|                                  | TEST REP                                                                                                                                            | ORT                                  |       |  |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------|--|--|
| FCC ID :                         | 2AO9PTWS500SPK                                                                                                                                      |                                      |       |  |  |
| Test Report No:                  | TCT220407E039                                                                                                                                       |                                      |       |  |  |
| Date of issue:                   | Apr. 15, 2022                                                                                                                                       |                                      |       |  |  |
| Testing laboratory: :            | SHENZHEN TONGCE TE                                                                                                                                  | STING LAB                            |       |  |  |
| Testing location/ address:       | TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai<br>Street, Bao'an District Shenzhen, Guangdong, 518103, People's<br>Republic of China |                                      |       |  |  |
| Applicant's name: :              | Elita International Limited                                                                                                                         | $\left( \mathcal{C}^{\prime}\right)$ |       |  |  |
| Address:                         | 29F 2, Building 2, China Phoenix Building, No.2008 Shennan<br>Avenue, Futian District, Shenzhen, Guangdong, China                                   |                                      |       |  |  |
| Manufacturer's name :            | Dongguan Suoteng Technology Co., Ltd                                                                                                                |                                      |       |  |  |
| Address:                         | 6th Floor, Building A, Huiheng Industrial Zone, Shajiao<br>Community, Humen Town, Dongguan, Guangdong, China                                        |                                      |       |  |  |
| Standard(s):                     | FCC CFR Title 47 Part 15 Subpart C Section 15.247<br>FCC KDB 558074 D01 15.247 Meas Guidance v05r02<br>ANSI C63.10:2013                             |                                      |       |  |  |
| Product Name::                   | TRUE WIRELESS BLUETOOTH SPEAKERS                                                                                                                    |                                      |       |  |  |
| Trade Mark:                      | VIVITAR                                                                                                                                             |                                      | S)    |  |  |
| Model/Type reference :           | TWS500SPK                                                                                                                                           |                                      |       |  |  |
| Rating(s):                       | Rechargeable Li-ion Batte                                                                                                                           | ry DC 3.7V                           |       |  |  |
| Date of receipt of test item     | Apr. 07, 2022                                                                                                                                       |                                      |       |  |  |
| Date (s) of performance of test: | Apr. 07, 2022 - Apr. 15, 2022                                                                                                                       |                                      |       |  |  |
| Tested by (+signature) :         | Brews XU                                                                                                                                            | forens the                           | NGCET |  |  |
| Check by (+signature) :          | Beryl ZHAO                                                                                                                                          | Bart 26                              | CT    |  |  |
| Approved by (+signature):        | Tomsin Tomsin 3                                                                                                                                     |                                      |       |  |  |

TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

# **Table of Contents**

TCT 通测检测 TESTING CENTRE TECHNOLOGY

| 1. General Product Information               |
|----------------------------------------------|
| 1.1. EUT description                         |
| 1.2. Model(s) list                           |
| 1.3. Operation Frequency                     |
| 2. Test Result Summary                       |
| 3. General Information                       |
| 3.1. Test environment and mode               |
| 3.2. Description of Support Units5           |
| 4. Facilities and Accreditations             |
| 4.1. Facilities                              |
| 4.2. Location                                |
| 4.3. Measurement Uncertainty6                |
| 5. Test Results and Measurement Data7        |
| 5.1. Antenna requirement7                    |
| 5.2. Conducted Emission                      |
| 5.3. Conducted Output Power12                |
| 5.4. 20dB Occupy Bandwidth13                 |
| 5.5. Carrier Frequencies Separation14        |
| 5.6. Hopping Channel Number15                |
| 5.7. Dwell Time16                            |
| 5.8. Pseudorandom Frequency Hopping Sequence |
| 5.9. Conducted Band Edge Measurement18       |
| 5.10.Conducted Spurious Emission Measurement |
| 5.11.Radiated Spurious Emission Measurement  |
| Appendix A: Test Result of Conducted Test    |
| Appendix B: Photographs of Test Setup        |
| Appendix C: Photographs of EUT               |



## **1. General Product Information**

## 1.1. EUT description

| Product Name:          | TRUE WIRELESS BLUETOOTH SPEAKERS    |
|------------------------|-------------------------------------|
| Model/Type reference:  | TWS500SPK                           |
| Sample Number:         | TCT220407E039-0101                  |
| Bluetooth Version:     | V5.3 (This report is for BDR+EDR)   |
| Operation Frequency:   | 2402MHz~2480MHz                     |
| Transfer Rate:         | 1/2/3 Mbits/s                       |
| Number of Channel:     | 79                                  |
| Modulation Type:       | GFSK, π/4-DQPSK, 8DPSK              |
| Modulation Technology: | FHSS                                |
| Antenna Type:          | PCB Antenna                         |
| Antenna Gain:          | 0.68dBi                             |
| Rating(s):             | Rechargeable Li-ion Battery DC 3.7V |
|                        |                                     |

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

## 1.2. Model(s) list

None.

## 1.3. Operation Frequency

| Channel | Frequency    | Channel    | Frequency    | Channel    | Frequency   | Channel  | Frequency          |
|---------|--------------|------------|--------------|------------|-------------|----------|--------------------|
| 0       | 2402MHz      | 20         | 2422MHz      | 40         | 2442MHz     | 60       | 2462MHz            |
| 1       | 2403MHz      | 21         | 2423MHz      | 41         | 2443MHz     | 61       | 2463MHz            |
|         |              |            |              |            |             |          |                    |
| 10      | 2412MHz      | 30         | 2432MHz      | 50         | 2452MHz     | 70       | 2472MHz            |
| 11      | 2413MHz      | 31         | 2433MHz      | 51         | 2453MHz     | 71       | 2473MHz            |
| ·       |              |            |              |            |             |          |                    |
| 18      | 2420MHz      | 38         | 2440MHz      | 58         | 2460MHz     | 78       | 2480MHz            |
| 19      | 2421MHz      | 39         | 2441MHz      | 59         | 2461MHz     |          | $\left( c \right)$ |
| Remark: | Channel 0, 3 | 89 & 78 ha | ave been tes | sted for G | GFSK, π/4-D | QPSK, 8I | DPSK               |

modulation mode.

Report No.: TCT220407E039



## 2. Test Result Summary

| Requirement                         | CFR 47 Section      | Result |  |  |
|-------------------------------------|---------------------|--------|--|--|
| Antenna Requirement                 | §15.203/§15.247 (c) | PASS   |  |  |
| AC Power Line Conducted<br>Emission | §15.207             | PASS   |  |  |
| Conducted Peak Output<br>Power      | §15.247 (b)(1)      | PASS   |  |  |
| 20dB Occupied Bandwidth             | §15.247 (a)(1)      | PASS   |  |  |
| Carrier Frequencies<br>Separation   | §15.247 (a)(1)      | PASS   |  |  |
| Hopping Channel Number              | §15.247 (a)(1)      | PASS   |  |  |
| Dwell Time                          | §15.247 (a)(1)      | PASS   |  |  |
| Radiated Emission                   | §15.205/§15.209     | PASS   |  |  |
| Band Edge                           | §15.247(d)          | PASS   |  |  |

#### Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

## 3. General Information

## 3.1. Test environment and mode

| Operating Environment:                                                                                                 |                                                                                            |                                                             |  |  |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|--|
| Condition                                                                                                              | Conducted Emission                                                                         | Radiated Emission                                           |  |  |
| Temperature:                                                                                                           | 25.0 °C                                                                                    | 23.9 °C                                                     |  |  |
| Humidity:                                                                                                              | 55 % RH                                                                                    | 48 % RH                                                     |  |  |
| Atmospheric Pressure:                                                                                                  | 1010 mbar                                                                                  | 1010 mbar                                                   |  |  |
| Test Software:                                                                                                         |                                                                                            |                                                             |  |  |
| Software Information:                                                                                                  | FCC_assist_1.0.2.2                                                                         |                                                             |  |  |
| Power Level:                                                                                                           | 10                                                                                         |                                                             |  |  |
| Test Mode:                                                                                                             |                                                                                            |                                                             |  |  |
| Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery |                                                                                            |                                                             |  |  |
| above the ground plane of 3 polarities were performed. I                                                               | 8m & 1.5m for the measure<br>8m chamber. Measurements in<br>During the test, each emission | n both horizontal and vertica<br>n was maximized by: having |  |  |

the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case( Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

## 3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Equipment | Model No. | Serial No.       | FCC ID | Trade Name |
|-----------|-----------|------------------|--------|------------|
| Adapter   | JD-050200 | 2012010907576735 | /      | JD         |
|           |           |                  |        |            |

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

## 4. Facilities and Accreditations

## 4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

## 4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

## 4.3. Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                                    | MU        |
|-----|-----------------------------------------|-----------|
| 1   | Conducted Emission                      | ± 3.10 dB |
| 2   | RF power, conducted                     | ± 0.12 dB |
| 3   | Spurious emissions, conducted           | ± 0.11 dB |
| 4   | All emissions, radiated(<1 GHz)         | ± 4.56 dB |
| 5   | All emissions, radiated(1 GHz - 18 GHz) | ± 4.22 dB |
| 6   | All emissions, radiated(18 GHz- 40 GHz) | ± 4.36 dB |

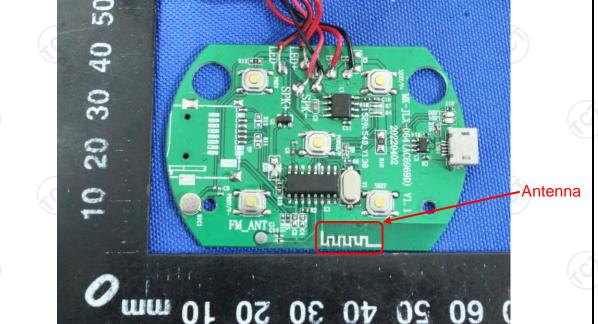


## 5. Test Results and Measurement Data

## 5.1. Antenna requirement

### Standard requirement: FCC Part15 C Section 15.203 /247(c)

#### 15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### E.U.T Antenna:

The Bluetooth antenna is PCB antenna which permanently attached, and the best case gain of the antenna is 0.68dBi.

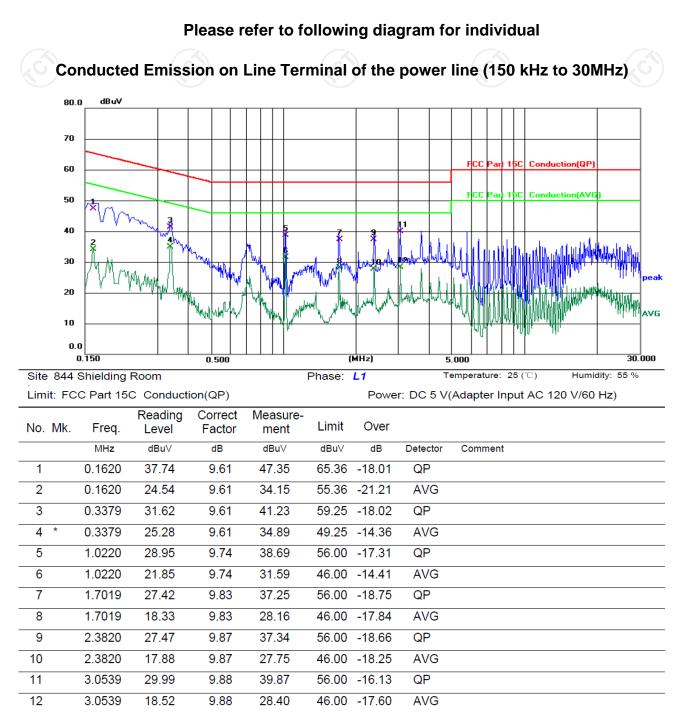


## 5.2. Conducted Emission

### 5.2.1. Test Specification

| Test Requirement:             | FCC Part15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                    |                                                                                                                                                                                             |  |  |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Method:                  | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                    |                                                                                                                                                                                             |  |  |  |
| Frequency Range:              | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                    |                                                                                                                                                                                             |  |  |  |
| Receiver setup:               | RBW=9 kHz, VBW=30 kHz, Sweep time=auto                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                    |                                                                                                                                                                                             |  |  |  |
|                               | Frequency range                                                                                                                                                                                                                                                                                                                                                                                                  | Limit (                                                                                                                                                                                                                                            | dBuV)                                                                                                                                                                                       |  |  |  |
| Limits:                       | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                            | Quasi-peak                                                                                                                                                                                                                                         | Average                                                                                                                                                                                     |  |  |  |
|                               | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                         | 66 to 56*                                                                                                                                                                                                                                          | 56 to 46*                                                                                                                                                                                   |  |  |  |
|                               | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                            | 56                                                                                                                                                                                                                                                 | 46                                                                                                                                                                                          |  |  |  |
|                               | 5-30                                                                                                                                                                                                                                                                                                                                                                                                             | 60                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                          |  |  |  |
|                               | Reference                                                                                                                                                                                                                                                                                                                                                                                                        | e Plane                                                                                                                                                                                                                                            |                                                                                                                                                                                             |  |  |  |
| Test Setup:                   | E.U.T AC powe                                                                                                                                                                                                                                                                                                                                                                                                    | EMI<br>Receiver                                                                                                                                                                                                                                    | j── AC power                                                                                                                                                                                |  |  |  |
|                               | LISN: Line Impedence Stabilization N<br>Test table height=0.8m                                                                                                                                                                                                                                                                                                                                                   | letwork                                                                                                                                                                                                                                            |                                                                                                                                                                                             |  |  |  |
| Test Mode:                    | LISN: Line Impedence Stabilization N                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                    |                                                                                                                                                                                             |  |  |  |
| Test Mode:<br>Test Procedure: | <ul> <li>LISN Line Impedence Stabilization National Test table height=0.8m</li> <li>Charging + Transmittin</li> <li>The E.U.T is connecting impedance stabilized provides a 500hm/s measuring equipme</li> <li>The peripheral device power through a L coupling impedance refer to the block photographs).</li> <li>Both sides of A.C conducted interfere emission, the relative the interface cables</li> </ul> | ng Mode<br>ected to an adapte<br>zation network<br>50uH coupling im<br>nt.<br>ces are also conne<br>ISN that provides<br>with 50ohm tern<br>diagram of the<br>. line are checke<br>nce. In order to fin<br>re positions of equi<br>must be changed | (L.I.S.N.). Thi<br>ppedance for th<br>ected to the mai<br>s a 500hm/50ul<br>nination. (Pleas<br>test setup an<br>ed for maximur<br>nd the maximur<br>ipment and all c<br>l according to     |  |  |  |
|                               | <ul> <li>LISN Line Impedence Stabilization National Test table height=0.8m</li> <li>Charging + Transmittin</li> <li>1. The E.U.T is connect impedance stabilized provides a 500hm/st measuring equipme</li> <li>2. The peripheral device power through a L coupling impedance refer to the block photographs).</li> <li>Both sides of A.C conducted interfere emission, the relative</li> </ul>                  | ng Mode<br>ected to an adapte<br>zation network<br>50uH coupling im<br>nt.<br>ces are also conne<br>ISN that provides<br>with 50ohm tern<br>diagram of the<br>. line are checke<br>nce. In order to fin<br>re positions of equi<br>must be changed | (L.I.S.N.). This<br>pedance for the<br>ected to the main<br>s a 50ohm/50uh<br>nination. (Please<br>test setup and<br>ed for maximum<br>nd the maximum<br>ipment and all c<br>l according to |  |  |  |

Page 8 of 93




#### 5.2.2. Test Instruments

| Conducted Emission Shielding Room Test Site (843) |                       |           |               |                 |  |  |  |
|---------------------------------------------------|-----------------------|-----------|---------------|-----------------|--|--|--|
| Equipment                                         | Manufacturer          | Model     | Serial Number | Calibration Due |  |  |  |
| EMI Test Receiver                                 | R&S                   | ESCI3     | 100898        | Jul. 07, 2022   |  |  |  |
| Line Impedance<br>Stabilisation<br>Newtork(LISN)  | Schwarzbeck           | NSLK 8126 | 8126453       | Feb. 24, 2023   |  |  |  |
| Line-5                                            | ТСТ                   | CE-05     | N/A           | Jul. 07, 2022   |  |  |  |
| EMI Test Software                                 | Shurple<br>Technology | EZ-EMC    | N/A           | N/A             |  |  |  |




