KSIGN (Guangdong) Testing Co., Ltd.

K5IGN[®]

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu,Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China Tel.: + (86)755-29852678 Fax: + (86)755-29852397 E-mail: info@gdksign.cn Website: www.gdksign.com

Т	EST REPORT
Report No:	KS2011S02133E
FCC ID······:	2AO94-MK11
Applicant	MOKO TECHNOLOGY LIMITED
Address	2F, Building1,No.37 Xiaxintang Xintang village,Fucheng Street, Longhua District,Shenzhen,Guangdong Province,China
Manufacturer	MOKO TECHNOLOHY Ltd
Address	2F, Building1, No. 37 Xiaxintang Xintang village, Fucheng Street, Longhua District, Shenzhen, Guangdong Province, China
Factory	MOKO TECHNOLOHY Ltd
Address	2F, Building1, No. 37 Xiaxintang Xintang village, Fucheng Street, Longhua District, Shenzhen, Guangdong Province, China
Product Name:	Bluetooth Low Energy Module
Trade Mark	1
Model/Type reference:	MK11A
Listed Model(s)	I
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of Receipt	Nov. 26, 2020
Date of Test Date	Nov. 26, 2020~Dec. 21, 2020
Date of issue	Dec. 21, 2020
Test result:	Pass
Compiled by: (Printed name+signature)	Rory Huang
Supervised by:	Floren
(Printed name+signature)	Eder Zhan
Approved by:	
(Printed name+signature)	Cary Luo
Testing Laboratory Name:	KSIGN(Guangdong) Testing Co., Ltd.
Address	West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

TABLE OF CONTENTS

Page

1. TEST SUMMARY	
1.1. Test Standards	Allow a
1.2. REPORT VERSION.	
1.3. TEST DESCRIPTION	
1.4. TEST FACILITY	
1.5. Measurement Uncertainty	
1.6. Environmental conditions	
2. GENERAL INFORMATION	
2.1. GENERAL DESCRIPTION OF EUT	
2.2. OPERATION STATE	
2.3. MEASUREMENT INSTRUMENTS LIST	
2.5. Test Software	
3. TEST ITEM AND RESULTS	
3.1. Antenna requirement	
3.2. 6dB Bandwidth	
3.3. Peak Output Power	
3.4. POWER SPECTRAL DENSITY	
3.5. Band edge and Spurious Emission (conducted)	
3.6. Band Edge Emissions(Radiated)	
3.7. Spurious Emission (Radiated)	
3.8. CONDUCTED EMISSION.	
4. EUT TEST PHOTOS	
5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL	

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

KDB 558074 D01 : The measurement guidance provided herein is applicable only to Digital Transmission System (DTS) devices operating in the 902-928 MHz. 2400-2483.5 MHz and/or 5725-5850 MHz bands under § 15.247 of the FCC rules (Title 47 of the Code of Federal Regulations).

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	Dec. 21, 2020	Original

1.3. Test Description

FCC Part 15 Subpart C(15.247)					
	Standard Section	Dessil	T. (F		
Test Item	FCC	Result	Test Engineer		
Antenna Requirement	15.203	Pass	Rory Huang		
Conducted Emission	15.207	Pass	Rory Huang		
Restricted Bands	15.205	Pass	Rory Huang		
Peak Output Power	15.247(b)	Pass	Rory Huang		
Band Edge Emissions	15.247(d)	Pass	Rory Huang		
Power Spectral Density	15.247(e)	Pass	Rory Huang		
Radiated Emission	15.205&15.209	Pass	Rory Huang		
6dB Bandwidth	15.247(a)(2)	Pass	Rory Huang		
Spurious RF Conducted Emission	15.247(d)	Pass	Rory Huang		

Note:

1. The measurement uncertainty is not included in the test result.

1.4. Test Facility

Address of the report laboratory

KSIGN(Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L13261

KSIGN(Guangdong) Testing Co., Ltd. has been assessed and proved to be in Compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: CN0096

The 3m alternate test site of KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0096

FCC-Registration No.: CN1272

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

Test Items	Measurement Uncertainty	Notes	
Transmitter power conducted	0.42 dB	(1)	
Transmitter power Radiated	2.14 dB	(1)	
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)	
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)	
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)	
Radiated Emissions 30~1000MHz	4.70 dB	(1)	
Radiated Emissions 1~18GHz	5.00 dB	(1)	
Radiated Emissions 18~40GHz	5.54 dB	(1)	
Occupied Bandwidth	2.80 dB	(1)	

