG
OKTE	MAK	120.	- JUAN		· ak Ita	- JUAN

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	59.34	-4.59	54.75	74	-19.25	peak
2705	47.14	-4.59	42.55	54	-11.45	AVG
11717	53.69	4.84	58.53	74	-15.47	peak
11717	37.19	4.84	42.03	54	-11.97	AVG
100	11 Jan	20.	11 1/2		.016	11 120

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac40 Mode

LOW CH 151

Horizontal:

-	leter Reading	Factor	Emission Level	Limits	Margin	Data atau Tuus
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	62.38	-4.59	57.79	68.2	-10.41	peak
11096	59.17	4.21	63.38	74	-10.62	peak
11096	38.22	4.21	42.43	54	-11.57	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	O HUM
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	64.27	-4.59	59.68	68.2	-8.52	peak
11096	57.18	4.21	61.39	74	_s -12.61	peak
11096	36.99	4.21	41.2	54	-12.8	AVG
-6711	TED	110	-STILL		-GTM	160

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

IG TING

Horizontal:

MID CH159

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tyre
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	63.36	-4.59	58.77	68.2	-9.43	peak
10523	54.22	4.21	58.43	68.2	-9.77	peak

Report No.: HK2201060061-2

Vertical:

NO.	1,1	600 HV	NOTES 1		ATTAL MO	NOTED, 1
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	61.24	-4.59	56.65	68.2	-11.55	peak
10523	52.72	4.21	56.93	68.2	-11.27	peak
STING		ESTING			CSTING	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac80 Mode

CH 155

Horizontal:

1	5533	(0.93	(0.59)	(1.5)	33	USS
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	61.22	-4.59	56.63	68.2	-11.57	peak
11096	56.89	4.21	61.1	74	-12.9	peak
11096	37.18	4.21	41.39	54	-12.61	AVG
		W Hon			NO HOL	(15/03)

Report No.: HK2201060061-2

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

		District Co.	2000007	1000	N. T.	2002/00/2
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	62.38	-4.59	57.79	68.2	-10.41	peak
11096	55.26	4.21	59.47	74 TEST	-14.53	peak
11096	39.17	4.21	43.38	54	-10.62	AVG
Ulpir.	Hou	- Upi	Mo.		- UDAI	HO.

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

4.8. Frequency Stability Measurement

4.8.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g)				
Test Method:	ANSI C63.10: 2013				
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.				
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply				
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.				
Test Result:	PASS THE THE THE THE THE				
Remark:	N/A MARKET MARKE				

Test Result as follows:

Mode	Voltage (V)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
	10.8V	5744.953	-47	5824.973	-27
5.8G Band	12.0V	5745.017	17	2824.960	-40
MAKIT.	13.2V	5745.025	25	5825.021	21

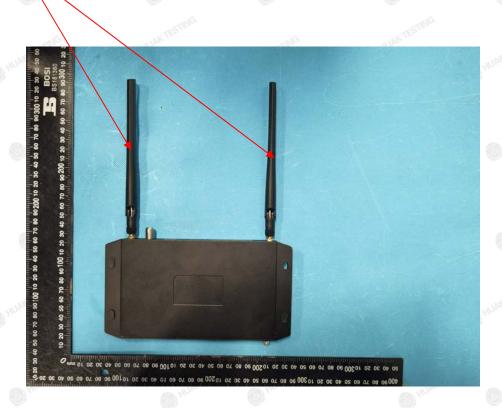
Mode	Temperature (°C)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
3	-30	5744.967	-33	2824.973	-27
HUAKTE	-20	5744.990	-10	5825.030	30
	-10	5745.021	21	2824.960	-40
ESTING	O HUAK T	5745.005	₁₁ 5	5825.008	8
5.8G Band	10	5745.048	48	2825.006	6
	20	5745.002	2	5825.009	9
STING ON TEST	30	5745.032	32	2824.972	-28
	40	5744.956	-44	5824.951	-49
	50	5745.028	28	2824.969	-31

4.9. ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.249, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

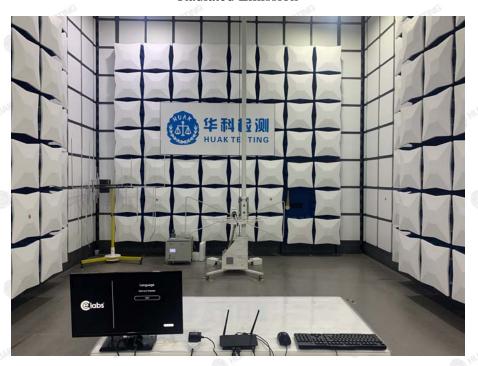
Report No.: HK2201060061-2


Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a External Antenna which professional installation is required and cannot be dismantled easily, and the best case gain of the antenna is Antenna port 1:3dBi and Antenna port 2:3dBi.


ANTENNA

4.10. Photographs of Test Setup

4.11. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,