#### 5.2.3. Test data



#### Note:

Freq. = Emission frequency in MHz Reading level  $(dB\mu V)$  = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement  $(dB\mu V)$  = Reading level  $(dB\mu V)$  + Corr. Factor (dB)Limit  $(dB\mu V)$  = Limit stated in standard Margin (dB) = Measurement  $(dB\mu V)$  – Limits  $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average \* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 10 of 93



#### Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding RoomPhase:NTemperature:25 (°C)Humidity:55 %Limit:FCC Part 15C Conduction(QP)Power:DC 5 V(Adapter Input AC 120 V/60 Hz)

|        | Die eindlich ein                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                              |
|--------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Freq.  | Reading<br>Level                                                                                        | Correct<br>Factor                                                                                                                                                                                                                                                                                                                                                     | Measure-<br>ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                              |
| MHz    | dBuV                                                                                                    | dB                                                                                                                                                                                                                                                                                                                                                                    | dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dBu∨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Comment                                                                                                                                                                                                                                                                                                                                                                      |
| 0.1660 | 36.68                                                                                                   | 9.70                                                                                                                                                                                                                                                                                                                                                                  | 46.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -18.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                              |
| 0.1660 | 23.49                                                                                                   | 9.70                                                                                                                                                                                                                                                                                                                                                                  | 33.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -21.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |
| 0.3420 | 27.90                                                                                                   | 9.61                                                                                                                                                                                                                                                                                                                                                                  | 37.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -21.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                              |
| 0.3420 | 24.15                                                                                                   | 9.61                                                                                                                                                                                                                                                                                                                                                                  | 33.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 49.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -15.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |
| 1.0220 | 24.95                                                                                                   | 9.74                                                                                                                                                                                                                                                                                                                                                                  | 34.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -21.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                              |
| 1.0220 | 20.64                                                                                                   | 9.74                                                                                                                                                                                                                                                                                                                                                                  | 30.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -15.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |
| 1.7019 | 22.97                                                                                                   | 9.76                                                                                                                                                                                                                                                                                                                                                                  | 32.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -23.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                              |
| 1.7019 | 16.26                                                                                                   | 9.76                                                                                                                                                                                                                                                                                                                                                                  | 26.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -19.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |
| 3.0539 | 24.08                                                                                                   | 9.78                                                                                                                                                                                                                                                                                                                                                                  | 33.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -22.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                              |
| 3.0539 | 16.80                                                                                                   | 9.78                                                                                                                                                                                                                                                                                                                                                                  | 26.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -19.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |
| 3.7419 | 22.48                                                                                                   | 9.79                                                                                                                                                                                                                                                                                                                                                                  | 32.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -23.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                              |
| 3.7419 | 16.43                                                                                                   | 9.79                                                                                                                                                                                                                                                                                                                                                                  | 26.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -19.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |
|        | MHz<br>0.1660<br>0.3420<br>0.3420<br>1.0220<br>1.0220<br>1.7019<br>1.7019<br>3.0539<br>3.0539<br>3.7419 | MHz         dBu∨           0.1660         36.68           0.1660         23.49           0.3420         27.90           0.3420         24.15           1.0220         24.95           1.0220         20.64           1.7019         22.97           1.7019         16.26           3.0539         24.08           3.0539         16.80           3.7419         22.48 | MHz         dBu∨         dB           0.1660         36.68         9.70           0.1660         23.49         9.70           0.3420         27.90         9.61           0.3420         24.15         9.61           1.0220         24.95         9.74           1.0220         20.64         9.74           1.7019         22.97         9.76           1.7019         16.26         9.76           3.0539         24.08         9.78           3.0539         16.80         9.78           3.7419         22.48         9.79 | MHz         dBu∨         dB         dBu∨           0.1660         36.68         9.70         46.38           0.1660         23.49         9.70         33.19           0.3420         27.90         9.61         37.51           0.3420         24.15         9.61         33.76           1.0220         24.95         9.74         34.69           1.0220         20.64         9.74         30.38           1.7019         22.97         9.76         32.73           1.7019         16.26         9.76         26.02           3.0539         24.08         9.78         33.86           3.0539         16.80         9.78         26.58           3.7419         22.48         9.79         32.27 | MHz         dBuV         dB         dBuV         dBuV           0.1660         36.68         9.70         46.38         65.16           0.1660         23.49         9.70         33.19         55.16           0.3420         27.90         9.61         37.51         59.15           0.3420         24.15         9.61         33.76         49.15           1.0220         24.95         9.74         34.69         56.00           1.0220         20.64         9.74         30.38         46.00           1.7019         22.97         9.76         32.73         56.00           1.7019         16.26         9.76         26.02         46.00           3.0539         24.08         9.78         33.86         56.00           3.0539         16.80         9.78         26.58         46.00           3.7419         22.48         9.79         32.27         56.00 | MHz         dBuV         dB         dBuV         dBuV         dB           0.1660         36.68         9.70         46.38         65.16         -18.78           0.1660         23.49         9.70         33.19         55.16         -21.97           0.3420         27.90         9.61         37.51         59.15         -21.64           0.3420         24.15         9.61         33.76         49.15         -15.39           1.0220         24.95         9.74         34.69         56.00         -21.31           1.0220         20.64         9.74         30.38         46.00         -15.62           1.7019         22.97         9.76         32.73         56.00         -23.27           1.7019         16.26         9.76         26.02         46.00         -19.98           3.0539         24.08         9.78         33.86         56.00         -22.14           3.0539         16.80         9.78         26.58         46.00         -19.42           3.7419         22.48         9.79         32.27         56.00         -23.73 | MHzdBuVdBdBuVdBdBuVdBDetector0.166036.689.7046.3865.16-18.78QP0.166023.499.7033.1955.16-21.97AVG0.342027.909.6137.5159.15-21.64QP0.342024.159.6133.7649.15-15.39AVG1.022024.959.7434.6956.00-21.31QP1.022020.649.7430.3846.00-15.62AVG1.701922.979.7632.7356.00-23.27QP1.701916.269.7826.5846.00-19.98AVG3.053916.809.7826.5846.00-19.42AVG3.741922.489.7932.2756.00-23.73QP |

Note1:

Freq. = Emission frequency in MHz

TCT 通测检测 TCT 通测检测

Reading level  $(dB\mu V) = Receiver reading$ 

Corr. Factor (dB) = LISN factor + Cable loss

Measurement  $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$ 

 $Limit (dB\mu V) = Limit stated in standard$ 

Margin (dB) = Measurement (dB $\mu$ V) – Limits (dB $\mu$ V)

Q.P. =Quasi-Peak AVG =average

\* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

#### Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Highest channel and 8DPSK) was submitted only.



## 5.3. Conducted Output Power

## 5.3.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (b)(1)                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Limit:            | Section 15.247 (b) The maximum peak conducted output<br>power of the intentional radiator shall not exceed the<br>following: (1) For frequency hopping systems operating<br>in the 2400-2483.5 MHz band employing at least 75<br>non-overlapping hopping channels, and all frequency<br>hopping systems in the 5725-5850 MHz band: 1 watt.<br>For all other frequency hopping systems in the<br>2400-2483.5 MHz band 0.125 watts. |  |  |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Test Procedure:   | Use the following spectrum analyzer settings:<br>Span = approximately 5 times the 20 dB bandwi<br>centered on a hopping channel<br>RBW > the 20 dB bandwidth of the emission being<br>measured VBW ≥ RBW<br>Sweep = auto<br>Detector function = peak<br>Trace = max hold<br>Allow the trace to stabilize.<br>Use the marker-to-peak function to set the marker to<br>peak of the emission.                                        |  |  |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |

#### 5.3.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jul. 18, 2022          |
| Combiner Box         | Ascentest    | AT890-RFB | N/A           | Jul. 07, 2022          |





## 5.4. 20dB Occupy Bandwidth

### 5.4.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Limit:            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum<br/>analyzer by RF cable and attenuator. The path loss<br/>was compensated to the results for each<br/>measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Use the following spectrum analyzer settings for 20dB<br/>Bandwidth measurement.<br/>Span = approximately 2 to 5 times the 20 dB<br/>bandwidth, centered on a hopping channel;<br/>1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW;<br/>Sweep = auto; Detector function = peak; Trace = max<br/>hold.</li> <li>Measure and record the results in the test report.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

### 5.4.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jul. 18, 2022          |
| Combiner Box         | Ascentest    | AT890-RFB | N/A           | Jul. 07, 2022          |





## 5.5. Carrier Frequencies Separation

### 5.5.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Limit:            | Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.                                                                                                                                                                                                                                                                                    |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test Mode:        | Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold.</li> <li>Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### 5.5.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jul. 18, 2022          |
| Combiner Box         | Ascentest    | AT890-RFB | N/A           | Jul. 07, 2022          |

Page 14 of 93

## 5.6. Hopping Channel Number

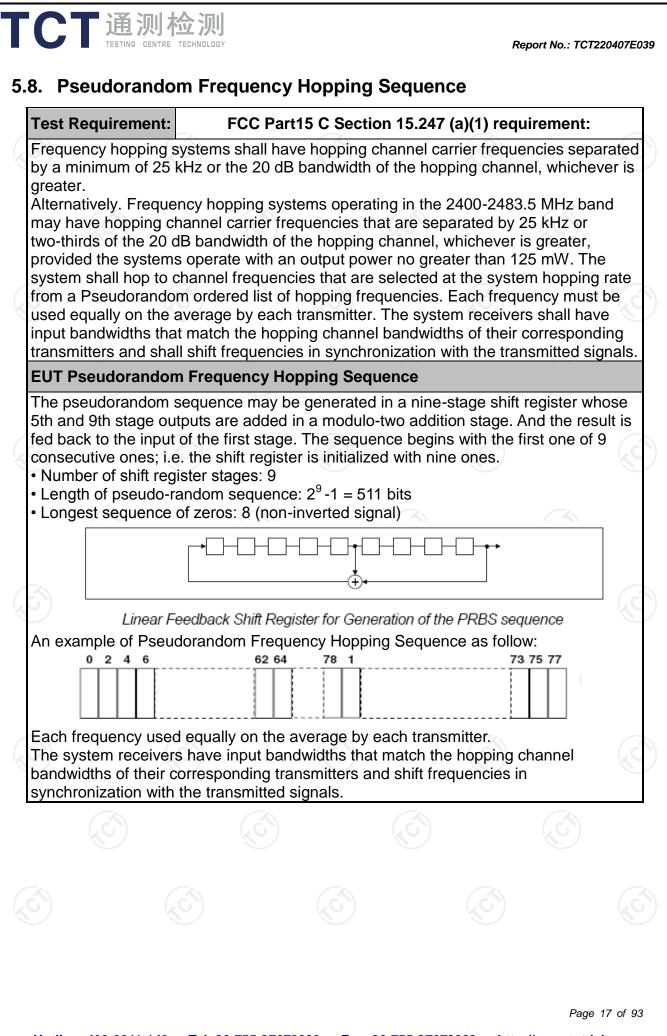
## 5.6.1. Test Specification

| C Part15 C Section 15.247 (a)(1)<br>B 558074 D01 v05r02<br>equency hopping systems in the 2400-2483.5 MHz<br>and shall use at least 15 channels.<br>etrum Analyzer<br>pping mode<br>The RF output of EUT was connected to the<br>spectrum analyzer by RF cable and attenuator. The                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| equency hopping systems in the 2400-2483.5 MHz<br>nd shall use at least 15 channels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ectrum Analyzer EUT<br>pping mode<br>The RF output of EUT was connected to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ectrum Analyzer EUT<br>pping mode<br>The RF output of EUT was connected to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| pping mode<br>The RF output of EUT was connected to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The RF output of EUT was connected to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| path loss was compensated to the results for each<br>measurement.<br>Set to the maximum power setting and enable the<br>EUT transmit continuously.<br>Enable the EUT hopping function.<br>Use the following spectrum analyzer settings: Span =<br>the frequency band of operation; set the RBW to less<br>than 30% of the channel spacing or the 20 dB<br>bandwidth, whichever is smaller; VBW≥RBW; Sweep<br>= auto; Detector function = peak; Trace = max hold.<br>The number of hopping frequency used is defined as<br>the number of total channel.<br>Record the measurement data in report. |
| SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### 5.6.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jul. 18, 2022          |
| Combiner Box         | Ascentest    | AT890-RFB | N/A           | Jul. 07, 2022          |
|                      | ()           |           |               |                        |

## 5.7. Dwell Time


### 5.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Limit:            | The average time of occupancy on any channel shall not<br>be greater than 0.4 seconds within a period of 0.4<br>seconds multiplied by the number of hopping channels<br>employed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test Mode:        | Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set &gt;&gt; 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.</li> <li>Measure and record the results in the test report.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### 5.7.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jul. 18, 2022          |
| Combiner Box         | Ascentest    | AT890-RFB | N/A           | Jul. 07, 2022          |





## 5.9. Conducted Band Edge Measurement

## 5.9.1. Test Specification

| FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| In any 100 kHz bandwidth outside the intentional<br>radiation frequency band, the radio frequency power<br>shall be at least 20 dB below the highest level of the<br>radiated power. In addition, radiated emissions which fall<br>in the restricted bands must also comply with the<br>radiated emission limits.                                                                                                                                                                                                                                                                    |
| Spectrum Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ol> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300<br/>kHz (≥RBW). Band edge emissions must be at least<br/>20 dB down from the highest emission level within<br/>the authorized band as measured with a 100kHz<br/>RBW. The attenuation shall be 30 dB instead of 20<br/>dB when RMS conducted output power procedure is<br/>used.</li> <li>Enable hopping function of the EUT and then repeat<br/>step 2 and 3.</li> <li>Measure and record the results in the test report.</li> </ol> |
| PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### 5.9.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jul. 18, 2022          |
| Combiner Box         | Ascentest    | AT890-RFB | N/A           | Jul. 07, 2022          |
| (G)                  | 667          | ) (       | (G)           | (G)                    |



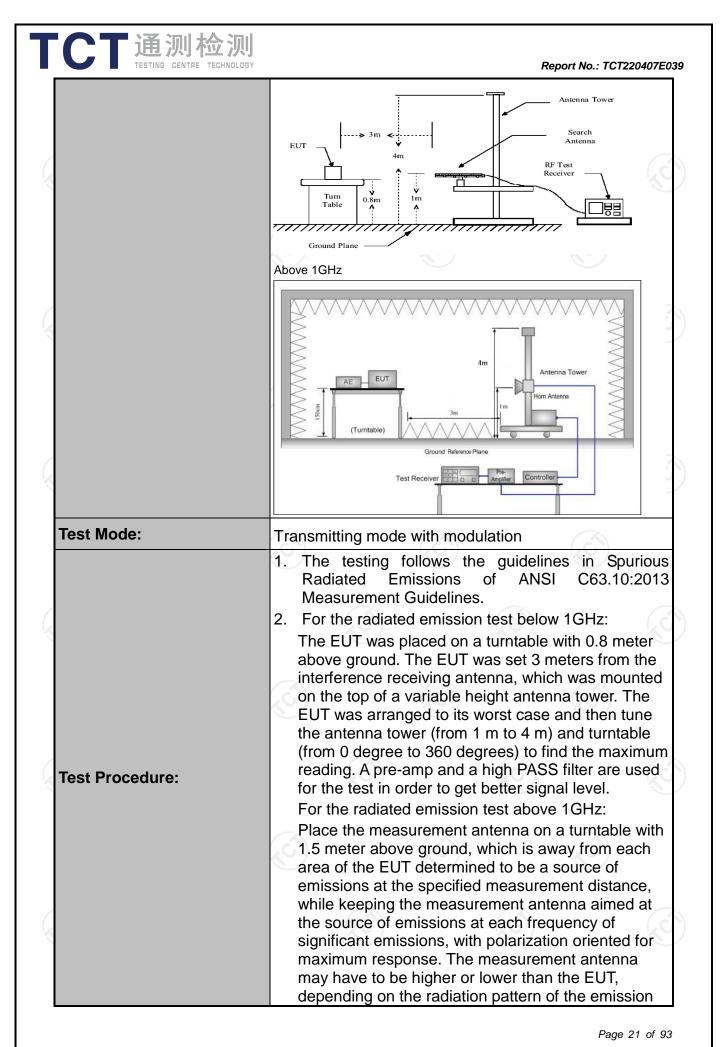
## 5.10. Conducted Spurious Emission Measurement