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

2. GENERAL INFORMATION

2.1. General Description of EUT

Test Sample Number 1:	1-1-1(Normal Sample),1-1-2(Engineering Sample)
Product Name:	Bluetooth Low Energy Module
Model/Type reference:	MK11A
Trade Mark:	
Listed Model(s):	
Model Difference:	
Power supply(Work)	Input:DC 3.3V
Hardware version:	V1.0
Software version:	V1.0.0
Bluetooth V5.1	
Modulation:	GFSK
Operation frequency:	2402MHz~2480MHz
Max Peak Output Power:	3.88 dBm
Channel number:	40
Channel separation:	2MHz
Antenna type:	PCB Antenna
Antenna gain:	-0.7dBi

2.2. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT BLE, 40 channels are provided to the EUT. Channels 00/19/39 were selected for testing. Operation Frequency List:

Channel	Frequency (MHz)		
00	2402		
01	2404		
19	2440		
20	2442		
21	2444		
38	2478		
39	2480		

Note: The display in grey were the channel selected for testing.

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.3. Measurement Instruments List

	Tonscend JS0806-2 Test system						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until		
1	Spectrum Analyzer	R&S	FSV40-N	101798	04/07/2021		
2	Vector Signal Generator	Agilent	N5182A	MY50142520	04/07/2021		
3	Analog Signal Generator	HP	83752A	3344A00337	04/07/2021		
4	Power Sensor	Agilent	E9304A	MY50390009	04/07/2021		
5	Power Sensor	Agilent	E9300A	MY41498315	04/07/2021		
6	Wideband Radio Communication Tester	R&S	CMW500	157282	04/07/2021		
7	Climate Chamber	Angul	AGNH80L	1903042120	04/07/2021		
8	Dual Output DC Power Supply	Agilent	E3646A	MY40009992	04/07/2021		
9	RF Control Unit	Tonscend	JS0806-2	/	04/07/2021		

	Transmitter spur	ious emissions & Re	ceiver spurious en	nissions	
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	EMI Test Receiver	R&S	ESR	102525	04/07/2021
2	High Pass Filter	Chengdu E-Microwave	OHF-3-18-S	0E01901038	03/27/2021
3	High Pass Filter	Chengdu E-Microwave	OHF-6.5-18-S	0E01901039	03/27/2021
4	Spectrum Analyzer	HP	8593E	3831U02087	04/07/2021
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	03/29/2023
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	03/25/2021
7	Spectrum Analyzer	R&S	FSV40-N	101798	04/07/2021
8	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	03/29/2023
9	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	04/07/2021
10	Pre-Amplifier	EMCI	EMC051835SE	980662	04/07/2021

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	LISN	R&S	ENV432	1326.6105.02	03/27/2021
2	EMI Test Receiver	R&S	ESR	102524	04/07/2021
3	Manual RF Switch	JS TOYO		MSW-01/002	04/07/2021

Note:

The Cal. Interval was one year.
 The cable loss has calculated in test result which connection between each test instruments.

2.5. Test Software

Software name	Model	Version
Conducted emission Measurement Software	EZ-EMC	EMC-Con 3A1.1
Radiated emission Measurement Software	EZ-EMC	FA-03A.2.RE
Bluetooth and WIFI Test System	JS1120-3	2.5.77.0418

3. TEST ITEM AND RESULTS

3.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

Note: The antenna is permanently fixed to the EUT

3.2. 6dB Bandwidth

Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

Test Configuration

	EUT	Spectrum Analyzer
<u> </u>		

Test Procedure

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.
- 3. The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

4. Spectrum Setting:

6dB bandwidth:

- (1) Set RBW = 100 kHz.
- (2) Set the video bandwidth (VBW) = 3* RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.
- (6) Allow the trace to stabilize.

(7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

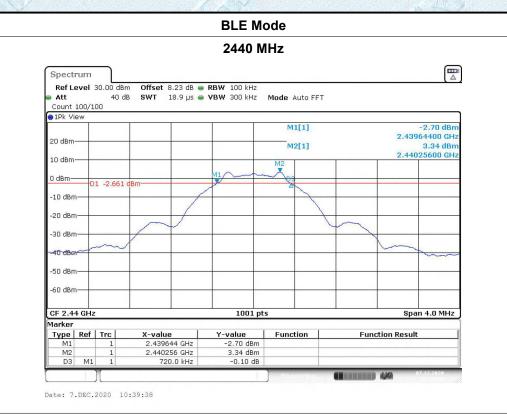
Test Mode

Please refer to the clause 2.3.