## 5.10.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Limit:            | In any 100 kHz bandwidth outside the intentional<br>radiation frequency band, the radio frequency power<br>shall be at least 20 dB below the highest level of the<br>radiated power. In addition, radiated emissions which fall<br>in the restricted bands must also comply with the<br>radiated emission limits.                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the<br/>spectrum analyzer by RF cable and attenuator. The<br/>path loss was compensated to the results for each<br/>measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Set RBW = 100 kHz, VBW = 300kHz, scan up<br/>through 10th harmonic. All harmonics / spurs must be<br/>at least 20 dB down from the highest emission level<br/>within the authorized band as measured with a 100<br/>kHz RBW.</li> <li>Measure and record the results in the test report.</li> <li>The RF fundamental frequency should be excluded<br/>against the limit line in the operating frequency band.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### 5.10.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jul. 18, 2022          |
| Combiner Box         | Ascentest    | AT890-RFB | N/A           | Jul. 07, 2022          |


Page 19 of 93



#### 5.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

| Test Requirement:     | FCC Part15           | C Section                                  | 15.209                                     |                           |       | K                           |
|-----------------------|----------------------|--------------------------------------------|--------------------------------------------|---------------------------|-------|-----------------------------|
| Test Method:          | ANSI C63.10          | 0:2013                                     |                                            |                           |       |                             |
| Frequency Range:      | 9 kHz to 25 (        | GHz                                        |                                            |                           |       | 6                           |
| Measurement Distance: | 3 m                  |                                            | 9                                          |                           | K.    | 9                           |
| Antenna Polarization: | Horizontal &         | Vertical                                   |                                            |                           |       |                             |
|                       | Frequency            | Detector                                   | RBW                                        | VBW                       |       | Remark                      |
|                       | 9kHz- 150kHz         | Quasi-peak                                 | 200Hz                                      | 1kHz                      | Quas  | si-peak Value               |
| Receiver Setup:       | 150kHz-<br>30MHz     | Quasi-peak                                 | k 9kHz                                     | 30kHz                     | Quas  | si-peak Value               |
|                       | 30MHz-1GHz           | Quasi-peak                                 | 120KHz                                     | 300KHz                    | Quas  | si-peak Value               |
|                       | Above 1GHz           | Peak                                       | 1MHz                                       | 3MHz                      |       | eak Value                   |
|                       | Above Tonz           | Peak                                       | 1MHz                                       | 10Hz                      | Ave   | erage Value                 |
|                       |                      |                                            | Field Str                                  | ength                     | Me    | asurement                   |
|                       | Frequen              | ю                                          | (microvolts                                | -                         | Dista | nce (meters)                |
|                       | 0.009-0.4            |                                            | 2400/F(                                    |                           | ļ     | 300                         |
|                       | 0.490-1.7            |                                            | 24000/F                                    | · · · ·                   |       | 30                          |
|                       | 1.705-3              |                                            | 30                                         |                           |       | 30                          |
|                       | 30-88                |                                            | 100                                        |                           |       | 3                           |
| Limit:                | 88-216               |                                            | 150                                        |                           | 3     |                             |
| Emilit.               | 216-96<br>Above 9    | <u>200</u><br>500                          |                                            |                           | 3     |                             |
|                       | Frequency Above 1GH: | (micro                                     | d Strength<br>ovolts/meter)<br>500<br>5000 | Distan<br>(mete<br>3<br>3 |       | Detector<br>Average<br>Peak |
| Test setup:           | For radiated emis    | ssions below<br>istance = 3m<br>Turn table |                                            |                           | Compu |                             |
| 5                     |                      |                                            | (                                          |                           |       |                             |
|                       |                      |                                            |                                            |                           |       | Page 20 of s                |



Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

|               | receiving the maxim<br>measurement anter<br>maximizes the emis<br>antenna elevation for<br>restricted to a range<br>above the ground o<br>3. Set to the maximu<br>EUT transmit contin<br>4. Use the following s<br>(1) Span shall wide<br>emission being<br>(2) Set RBW=120<br>for f>1GHz ; VE<br>Sweep = auto<br>= max hold for<br>(3) For average m | pectrum analyzer settings:<br>e enough to fully capture the<br>g measured;<br>kHz for f < 1 GHz, RBW=1Mł<br>BW≥RBW;<br>o; Detector function = peak; Tr     | hich<br>be<br>m<br>the<br>Hz<br>race |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|               | 15.35(c). Duty of<br>On time =N1*L<br>Where N1 is n<br>length of type<br>Average Emis<br>Level + 20*log<br>Corrected Read                                                                                                                                                                                                                             | ssion Level = Peak Emission<br>g(Duty cycle)<br>ding: Antenna Factor + Cable                                                                               | n*Lr<br>s                            |
| Test results: | 15.35(c). Duty of<br>On time =N1*L<br>Where N1 is n<br>length of type<br>Average Emis<br>Level + 20*log<br>Corrected Read                                                                                                                                                                                                                             | 1+N2*L2++Nn-1*LNn-1+Nr<br>number of type 1 pulses, L1 is<br>1 pulses, etc.<br>ssion Level = Peak Emission<br>g(Duty cycle)                                 | n*Lr<br>s                            |
| Test results: | 15.35(c). Duty of<br>On time =N1*L<br>Where N1 is n<br>length of type<br>Average Emis<br>Level + 20*log<br>Corrected Read<br>Loss + Read Le                                                                                                                                                                                                           | 1+N2*L2++Nn-1*LNn-1+Nr<br>number of type 1 pulses, L1 is<br>1 pulses, etc.<br>ssion Level = Peak Emission<br>g(Duty cycle)<br>ding: Antenna Factor + Cable | n*Lı<br>s                            |
| Test results: | 15.35(c). Duty of<br>On time =N1*L<br>Where N1 is n<br>length of type<br>Average Emis<br>Level + 20*log<br>Corrected Read<br>Loss + Read Le                                                                                                                                                                                                           | 1+N2*L2++Nn-1*LNn-1+Nr<br>number of type 1 pulses, L1 is<br>1 pulses, etc.<br>ssion Level = Peak Emission<br>g(Duty cycle)<br>ding: Antenna Factor + Cable | n*Li<br>s                            |
| Test results: | 15.35(c). Duty of<br>On time =N1*L<br>Where N1 is n<br>length of type<br>Average Emis<br>Level + 20*log<br>Corrected Read<br>Loss + Read Le                                                                                                                                                                                                           | 1+N2*L2++Nn-1*LNn-1+Nr<br>number of type 1 pulses, L1 is<br>1 pulses, etc.<br>ssion Level = Peak Emission<br>g(Duty cycle)<br>ding: Antenna Factor + Cable | n*Li<br>s                            |



TCT通测检测 TESTING CENTRE TECHNOLOGY

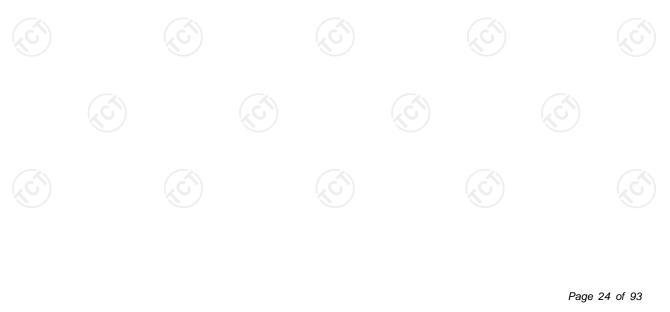
|                      | Radiated En           | nission Test Site | e (966)            |                 |
|----------------------|-----------------------|-------------------|--------------------|-----------------|
| Name of<br>Equipment | Manufacturer          | Model             | Serial<br>Number   | Calibration Due |
| EMI Test Receiver    | R&S                   | ESIB7             | 100197             | Jul. 07, 2022   |
| Spectrum Analyzer    | R&S                   | FSQ40             | 200061             | Jul. 07, 2022   |
| Pre-amplifier        | SKET                  | LNPA_0118G-<br>45 | SK2021012<br>102   | Feb. 24, 2023   |
| Pre-amplifier        | SKET                  | LNPA_1840G-<br>50 | SK2021092<br>03500 | Feb. 24, 2023   |
| Pre-amplifier        | HP                    | 8447D             | 2727A05017         | Jul. 07, 2022   |
| Loop antenna         | ZHINAN                | ZN30900A          | 12024              | Sep. 05, 2022   |
| Broadband Antenna    | Schwarzbeck           | VULB9163          | 340                | Sep. 04, 2022   |
| Horn Antenna         | Schwarzbeck           | BBHA 9120D        | 631                | Sep. 04, 2022   |
| Horn Antenna         | Schwarzbeck           | BBHA 9170         | 00956              | Apr. 10, 2023   |
| Antenna Mast         | Keleto                | RE-AM             | N/A                | N/A             |
| Coaxial cable        | SKET                  | RC_DC18G-N        | N/A                | Feb. 24, 2023   |
| Coaxial cable        | SKET                  | RC-DC18G-N        | N/A                | Feb. 24, 2023   |
| Coaxial cable        | SKET                  | RC-DC40G-N        | N/A                | Jul. 07, 2022   |
| EMI Test Software    | Shurple<br>Technology | EZ-EMC            | N/A                | N/A             |
| EMI Test Software    | •                     | EZ-EMC            | N/A                | N/A             |

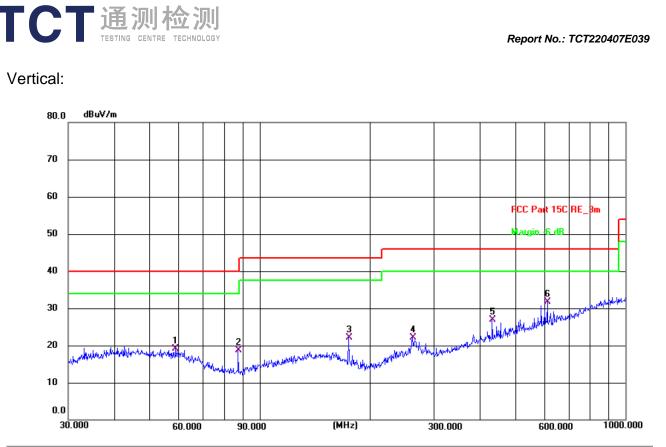
Page 23 of 93

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



TCT通测检测 TESTING CENTRE TECHNOLOGY


#### Please refer to following diagram for individual




Site #2 3m Anechoic Chamber Limit: FCC Part 15C RE 3m Polarization: *Horizontal* Power: DC 3.7 V Temperature: 23.9(C) Humidity: 48 %

Report No.: TCT220407E039

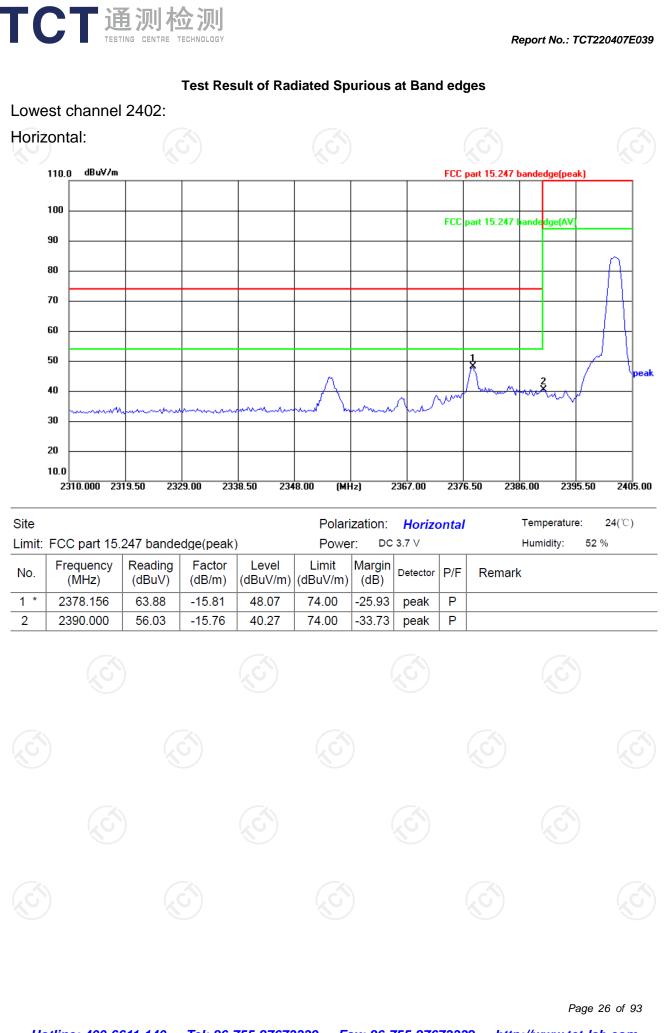
| Ennit. | 10010110           |                   |                  |                   |                   |                |          |     |        |
|--------|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|--------|
| No.    | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F | Remark |
| 1      | 42.1542            | 5.44              | 13.98            | 19.42             | 40.00             | -20.58         | QP       | Р   |        |
| 2      | 53.6932            | 6.00              | 13.54            | 19.54             | 40.00             | -20.46         | QP       | Р   |        |
| 3      | 130.8369           | 4.86              | 12.66            | 17.52             | 43.50             | -25.98         | QP       | Р   |        |
| 4      | 158.6677           | 5.91              | 13.40            | 19.31             | 43.50             | -24.19         | QP       | Р   |        |
| 5      | 256.5211           | 7.55              | 12.54            | 20.09             | 46.00             | -25.91         | QP       | Ρ   |        |
| 6 *    | 432.5457           | 11.88             | 17.94            | 29.82             | 46.00             | -16.18         | QP       | Ρ   |        |





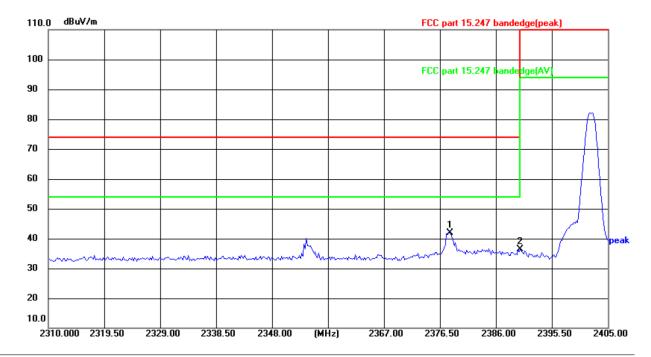
| Site 7 | #2 3m Anecho       | oic Chambe        | er               | Polarization: Vertical |                   |                |          |     | Temperature: 23 | 8.9(C) | Humidity: 48 % |
|--------|--------------------|-------------------|------------------|------------------------|-------------------|----------------|----------|-----|-----------------|--------|----------------|
| Limit: | FCC Part 15        | C RE_3m           |                  |                        | Po                | wer: DC        | 3.7 V    |     |                 |        |                |
| No.    | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m)      | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F | Remark          |        |                |
| 1      | 59.0251            | 5.86              | 13.19            | 19.05                  | 40.00             | -20.95         | QP       | Р   |                 |        |                |
| 2      | 87.4177            | 9.39              | 9.28             | 18.67                  | 40.00             | -21.33         | QP       | Р   |                 |        |                |
| 3      | 175.0368           | 10.23             | 11.82            | 22.05                  | 43.50             | -21.45         | QP       | Р   |                 |        |                |
| 4      | 261.9753           | 9.35              | 12.66            | 22.01                  | 46.00             | -23.99         | QP       | Р   |                 |        |                |
| 5      | 432.5457           | 8.91              | 17.94            | 26.85                  | 46.00             | -19.15         | QP       | Р   |                 |        |                |
| 6 *    | 612.0642           | 10.14             | 21.48            | 31.62                  | 46.00             | -14.38         | QP       | Р   |                 |        |                |

**Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.


 Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (Highest channel and 8DPSK) was submitted only.
 Freq. = Emission frequency in MHz

Measurement ( $dB\mu V/m$ ) = Reading level ( $dB\mu V$ ) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit ( $dB\mu V/m$ ) = Limit stated in standard

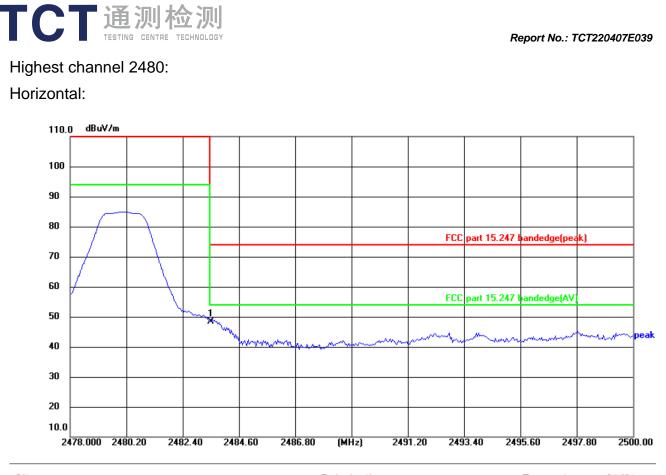
Over  $(dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$ 


\* is meaning the worst frequency has been tested in the test frequency range.

Page 25 of 93



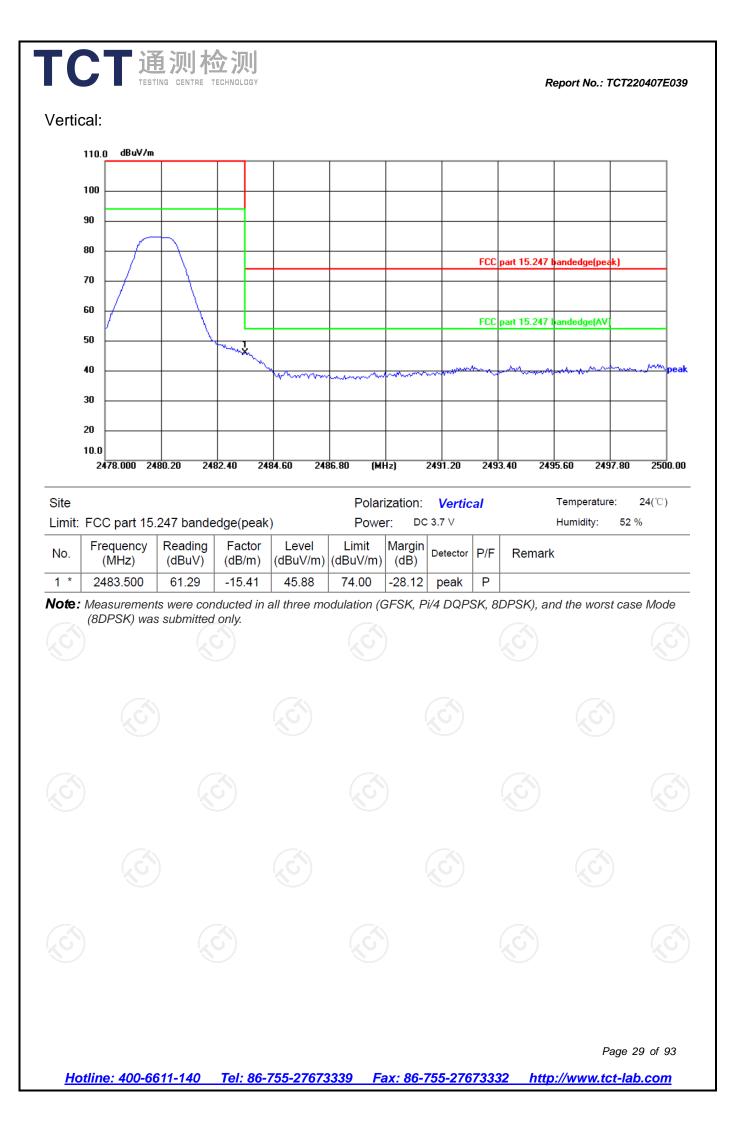
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


#### Vertical:



| Site   |                    |                   |                  |                   | Polar             | ization:       | Vertic   | al             | Temperature: 24(℃) |
|--------|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|----------------|--------------------|
| Limit: | FCC part 15        | 247 bande         | edge(peak        | )                 | r: DC             | 3.7 ∨          |          | Humidity: 52 % |                    |
| No.    | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F            | Remark             |
| 1 *    | 2377.966           | 57.80             | -15.81           | 41.99             | 74.00             | -32.01         | peak     | Ρ              |                    |
| 2      | 2390.000           | 52.05             | -15.76           | 36.29             | 74.00             | -37.71         | peak     | Ρ              |                    |




Page 27 of 93



| Site                                                                 |                    |                   |        |                   | Polar | ization:       | Horiz    | ontal | Temperature: 24(℃) |
|----------------------------------------------------------------------|--------------------|-------------------|--------|-------------------|-------|----------------|----------|-------|--------------------|
| Limit: FCC part 15.247 bandedge(peak) Power: DC 3.7 V Humidity: 52 % |                    |                   |        |                   |       |                |          |       | Humidity: 52 %     |
| No.                                                                  | Frequency<br>(MHz) | Reading<br>(dBuV) |        | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector | P/F   | Remark             |
| 1 *                                                                  | 2483.500           | 63.89             | -15.41 | 48.48             | 74.00 | -25.52         | peak     | Ρ     |                    |

| Page 2 | 28 oi | f 93 |
|--------|-------|------|
|--------|-------|------|

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



#### Above 1GHz

| Modulation         | Type: 8D         | PSK                       |                         |                                |       |                            |                        |                      |                |
|--------------------|------------------|---------------------------|-------------------------|--------------------------------|-------|----------------------------|------------------------|----------------------|----------------|
| Low chann          | el: 2402 N       | 1Hz                       |                         |                                |       |                            |                        |                      |                |
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV<br>reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Peak  | on Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4804               | Н                | 45.94                     |                         | 0.66                           | 46.60 |                            | 74                     | 54                   | -7.40          |
| 7206               | Н                | 35.86                     |                         | 9.50                           | 45.36 |                            | 74                     | 54                   | -8.64          |
|                    | Н                |                           |                         |                                |       |                            |                        |                      |                |
|                    | .G`)             |                           | (.C)                    |                                | (     | .G`)                       |                        | (.G.)                |                |
| 4804               | V                | 44.47                     |                         | 0.66                           | 45.13 | <u> </u>                   | 74                     | 54                   | -8.87          |
| 7206               | V                | 35.95                     |                         | 9.50                           | 45.45 |                            | 74                     | 54                   | -8.55          |
|                    | V                |                           |                         |                                |       |                            |                        |                      |                |

| Middle cha         | nnel: 2441       | MHz                       |                         |                                | ( כ                         |              |                        |                      | Х<br>С         |
|--------------------|------------------|---------------------------|-------------------------|--------------------------------|-----------------------------|--------------|------------------------|----------------------|----------------|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV<br>reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | AV           | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4882               | Н                | 45.03                     |                         | 0.99                           | 46.02                       |              | 74                     | 54                   | -7.98          |
| 7323               | κCĤ)             | 36.84                     | -40                     | 9.87                           | 46.71                       | <u>0</u> -)- | 74                     | 54                   | -7.29          |
|                    | Ĥ                |                           |                         |                                |                             | $\sim$       |                        |                      |                |
| 4882               | V                | 44.25                     |                         | 0.99                           | 45.24                       |              | 74                     | 54                   | -8.76          |
| 7323               | V                | 35.47                     |                         | 9.87                           | 45.34                       |              | 74                     | 54                   | -8.66          |
| <u> </u>           | V                |                           |                         |                                | /                           |              |                        |                      |                |

| High chann         | nel: 2480 N      | ЛНz                       |                         |                                |       |                            |                        |                      |                |
|--------------------|------------------|---------------------------|-------------------------|--------------------------------|-------|----------------------------|------------------------|----------------------|----------------|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV<br>reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) |       | on Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4960               | H                | 46.14                     |                         | 1.33                           | 47.47 |                            | 74                     | 54                   | -6.53          |
| 7440               | Н                | 36.77                     |                         | 10.22                          | 46.99 |                            | 74                     | 54                   | -7.01          |
|                    | Н                | <b>77</b> 1.              |                         |                                |       |                            |                        |                      |                |
| G)                 |                  |                           |                         | (.0                            |       |                            | $(\mathbf{G})$         |                      | (.c            |
| 4960               | V                | 45.98                     |                         | 1.33 🔪                         | 47.31 |                            | 74                     | 54                   | -6.69          |
| 7440               | V                | 36.09                     |                         | 10.22                          | 46.31 |                            | 74                     | 54                   | -7.69          |
|                    | V                |                           |                         |                                |       |                            |                        |                      |                |

#### Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB $\mu$ V/m)-Average limit (dB $\mu$ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

CT 通测检测 TESTING CENTRE TECHNOLOGY

6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

7. All the restriction bands are compliance with the limit of 15.209.



## **Appendix A: Test Result of Conducted Test**

| Maximum Conducted Output Power |       |                    |                             |                |         |
|--------------------------------|-------|--------------------|-----------------------------|----------------|---------|
| Condition                      | Mode  | Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Limit<br>(dBm) | Verdict |
| NVNT                           | 1-DH1 | 2402               | -2.40                       | 30             | Pass    |
| NVNT                           | 1-DH1 | 2441               | -2.12                       | 30             | Pass    |
| NVNT                           | 1-DH1 | 2480               | -1.76                       | 30             | Pass    |
| NVNT                           | 2-DH1 | 2402               | -1.52                       | 21             | Pass    |
| NVNT                           | 2-DH1 | 2441               | -1.26                       | 21             | Pass    |
| NVNT                           | 2-DH1 | 2480               | -0.89                       | 21             | Pass    |
| NVNT                           | 3-DH1 | 2402               | -0.95                       | 21             | Pass    |
| NVNT                           | 3-DH1 | 2441               | -0.81                       | 21             | Pass    |
| NVNT                           | 3-DH1 | 2480               | -0.43                       | 21             | Pass    |
|                                |       |                    |                             |                |         |



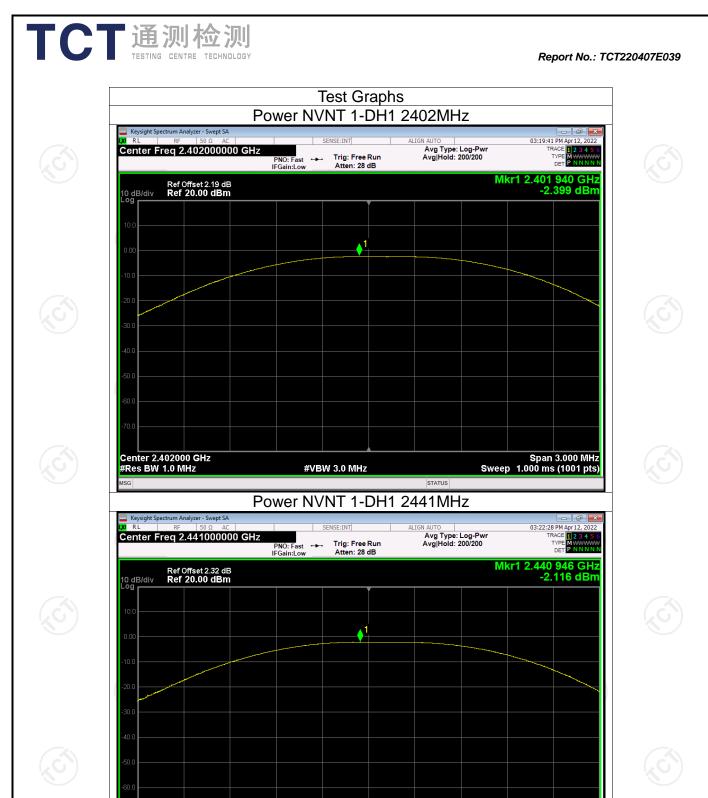












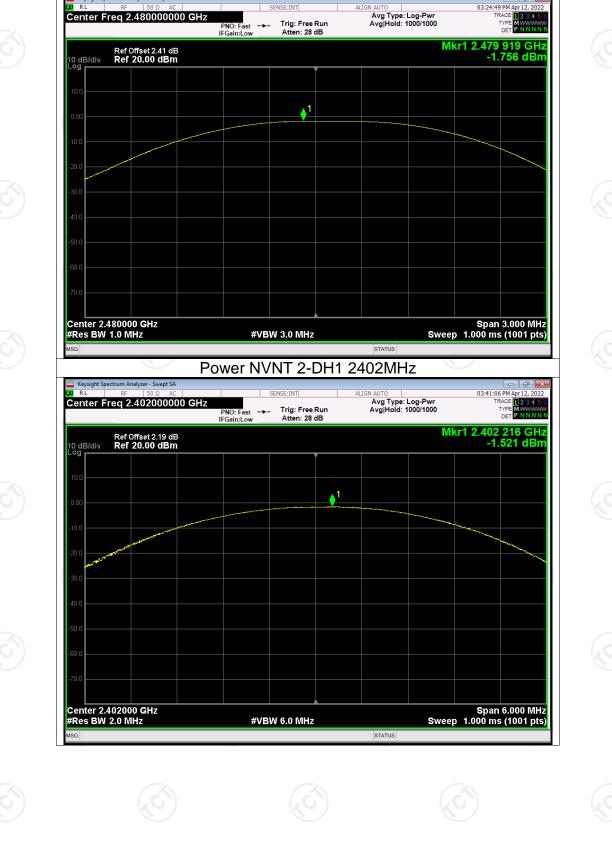












Page 32 of 93

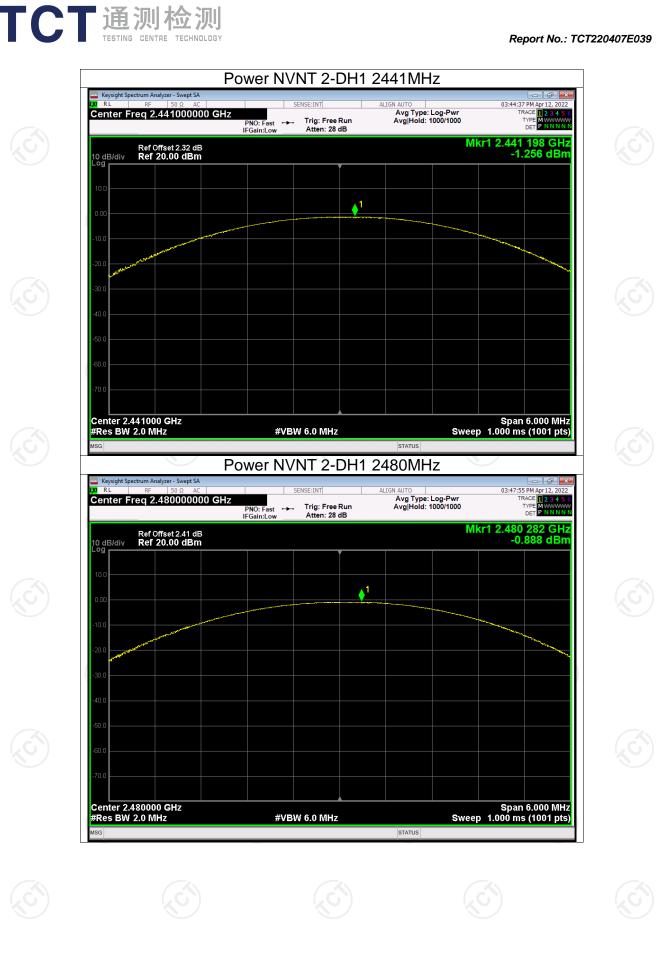
Span 3.000 MHz Sweep 1.000 ms (1001 pts)