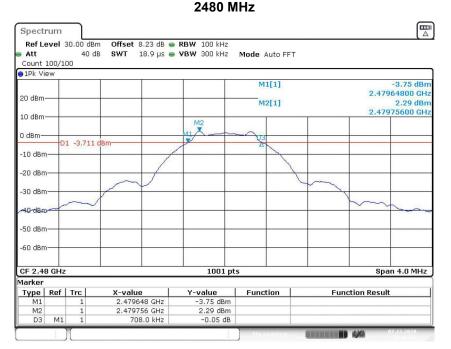
Test Results

GFSK_1M

Test Mode:	BLE Mode		AS CONTRACTOR
Channel frequ	uency (MHz)	6dB Bandwidth (kHz)	Limit (kHz)
2402		708	
2440		720	≧500
2480		708	


BLE Mode

2402 MHz

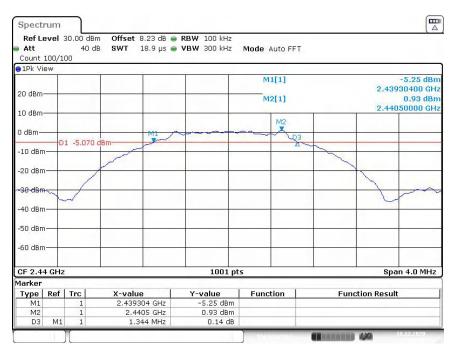

Att	ever .	30.00 dB 40 c		VBW 100 kHz	Mode Auto FF	т		
Count	100/1		10 3441 10.9 ps	1011 300 KHZ	HOUE AUTO FF			
1Pk Vi								
					M1[1]			-2.36 dBr
20 dBm					No. 11 Concession		2.401	.65200 GH
					M2[1]			3.73 dBr
10 dBm					M2		2.402	25600 GH
				MI	X			
0 dBm—	D	1 -2.269	dBm		~ 63			
		1 2.205			-			
-10 dBm					1			
-20 dBm						N.		
-20 UBII			m			Im		
-30 dBm						7		
	-	~					L	
40 dBm								
-50 dBm								
-60 dBm								
CF 2.4		-		1001 pt	-			n 4.0 MHz
larker	72 GH	2		1001 pt	3		эра	11 4.0 MHZ
	Ref	Trc	X-value	Y-value	Function	Fun	ction Result	
M1		1	2.401652 GHz	-2.36 dBm		1 di		
M2		1	2.402256 GHz	3.73 dBm				
D3	M1	1	708.0 kHz	-0.05 dB				

Date: 7.DEC.2020 10:36:01

BLE Mode

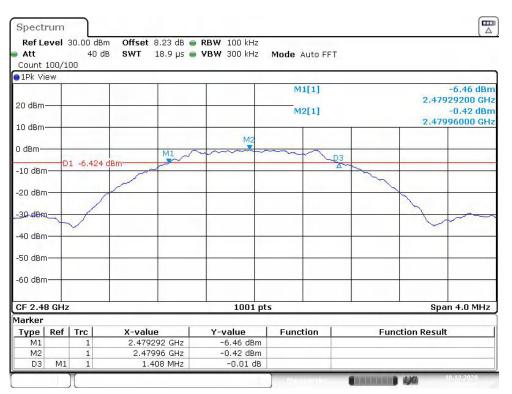
Date: 7.DEC.2020 10:42:55

GFSK_2M


Test Mode:	BLE Mode	1 Charles and the second s	999 - Carlo
Channel frequ	iency (MHz)	6dB Bandwidth (kHz)	Limit (kHz)
240	2	1.428	
2440		1.344	≧500
2480		1.408	
		BLE Mode	

2402 MHz

Att		30.00 dBr 40 d		RBW 100 kHz VBW 300 kHz	Mode Auto FF	т	
Count	2.22	00					
20 dBm					M1[1]		-4.73 dE 2.40128800 G 1.34 dE 2.40199200 G
10 dBm 0 dBm—				MP			
о авт— -10 dBn		1 -4.659	dBm M1		and	D3	
20 dBm	-	1					~
30 dBn 40 dBn		1					
50 dBn							
-60 dBrr	-	_					
CF 2.4	02 GH	z		1001 pt:	s		Span 4.0 MH
1arker Type	Ref	Trc	X-value	Y-value	Function	Fund	tion Result
M1		1	2.401288 GHz	-4.73 dBm			
M2 D3	M1	1	2.401992 GHz 1.428 MHz	1.34 dBm 0.02 dB			