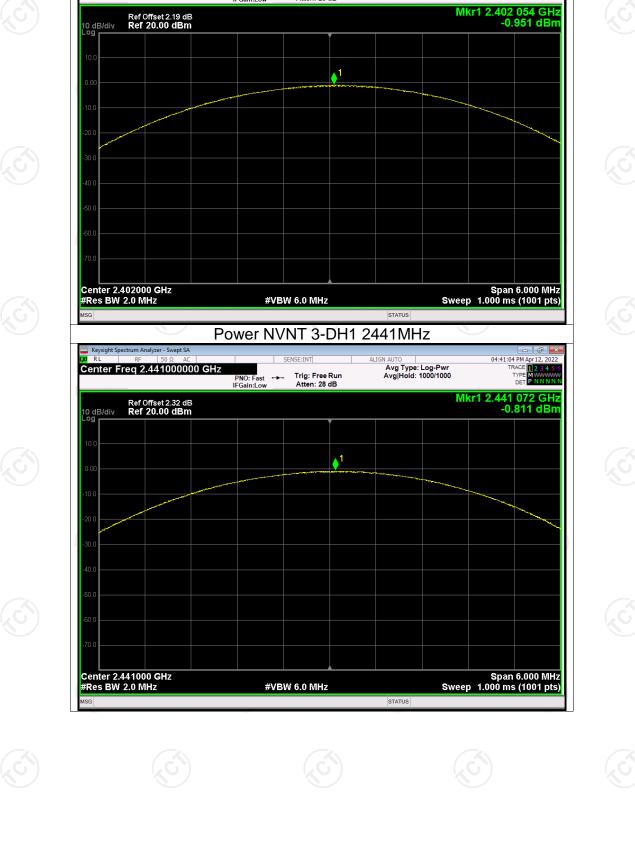
#VBW 3.0 MHz

STATUS

Center 2.441000 GHz #Res BW 1.0 MHz




Power NVNT 1-DH1 2480MHz


KI RL

Keysight Spectrum Analyzer - Swept SA

Report No.: TCT220407E039

Page 33 of 93





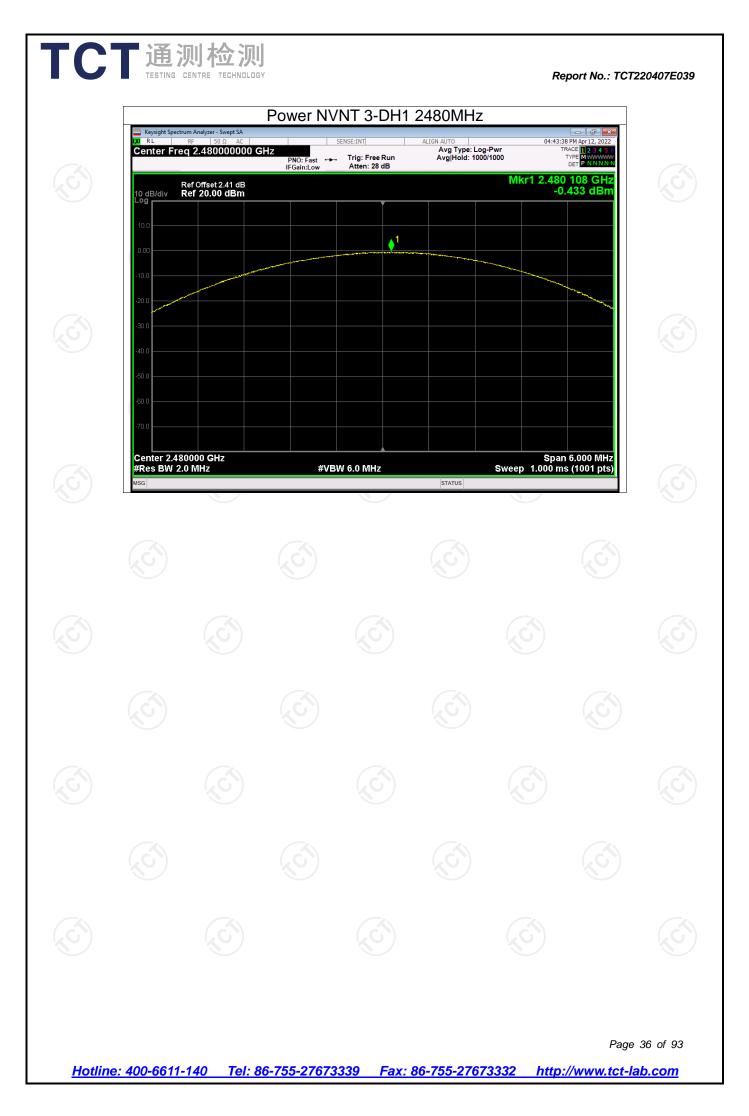
Power NVNT 3-DH1 2402MHz

PNO: Fast ---- Trig: Free Run IFGain:Low Atten: 28 dB

KI RL

Keysight Spectrum Analyzer - Swept SA

Center Freq 2.402000000 GHz


Report No.: TCT220407E039

Page 35 of 93

04:35:34 PM Apr 12, 2022 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N

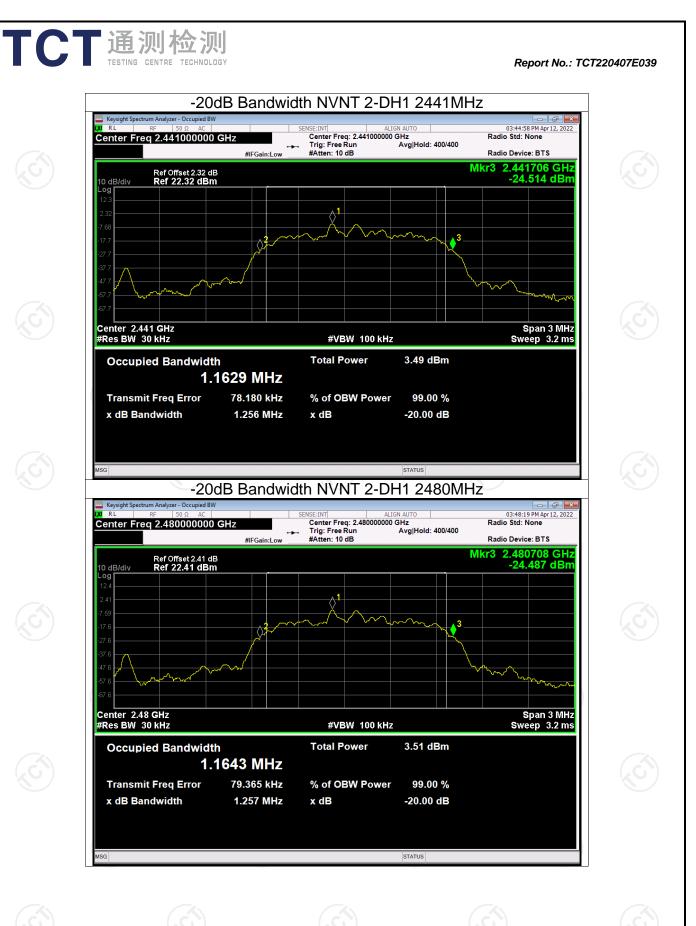
TYPE

Avg Type: Log-Pwr Avg|Hold: 1000/1000



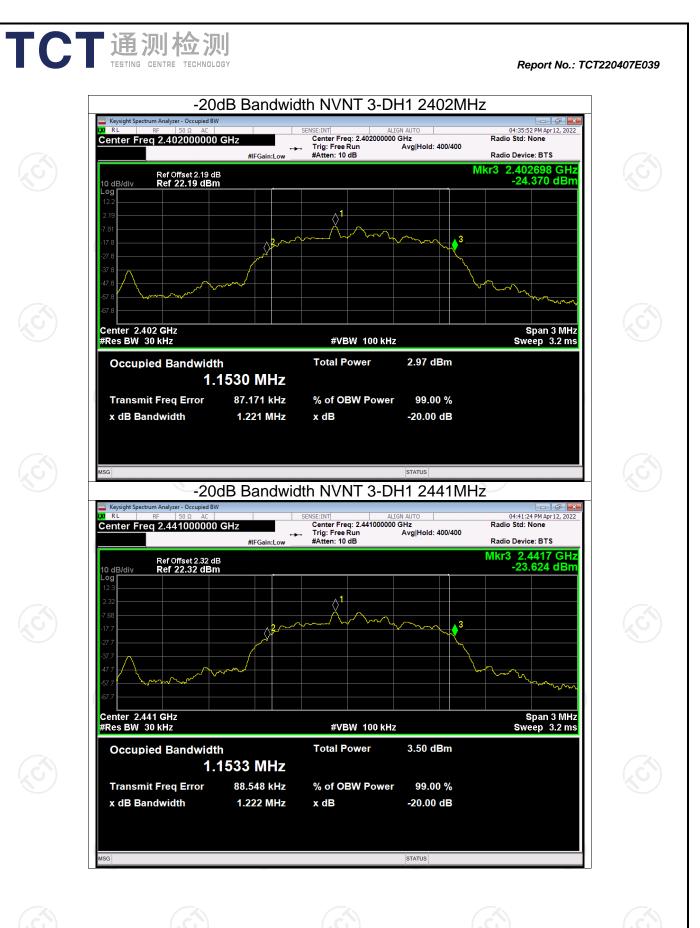



| -20dB Bandwidth |       |                    |                           |         |  |  |
|-----------------|-------|--------------------|---------------------------|---------|--|--|
| Condition Mode  |       | Frequency<br>(MHz) | -20 dB<br>Bandwidth (MHz) | Verdict |  |  |
| NVNT            | 1-DH1 | 2402               | 0.881                     | Pass    |  |  |
| NVNT 🚫          | 1-DH1 | 2441               | 0.872                     | Pass    |  |  |
| NVNT            | 1-DH1 | 2480               | 0.871                     | Pass    |  |  |
| NVNT            | 2-DH1 | 2402               | 1.256                     | Pass    |  |  |
| NVNT            | 2-DH1 | 2441               | 1.256                     | Pass    |  |  |
| NVNT            | 2-DH1 | 2480               | 1.257                     | Pass    |  |  |
| NVNT            | 3-DH1 | 2402               | 1.221                     | Pass    |  |  |
| NVNT            | 3-DH1 | 2441               | 1.222                     | Pass    |  |  |
| NVNT            | 3-DH1 | 2480               | 1.218                     | Pass    |  |  |
| N.              | 5)    | KO)                | KO)                       |         |  |  |


| Page  | .37 | of | 93 |
|-------|-----|----|----|
| i aye | 57  | UI | 30 |

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com




Page 38 of 93



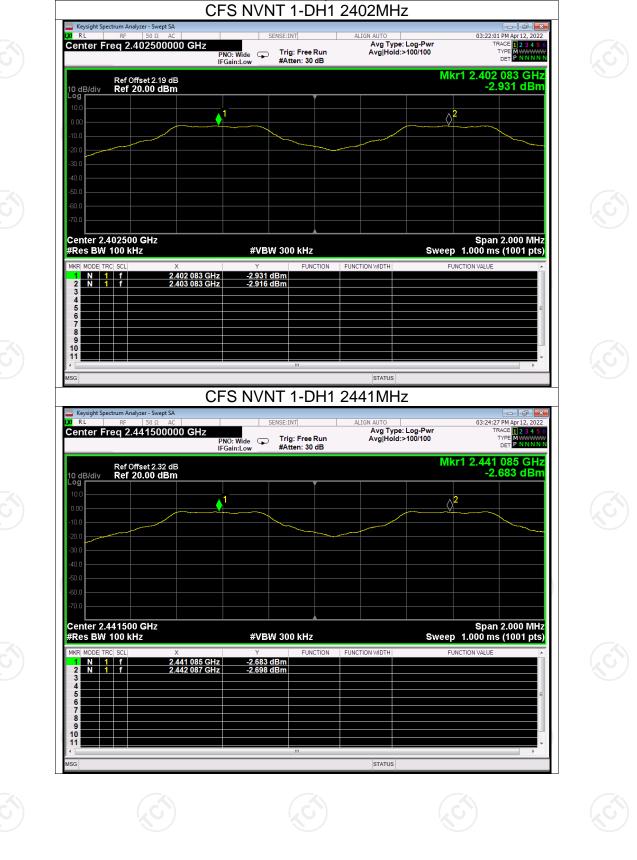


Page 40 of 93

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com








| Report No.: TCT2204 |
|---------------------|
|---------------------|

| Carrier requencies deparation |       |                        |                        |              |                |         |
|-------------------------------|-------|------------------------|------------------------|--------------|----------------|---------|
| Condition                     | Mode  | Hopping Freq1<br>(MHz) | Hopping Freq2<br>(MHz) | HFS<br>(MHz) | Limit<br>(MHz) | Verdict |
| NVNT                          | 1-DH1 | 2402.083               | 2403.083               | 1            | 0.881          | Pass    |
| NVNT                          | 1-DH1 | 2441.085               | 2442.087               | 1.002        | 0.881          | Pass    |
| NVNT                          | 1-DH1 | 2479.086               | 2480.086               | 1            | 0.881          | Pass    |
| NVNT                          | 2-DH1 | 2401.922               | 2402.926               | 1.004        | 0.838          | Pass    |
| NVNT                          | 2-DH1 | 2440.922               | 2441.922               | 1            | 0.838          | Pass    |
| NVNT                          | 2-DH1 | 2478.928               | 2479.926               | 0.998        | 0.838          | Pass    |
| NVNT                          | 3-DH1 | 2401.922               | 2402.924               | 1.002        | 0.815          | Pass    |
| NVNT                          | 3-DH1 | 2440.924               | 2441.924               | 1            | 0.815          | Pass    |
| NVNT                          | 3-DH1 | 2478.926               | 2479.926               | 1            | 0.815          | Pass    |
| KO)                           |       |                        |                        | KO)          |                | KO )    |

#### **Carrier Frequencies Separation**





**Test Graphs** 

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT220407E039

Page 44 of 93

## Center 2.479500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz N 1 f N 1 f 2.479 086 GHz 2.480 086 GHz -2.358 dBm -2.365 dBm 234 10 11 CFS NVNT 2-DH1 2402MHz Keysight Spectrum Analyzer - Swept SA 03:44:09 PM Apr 12 Avg Type: Log-Pw Avg|Hold:>100/100 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN Center Freg 2.402500000 GHz Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low Mkr1 2.401 922 GHz -2.440 dBm Ref Offset 2.19 dB Ref 20.00 dBm 10 dB/div Log **r** $\Diamond^2$ 1 Center 2.402500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH TION N 1 f N 1 f 2.401 922 GHz 2.402 926 GHz -2.440 dBm -2.427 dBm 10 11 STATUS

CFS NVNT 1-DH1 2480MHz

Trig: Free Run #Atten: 30 dB

PNO: Wide IFGain:Low

ALTGN A

Avg Type: Log-Pwr Avg|Hold:>100/100

🔤 Keysight Spectrum Analyzer - Swept S KI RL Center Freg 2.479500000 GHz Ref Offset 2.41 dB Ref 20.00 dBm 10 d Log

Report No.: TCT220407E039

03:27:17 PM Apr 12, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N

TYPE DET

Mkr1 2.479 086 GHz -2.358 dBm

 $\Delta^2$ 

Page 45 of 93



# 03:47:25 PM Apr 12, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N Avg Type: Log-Pwr Avg|Hold:>100/100 Trig: Free Run #Atten: 30 dB PNO: Wide 🖵 IFGain:Low Mkr1 2.440 922 GHz -2.174 dBm Ref Offset 2.32 dB Ref 20.00 dBm 10 d Log **⊘**<sup>2</sup> **∲** Center 2.441500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz N 1 f N 1 f 2.440 922 GHz 2.441 922 GHz -2.174 dBm -2.188 dBm 234 10 11 CFS NVNT 2-DH1 2480MHz Keysight Spectrum Analyzer - Swept SA 03:54:38 PM Apr 12, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N Avg Type: Log-Pw Avg|Hold:>100/100 Center Freg 2.479500000 GHz Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low Mkr1 2.478 928 GHz -1.729 dBm Ref Offset 2.41 dB Ref 20.00 dBm 10 dB/div Log **r ⊘**<sup>2</sup> ▲1

CFS NVNT 2-DH1 2441MHz

ALTGN AL

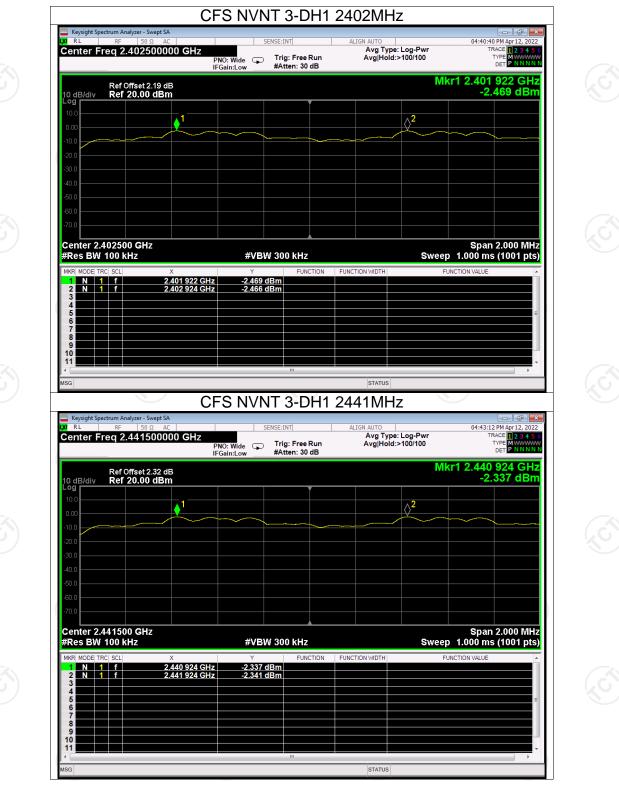
Center 2.479500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH TION N 1 f N 1 f 2.478 928 GHz 2.479 926 GHz -1.729 dBm -1.743 dBm 10 11 STATUS





KI RL

🔤 Keysight Spectrum Analyzer - Swept S


Center Freg 2.441500000 GHz





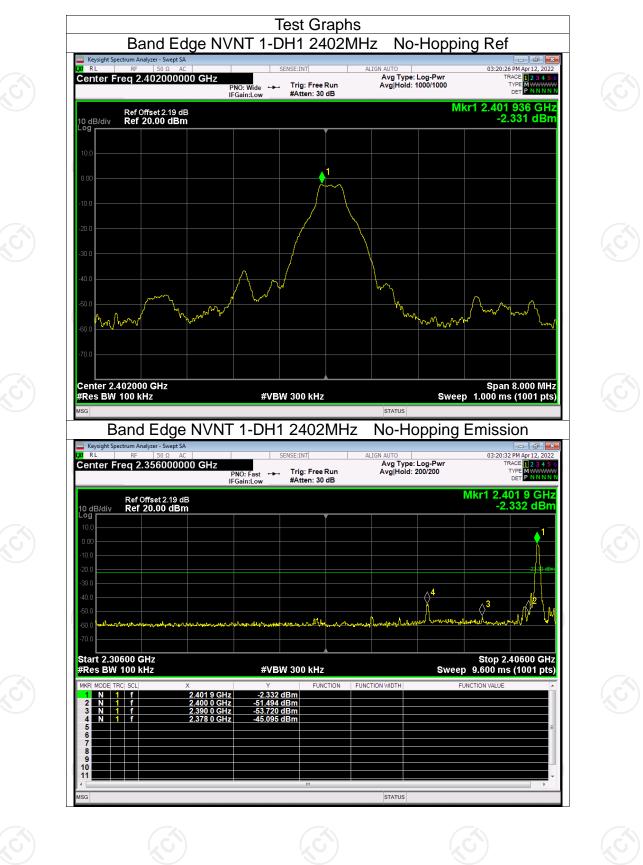






|                                                                                                    |                                     | S NVNT 3-DI                                                 | H1 2480MHz                                               |                                                   |                                 |
|----------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|---------------------------------|
|                                                                                                    | 50 Ω AC<br>79500000 GHz             | SENSE:INT<br>NO: Wide Trig: Free R<br>Gain:Low #Atten: 30 d | ALIGN AUTO<br>Avg Type: Log-F<br>un Avg Hold:>100/1<br>B | 04:47:25 PM Apr<br>Wr TRACE<br>00 TYPE M<br>DET P | 2 3 4 5 6<br>WWWWW<br>N N N N N |
| Ref Offs<br>10 dB/div Ref 20,<br>Log                                                               | et 2.41 dB<br>.00 dBm               |                                                             |                                                          | Mkr1 2.478 926<br>-1.968                          | GHz<br>dBm                      |
| 0.00<br>-10.0<br>-20.0                                                                             |                                     |                                                             |                                                          |                                                   | ~~~~                            |
| -30.0<br>-40.0<br>-50.0                                                                            |                                     |                                                             |                                                          |                                                   |                                 |
| -60.0<br>-70.0<br>Center 2.479500 C                                                                |                                     |                                                             |                                                          | Span 2.00                                         | 0 MHz                           |
| #Res BW 100 kHz           MKR MODE TRC SCL           1         N           2         N           3 | ×<br>2.478 926 GHz<br>2.479 926 GHz | #VBW 300 kHz<br>Y FUNCT<br>-1.968 dBm<br>-1.978 dBm         | ION FUNCTION WIDTH                                       | Sweep 1.000 ms (100<br>FUNCTION VALUE             | 1 pts)                          |
| 4<br>5<br>6<br>7<br>8                                                                              |                                     |                                                             |                                                          |                                                   |                                 |
| 9<br>10<br>11<br>•<br>MSG                                                                          |                                     |                                                             | STATUS                                                   |                                                   |                                 |
|                                                                                                    |                                     |                                                             |                                                          |                                                   |                                 |
|                                                                                                    |                                     |                                                             |                                                          |                                                   |                                 |
|                                                                                                    |                                     |                                                             |                                                          |                                                   |                                 |
|                                                                                                    |                                     |                                                             |                                                          |                                                   |                                 |
|                                                                                                    |                                     |                                                             |                                                          |                                                   |                                 |
|                                                                                                    |                                     |                                                             |                                                          |                                                   |                                 |
|                                                                                                    |                                     |                                                             |                                                          |                                                   |                                 |
|                                                                                                    |                                     |                                                             |                                                          |                                                   |                                 |
|                                                                                                    |                                     |                                                             |                                                          |                                                   |                                 |
|                                                                                                    |                                     |                                                             |                                                          |                                                   |                                 |
|                                                                                                    |                                     |                                                             |                                                          |                                                   |                                 |
|                                                                                                    |                                     |                                                             |                                                          |                                                   |                                 |

| Hotline: 400-6611-140 | Tel: 86-755-27673339 | Fax: 86-755-27673332 | http://www.tct-lab.com |
|-----------------------|----------------------|----------------------|------------------------|


| Dallu Luge |       |                    |                 |                    |                |         |
|------------|-------|--------------------|-----------------|--------------------|----------------|---------|
| Condition  | Mode  | Frequency<br>(MHz) | Hopping<br>Mode | Max Value<br>(dBc) | Limit<br>(dBc) | Verdict |
| NVNT       | 1-DH1 | 2402               | No-Hopping      | -42.76             | -20            | Pass    |
| NVNT       | 1-DH1 | 2480               | No-Hopping      | -43.38             | -20            | Pass    |
| NVNT       | 2-DH1 | 2402               | No-Hopping      | -43.21             | -20            | Pass    |
| NVNT       | 2-DH1 | 2480               | No-Hopping      | -42.87             | -20            | Pass    |
| NVNT       | 3-DH1 | 2402               | No-Hopping      | -48.78             | -20            | Pass    |
| NVNT       | 3-DH1 | 2480               | No-Hopping      | -42.12             | -20            | Pass    |

|           |       |                    | Band Edge       |                    |                |       |
|-----------|-------|--------------------|-----------------|--------------------|----------------|-------|
| Condition | Mode  | Frequency<br>(MHz) | Hopping<br>Mode | Max Value<br>(dBc) | Limit<br>(dBc) | Verdi |
| NVNT      | 1-DH1 | 2402               | No-Hopping      | -42.76             | -20            | Pas   |
| NVNT      | 1-DH1 | 2480               | No-Hopping      | -43.38             | -20            | Pas   |
| NVNT      | 2-DH1 | 2402               | No-Hopping      | -43.21             | -20            | Pas   |
| NVNT      | 2-DH1 | 2480               | No-Hopping      | -42.87             | -20            | Pas   |
|           |       |                    |                 |                    |                |       |




Page 49 of 93





Report No.: TCT220407E039



Page 51 of 93



Band Edge NVNT 2-DH1 2402MHz

**н**н

PNO: Wide IFGain:Low Trig: Free Run #Atten: 30 dB

10 dB/div Loa

 Keysight Spectrum Analyzer - Swept SA

 RL
 RF
 50 Ω
 AC

 Center Freq 2.402000000 GHz

Ref Offset 2.19 dB Ref 20.00 dBm

Page 52 of 93


Report No.: TCT220407E039

03:41:37 PM Apr 12, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N

Mkr1 2.401 936 GHz -2.424 dBm

No-Hopping Ref

Avg Type: Log-Pwr Avg|Hold: 1000/1000



Page 53 of 93




Band Edge NVNT 3-DH1 2402MHz

Report No.: TCT220407E039

No-Hopping Ref

Page 54 of 93



Page 55 of 93

| Band Edge(Hopping) |       |                    |                 |                    |                |         |
|--------------------|-------|--------------------|-----------------|--------------------|----------------|---------|
| Condition          | Mode  | Frequency<br>(MHz) | Hopping<br>Mode | Max Value<br>(dBc) | Limit<br>(dBc) | Verdict |
| NVNT               | 1-DH1 | 2402               | Hopping         | -41.92             | -20            | Pass    |
| NVNT               | 1-DH1 | 2480               | Hopping         | -42.27             | -20            | Pass    |
| NVNT               | 2-DH1 | 2402               | Hopping         | -43.56             | -20            | Pass    |
| NVNT               | 2-DH1 | 2480               | Hopping         | -43.00             | -20            | Pass    |
| NVNT               | 3-DH1 | 2402               | Hopping         | -45.58             | -20            | Pass    |
| NVNT 🐇             | 3-DH1 | 2480               | Hopping         | -42.90             | -20            | Pass    |

### Band Edge(Hopping)



Page 56 of 93

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Mkr1 2.401 936 GHz -2.395 dBm Ref Offset 2.19 dB Ref 20.00 dBm 10 dB/div Log n, Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Emission Keysight Spect K RI Avg Type: Log-Pwr Avg|Hold: 5000/5000 Center Freq 2.356000000 GHz PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB TYP Mkr1 2.404 9 GHz -2.476 dBm Ref Offset 2.19 dB Ref 20.00 dBm 10 dB/di Log ĮŲ A 3 (Start 2.30600 GHz #Res BW 100 kHz Stop 2.40600 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH -2.476 dBm -46.840 dBm -46.411 dBm -44.319 dBm 2.400 0 GHz 2.390 0 GHz 2.387 0 GHz N N STATUS

Test Graphs

Band Edge(Hopping) NVNT 1-DH1 2402MHz

PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB

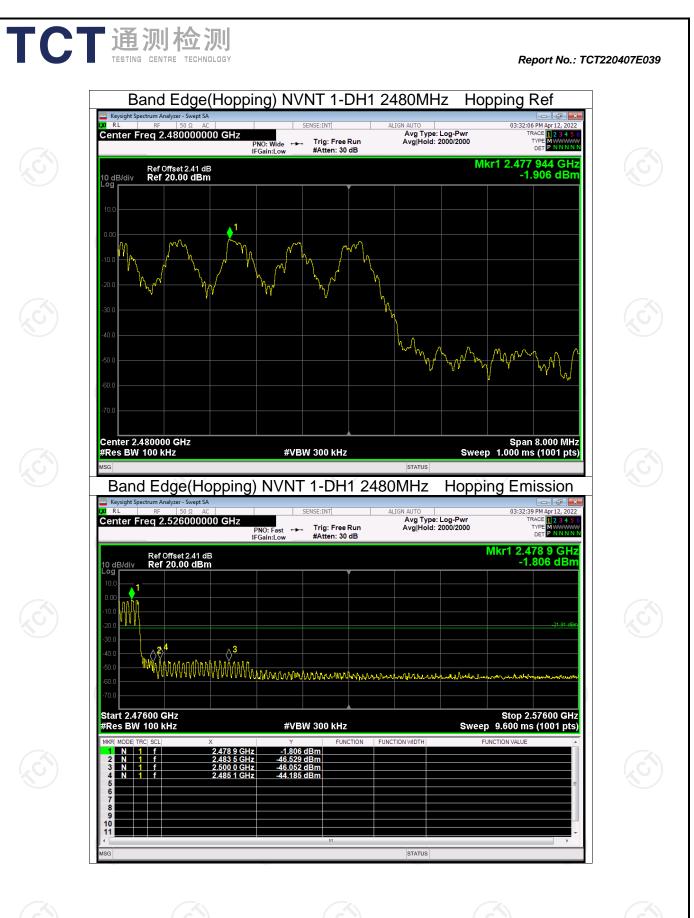
TCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Sp LXI R L

Center Freq 2.402000000 GHz

Report No.: TCT220407E039

NNNN


Page 57 of 93

03:39:10 PM Apr 12, 2022

TYP DE 1 2 3 4 5 Miananana

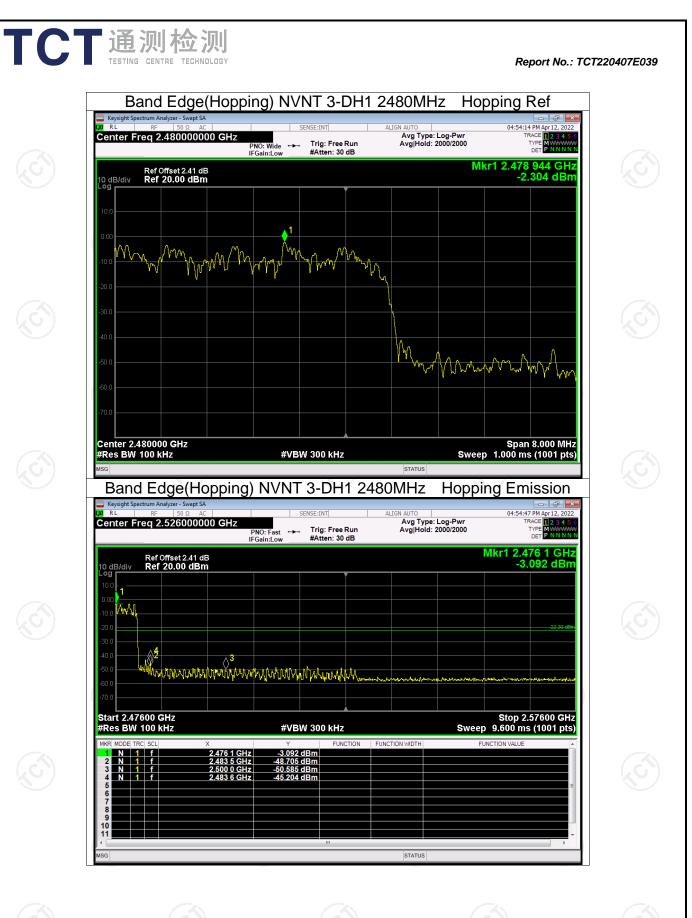
Hopping Ref

Avg Type: Log-Pwr Avg|Hold: 2000/2000



Page 58 of 93






Page 60 of 93



Page 61 of 93

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



Page 62 of 93

### **Conducted RF Spurious Emission**

| Condition | Mode  | Frequency (MHz) | Max Value (dBc) | Limit (dBc) | Verdict |  |
|-----------|-------|-----------------|-----------------|-------------|---------|--|
| NVNT      | 1-DH1 | 2402            | -42.43          | -20         | Pass    |  |
| NVNT      | 1-DH1 | 2441            | -43.13          | -20         | Pass    |  |
| NVNT      | 1-DH1 | 2480            | -43.63          | -20         | Pass    |  |
| NVNT      | 2-DH1 | 2402            | -42.86          | -20         | Pass    |  |
| NVNT      | 2-DH1 | 2441            | -43.21          | -20         | Pass    |  |
| NVNT      | 2-DH1 | 2480            | -44.22          | -20         | Pass    |  |
| NVNT 🚫    | 3-DH1 | 2402            | -43.01          | -20         | Pass    |  |
| NVNT      | 3-DH1 | 2441            | -43.40          | -20         | Pass    |  |
| NVNT      | 3-DH1 | 2480            | -43.33          | -20         | Pass    |  |
|           |       |                 |                 |             |         |  |