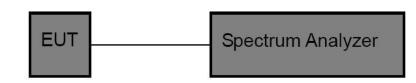

Date: 18.DEC.2020 21:15:10

2440 MHz

Date: 18.DEC.2020 21:20:32

2480 MHz

Date: 18.DEC.2020 21:23:46



3.3. Peak Output Power

Limit

	Test Item	Limit	Frequency Range(MHz)
Pe	ak Output Power	1 Watt or 30 dBm	2400~2483.5

Test Configuration

Test Procedure

1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator..

2. Spectrum Setting:

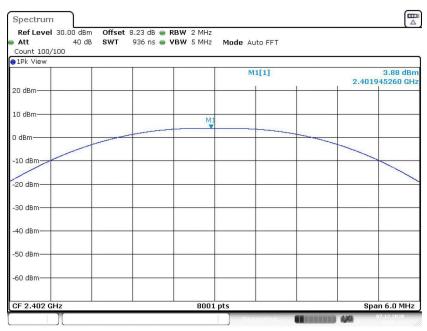
Peak Detector: RBW≥DTS Bandwidth, VBW≥3*RBW.

Sweep time=Auto.

Detector= Peak.

Trace mode= Maxhold.

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

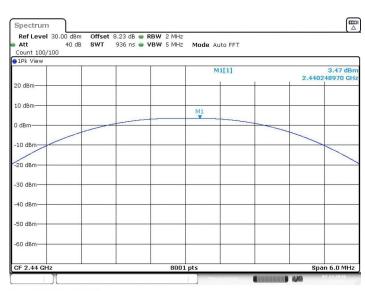

Test Mode

Please refer to the clause 2.3.

Test Result

GFSK_1M

Test Mode:	BLE Mode			
Channel frequ	iency (MHz)	Test Result (dBm)	Limit (dBm)	
240	2	3.88		
2440		3.47	30	
248	0	2.56		
	·	BLE Mode		
		2402 MHz		



Date: 7.DEC.2020 10:36:19

BLE Mode

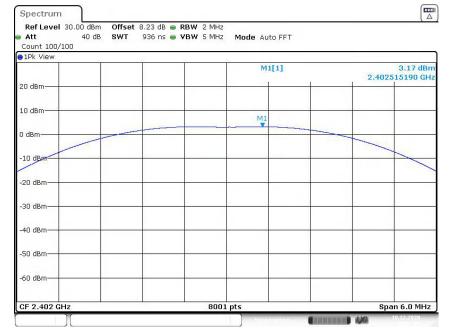
2440 MHz

Date: 7.DEC.2020 10:39:56

BLE Mode

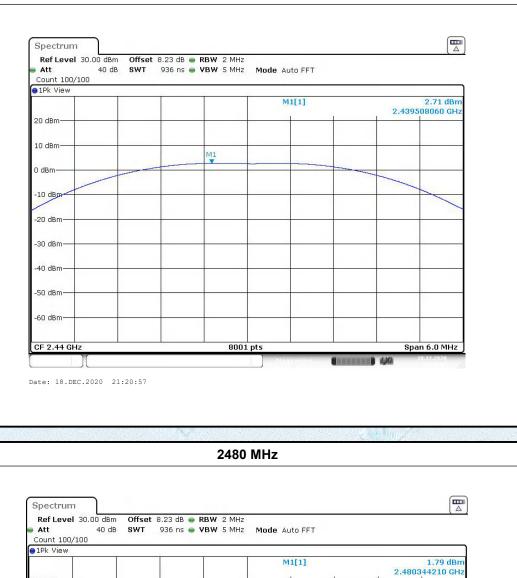
2480 MHz

Count 100/100	0 dBm Offset 40 dB SWT	8.23 dB 👄 RB 936 ns 👄 VB	Mode Au	ito FFT		
1Pk View			м	1[1]	 2.480231	2.56 dBr 720 GH
20 dBm						
10 dBm			 		 	
0 dBm			 M1		 	
-10 dBm						
-20 dBm-						/
-30 dBm						
-40 dBm						
-50 dBm			 		 	
-60 dBm						
-60 dBm						


Date: 7.DEC.2020 10:43:13

GFSK-2M

Test Mode:	BLE Mode	A	
Channel frequ	ency (MHz)	Test Result (dBm)	Limit (dBm)
2402	2	3.17	
2440		2.71	30
2480		1.79	
	t	BLE Mode	