(C)

Page 63 of 93

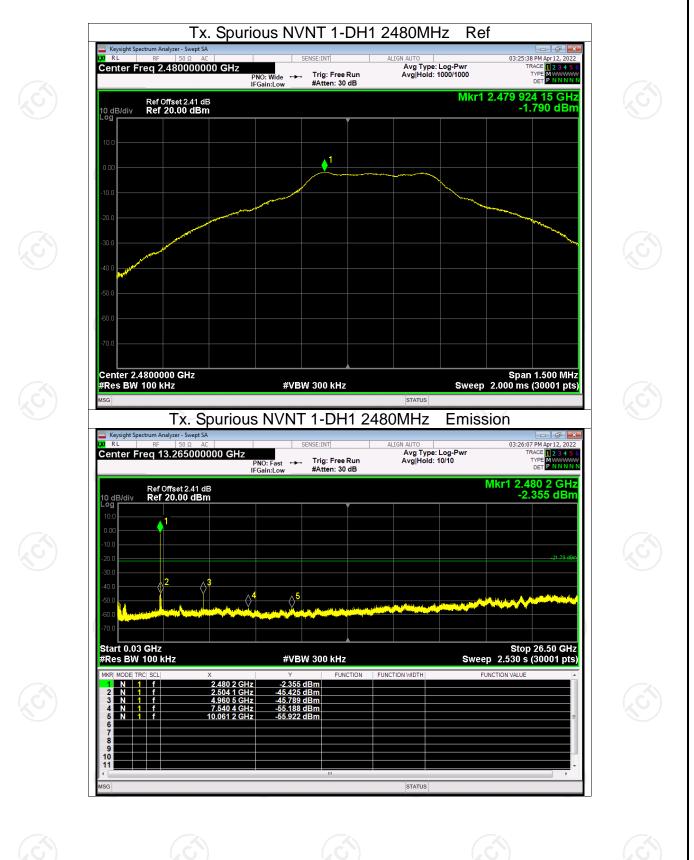
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



Report No.: TCT220407E039



Tx. Spurious NVNT 1-DH1 2441MHz


🔤 Keysight S

KI RL

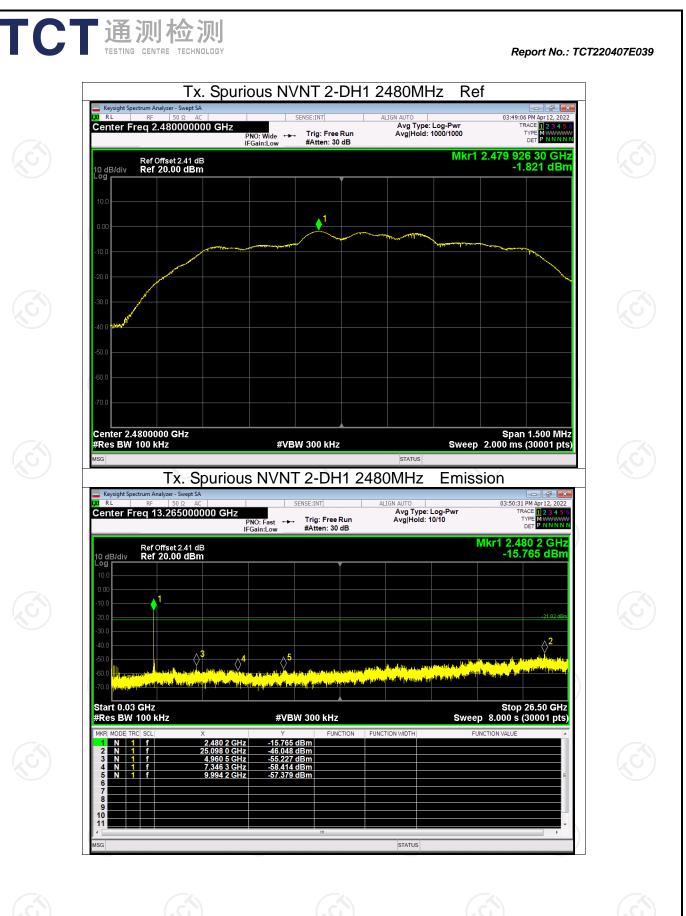
Report No.: TCT220407E039

Ref

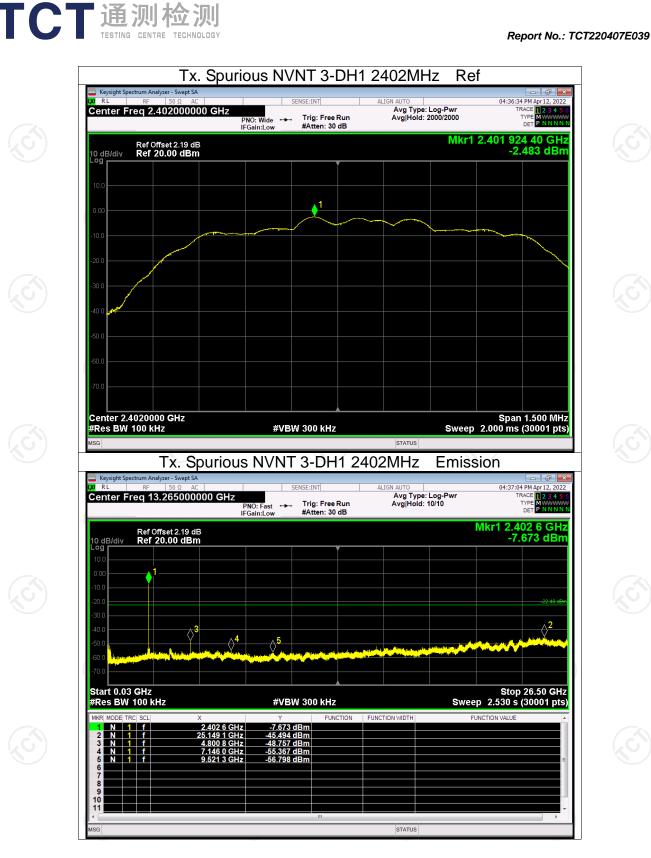
Page 65 of 93



Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Page 66 of 93

Report No.: TCT220407E039

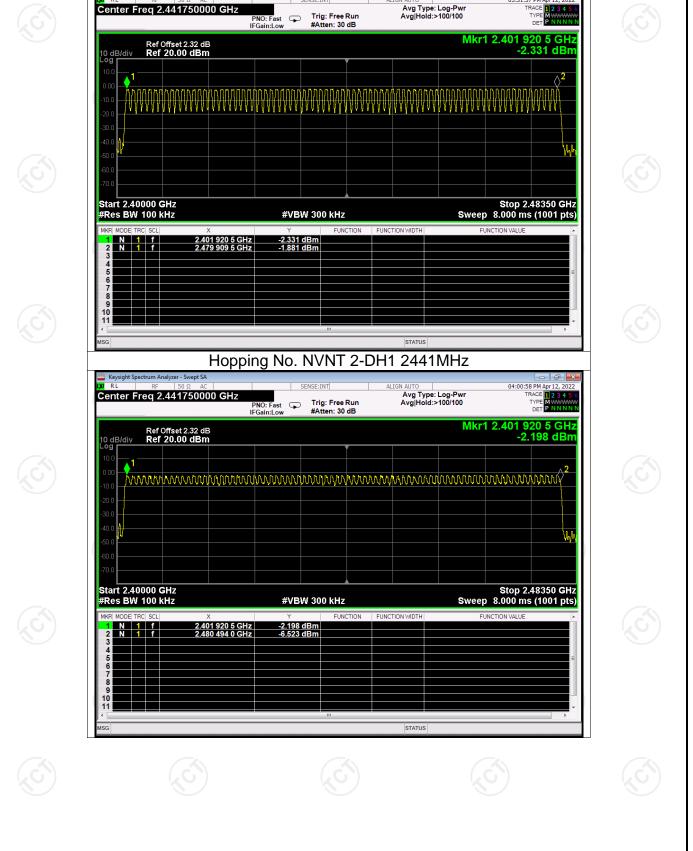





Page 68 of 93



Page 69 of 93




Page 70 of 93





|   | Verd<br>Pas | Limit<br>15 | Channel<br>umber | lopping N<br>79 | e   F | Mode<br>1-DH      | Condition<br>NVNT | ( |
|---|-------------|-------------|------------------|-----------------|-------|-------------------|-------------------|---|
| S | Pas         | 15          |                  | 79              |       | 2-DH              | NVNT              |   |
| S | Pas         | 15          |                  | 79              |       | 3-DH <sup>2</sup> | NVNT              |   |
|   |             |             |                  |                 |       |                   |                   |   |
|   |             |             |                  |                 |       |                   |                   |   |
|   |             |             |                  |                 |       |                   |                   |   |
|   |             |             |                  |                 |       |                   |                   |   |
|   |             |             |                  |                 |       |                   |                   |   |
|   |             |             |                  |                 |       |                   |                   |   |
|   |             |             |                  |                 |       |                   |                   |   |
|   |             |             |                  |                 |       |                   |                   |   |
|   |             |             |                  |                 |       |                   |                   |   |
|   |             |             |                  |                 |       |                   |                   |   |



Test Graphs Hopping No. NVNT 1-DH1 2441MHz

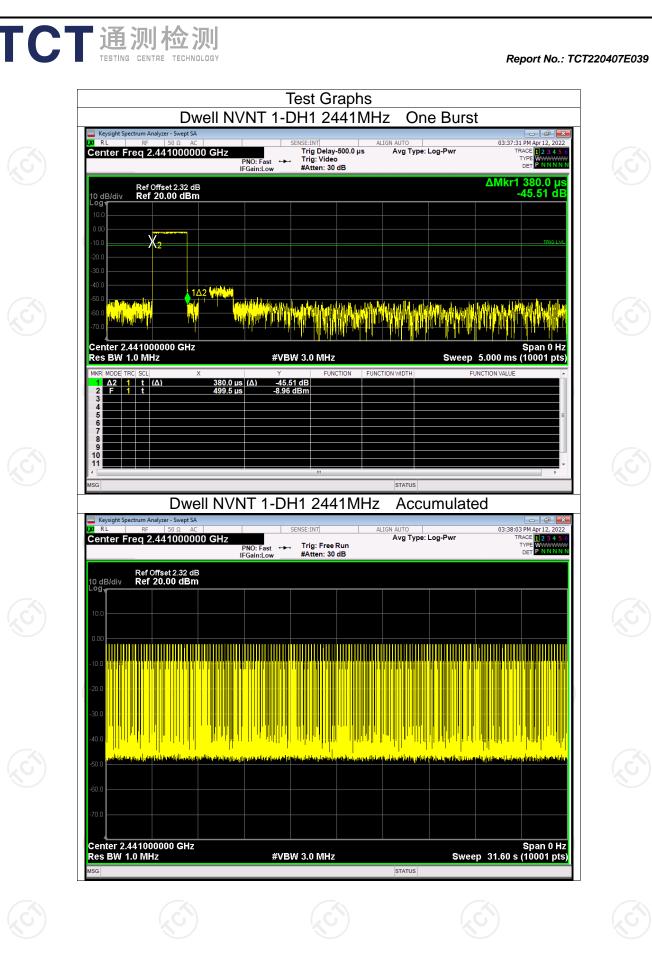
Keysight Spectrum Analyzer - Swept S/

Center Freq 2.441750000 GHz

Report No.: TCT220407E039

03:31:37 PM Apr 12, 2022

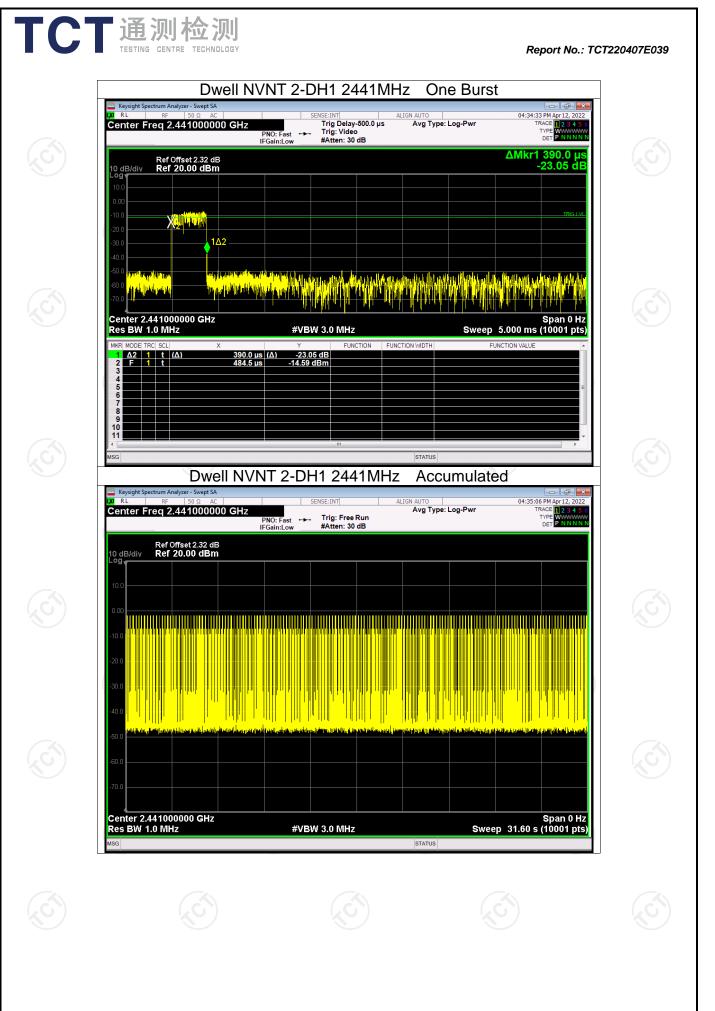
Page 74 of 93


| TC |                                                                                                                               | 检测<br>TECHNOLOGY          |                                          |                           |                                        | Report No                                             | D.: TCT220407E039 |
|----|-------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------|---------------------------|----------------------------------------|-------------------------------------------------------|-------------------|
|    | Keysight Spectrum Analyz                                                                                                      | ter - Swept SA<br>50 Ω AC | ing No. NV                               |                           | IN AUTO                                | 04:53:08 PM Apr12, 2                                  | 022               |
|    |                                                                                                                               | set 2.32 dB<br>9.00 dBm   | IFGain:Low #At                           | i: Free Run<br>ten: 30 dB | Avg Type: Log-Pwr<br>Avg Hold:>100/100 | 1 2.401 920 5 G<br>-3.317 dE                          |                   |
|    | -50 0<br>-60 0<br>-70 0<br>Start 2,40000 GH<br>#Res BW 100 kH:<br>MKR MODE TRC SCL<br>1 N 1 f<br>2 N 1 f<br>3 4<br>5 6<br>6 7 |                           | #VBW 300<br>z -3.317 dBm<br>z -3.834 dBm |                           |                                        | Stop 2.48350 G<br>p 8.000 ms (1001 p<br>UNCTION VALUE | Hz<br>ts)         |
|    | 8<br>9<br>10<br>11<br>4<br>MSG                                                                                                |                           |                                          | "                         | STATUS                                 |                                                       |                   |
|    |                                                                                                                               |                           |                                          |                           |                                        |                                                       |                   |
|    |                                                                                                                               |                           |                                          |                           |                                        |                                                       |                   |
|    |                                                                                                                               |                           |                                          |                           |                                        |                                                       |                   |
|    |                                                                                                                               |                           |                                          |                           |                                        |                                                       |                   |
|    |                                                                                                                               |                           |                                          |                           |                                        |                                                       |                   |
|    |                                                                                                                               |                           |                                          |                           |                                        |                                                       |                   |
|    |                                                                                                                               |                           |                                          |                           |                                        |                                                       | Page 75 of 93     |

| ТСТ | 通测检测                      |
|-----|---------------------------|
|     | TESTING CENTRE TECHNOLOGY |

Report No.: TCT220407E039

|           |       |                    | Dwe                   | II Time                        |                |                        |               |         |
|-----------|-------|--------------------|-----------------------|--------------------------------|----------------|------------------------|---------------|---------|
| Condition | Mode  | Frequency<br>(MHz) | Pulse<br>Time<br>(ms) | Total<br>Dwell<br>Time<br>(ms) | Burst<br>Count | Period<br>Time<br>(ms) | Limit<br>(ms) | Verdict |
| NVNT      | 1-DH1 | 2441               | 0.38                  | 120.46                         | 317            | 31600                  | 400           | Pass    |
| NVNT      | 1-DH3 | 2441               | 1.63                  | 249.39                         | 153            | 31600                  | 400           | Pass    |
| NVNT      | 1-DH5 | 2441               | 2.88                  | 334.08                         | 116            | 31600                  | 400           | Pass    |
| NVNT 😓    | 2-DH1 | 2441               | 0.39                  | 124.41                         | 319            | 31600                  | 400           | Pass    |
| NVNT      | 2-DH3 | 2441               | 1.64                  | 277.16                         | 169            | 31600                  | 400           | Pass    |
| NVNT      | 2-DH5 | 2441               | 2.89                  | 329.46                         | 114            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH1 | 2441               | 0.39                  | 122.85                         | 315            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH3 | 2441               | 1.64                  | 247.64                         | 151            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH5 | 2441               | 2.89                  | 283.22                         | 98             | 31600                  | 400           | Pass    |

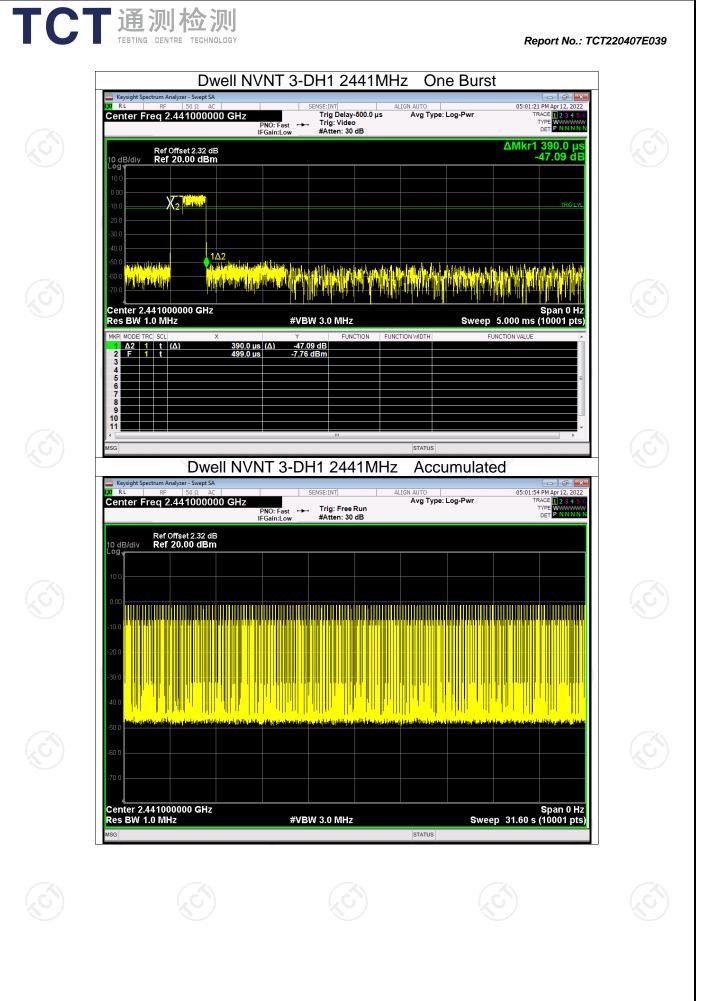





Page 77 of 93

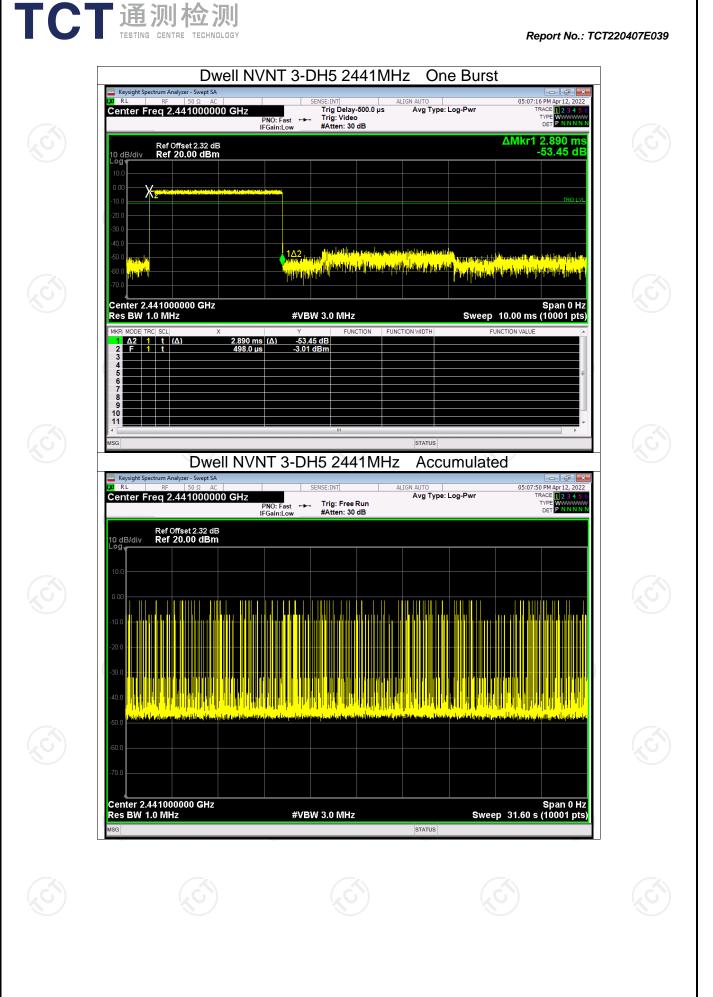
| TC | 通测检测<br>TESTING CENTRE TECHNOLOGY Report No.: TCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T220407E039 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|    | Dwell NVNT 1-DH3 2441MHz       One Burst         Keysight Spectrum Analyzer - Swept SA       SENSE:INT       ALIGN AUTO       05:02:26 PM Apr 12, 2022         Center Freq 2.4410000000 GHz       Trig Delay-500.0 µs       Avg Type: Log-Pwr       TRACE       Trig: Video         PNO: Fast       Frig: Video       Trig: Video       Trig: Video       Trig: Video       Trig: Video                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|    | Ref Offset 2.32 dB         ΔMkr1 1.630 ms           10 dB/div         Ref 20.00 dBm           10 0         0.99 dB           10 0         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|    | Center 2.44 1000000 GHz         Span 0 Hz           Res BW 1.0 MHz         #VBW 3.0 MHz         Sweep 10.00 ms (10001 pts)           MKR MODE TRC SCL         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           1         Δ2         1         t         (Δ)         0.99 dB         Image: Content of the second |             |
|    | 2 F 1 t 489.0 µs -17.70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
|    | 11         status           Msg         status           Dwell NVNT 1-DH3 2441MHz         Accumulated           Keysight Spectrum Analyzer - Swept SA         COM April 2, 2022           MRL         RF         S0 Ω         AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|    | Center Freq 2.441000000 GHz     Avg Type: Log-Pwr     TRACE 123450       PN0: Fast     Free Run     Trig: Free Run       IFGain:Low     #Atten: 30 dB     Der P KIN N N       Ref Offset 2.32 dB     10 dB/div     Ref 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|    | -200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|    | -50 0 -60 0 -70 0 -70 0 -70 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
|    | Center 2.441000000 GHz         Span 0 Hz           Res BW 1.0 MHz         #VBW 3.0 MHz         Sweep 31.60 s (10001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |

| Keysight Spectrum Analyzer - Swe           K         RF         50 Ω           Center Freq 2.44100 | AC SENSE:INT ALI<br>0000 GHz Trig Delay-500.0 µs<br>PNO: East Trig: Video                                                         | Z One Burst                                                               |   |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---|
| Ref Offset 2.3<br>10 dB/div Ref 20.00 c                                                            | IFGain:Low #Atten: 30 dB                                                                                                          | ΔMkr1 2.880 ms<br>-9.52 dB                                                |   |
| 10.0<br>0.00<br>-10.0                                                                              |                                                                                                                                   | TRICLY                                                                    |   |
| -20.0                                                                                              |                                                                                                                                   |                                                                           |   |
| -50.0 มูมุ <u>พพ</u> พ<br>-60.0 <mark>ผู้ผู้หม่มู่</mark><br>-70.0                                 | na solandi kana kana kana kana kana kana kana kan                                                                                 | n na na sana na sana na sana na          |   |
| Center 2.441000000 G<br>Res BW 1.0 MHz                                                             | #VBW 3.0 MHz                                                                                                                      | Span 0 Hz<br>Sweep 10.00 ms (10001 pts)                                   |   |
| MKR MODE TRC SCL<br>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | χ         γ         FUNCTION         FUNCTION           2.880 ms         (Δ)         -9.52 dB         484.0 μs         -12.59 dBm | ON WIDTH FUNCTION VALUE                                                   |   |
| 5<br>6<br>7<br>8<br>9                                                                              |                                                                                                                                   | E                                                                         |   |
| 10<br>11<br>· · · · · · · · · · · · · · · · · ·                                                    |                                                                                                                                   | STATUS                                                                    |   |
| Keysight Spectrum Analyzer - Swe                                                                   | AC SENSE:INT ALI                                                                                                                  | Accumulated                                                               | - |
| Center Freq 2.44100<br>Ref Offset 2.3                                                              | PNO: Fast ++- Trig: Free Run<br>IFGain:Low #Atten: 30 dB                                                                          | Avg Type: Log-Pwr TRACE D2845 6<br>TYPE WWWWW<br>DET PNNNNN<br>DET PNNNNN |   |
| 10 dB/div Ref 20.00 d                                                                              |                                                                                                                                   |                                                                           |   |
|                                                                                                    |                                                                                                                                   |                                                                           |   |
| -10.0 <b>112 11 112 11 11 11 11 11 11 11 11 11 11</b>                                              |                                                                                                                                   |                                                                           |   |
| -30.0                                                                                              |                                                                                                                                   | na a caratina canan na ara                                                |   |
| -40.0                                                                                              | i (1997) - Andre Stander, and an                                                              | n an                                  |   |
| -60.0                                                                                              |                                                                                                                                   |                                                                           |   |
| Center 2.441000000 G                                                                               | Hz #/CW/00004                                                                                                                     | Span 0 Hz                                                                 |   |
| Res BW 1.0 MHz                                                                                     | #VBW 3.0 MHz                                                                                                                      | Sweep 31.60 s (10001 pts)<br>status                                       |   |
|                                                                                                    |                                                                                                                                   |                                                                           |   |




Page 80 of 93

| TC | 通测检测<br>TESTING CENTRE TECHNOLOGY Report No.: TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T220407E039 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|    | Dwell NVNT 2-DH3 2441MHz         One Burst           Keysight Spectrum Analyzer - Swept SA         C           RL         RF         50 Ω         AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
|    | Center Freq 2.441000000 GHz Trig Delay-500.0 µs Avg Type: Log-Pwr TRACE 12:345 G<br>PNO: Fast Trig: Video Trip: Video UPF NNNNNN<br>IFGain:Low #Atten: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
|    | 10 dB/div Ref 20.00 dBm -48.46 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|    | -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0         -70 0 <th< td=""><td></td></th<>                                           |             |
|    | MKR         MODE         TRC SCL         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           1         Δ2         1         t         (Δ)         1.540 ms         (Δ)         -48.46 dB         -48.46 dB           2         F         1         t         484.0 μs         -12.44 dBm         -48.46 dB         -48.46 dB |             |
|    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
|    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|    | Sense: Int         Align Auto         OS:04:39 PM Apr12, 2022           Center Fred 2.441000000 GHz         Align Auto         05:04:39 PM Apr12, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
|    | PNO: Fast  PNO: Fast  Free Run  TYPE WWWWWWW IFGain:Low #Atten: 30 dB  DET PNNNN Ref Offset 2.32 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|    | 10 dB/div Ref 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|    | -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|    | Center 2.441000000 GHz         Span 0 Hz           Res BW 1.0 MHz         #VBW 3.0 MHz         Sweep         31.60 s (10001 pts)           Msg         status         status         status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |


Page 81 of 93





|    | Dwell NVNT 3-DH3 2441MHz One Burst<br>Keysight Spectrum Analyzer - Swept SA<br>RL RF 50 Ω AC SENSE:INT ALIGN AUTO 05:06:20 PM Apr12, 2022<br>Center Freq 2.441000000 GHz Trig: Delay-500.0 µs Avg Type: Log-Pwr TRACE D 3:4 5:07<br>PNO: Fast → Trig: Video<br>PG6/aint ow Patter: 28 dB DEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5) | IFGain:Low     #Atten: 28 dB       Ref Offset 2.32 dB     AMkr1 1.640 ms       10 dB/div     Ref 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|    | -30.0<br>-40.0<br>-50.0<br>-50.0<br>-50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 3  | -50.0<br>-60.0<br>-70.0<br>Center 2.441000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|    | Res BW 1.0 MHz         #VBW 3.0 MHz         Sweep 10.00 ms (10001 pts)           MKR MODE TRC SCL         X         Y         FUNCTION         FUNCTION VALUE         •           1 Δ2 1         t         (Δ)         1.640 ms (Δ)         -48.27 dB         •         •           2 F         1         t         498.0 us         -3.29 dBm         •         •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|    | 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|    | 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6  |
|    | ASG STATUS<br>Dwell NVNT 3-DH3 2441MHz Accumulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|    | Keysight Spectrum Analyzer - Swept SA     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     < |    |
|    | Ref Offset 2.32 dB<br>10 dB/div Ref 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 3  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| (  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 5) | -60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N. |
|    | Center 2.441000000 GHz Span 0 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|    | Res BW 1.0 MHz         #VBW 3.0 MHz         Sweep 31.60 s (10001 pts)           MSG         STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |

Page 84 of 93