Date: 18.DEC.2020 21:15:36

2440 MHz

M1

8001 pts

Span 6.0 MHz

Date: 18.DEC.2020 21:24:11

CF 2.48 GHz

20 dBm-10 dBm-

0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm

3.4. Power Spectral Density

Limit

FCC Part 15 Subpart C(15.247)				
Test Item	Limit	Frequency Range(MHz)		
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5		

Test Configuration

EUT	 Spectrum Analyzer
	Y: 27

Test Procedure

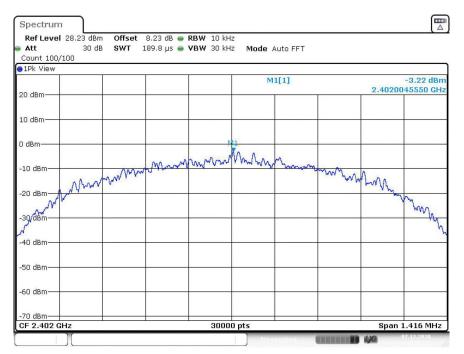
- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.b-6.ii of KDB 558074 D01 DTS Meas Guidance v05r02..
- 3. Spectrum Setting:

Set analyser center frequency to DTS channel center frequency. Set the span to 1.5 times the DTS bandwidth. Set the RBW to: 10 kHz Set the VBW to: 30 kHz Detector: peak Sweep time: auto Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.3.

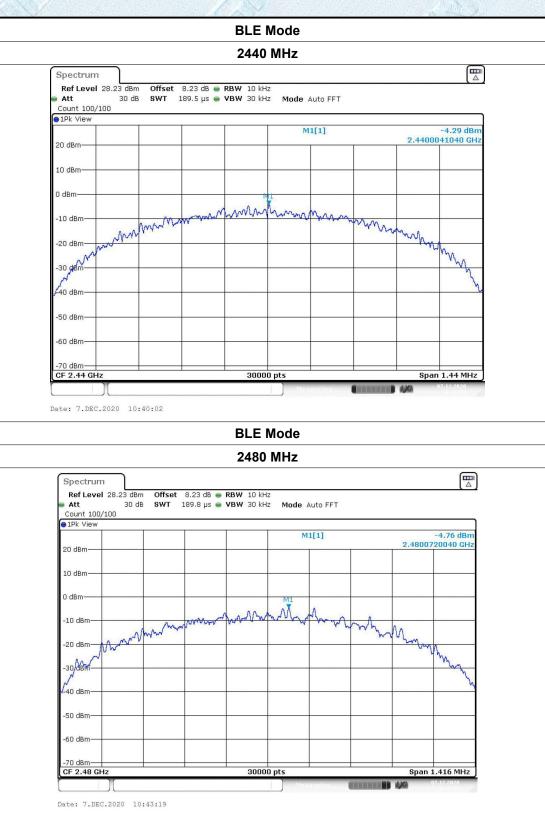
Test Result


Note:

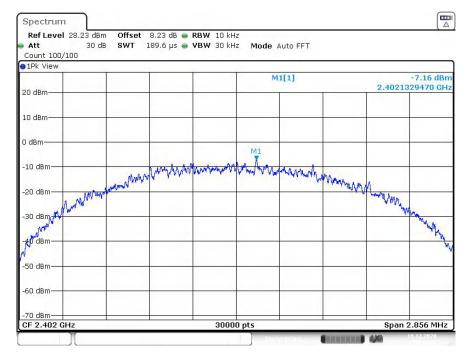
Power Density(dBm/3kHz)=Power Density(dBm/10kHz)-10*Log(10/3)

GFSK_1M

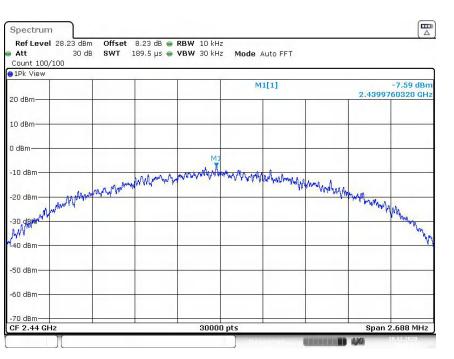
Test Mode:	BLE Mode	• // ·	665	
Channel Fre (MHz	• •	Power Density (dBm/10kHz)	Power Density (dBm/3kHz)	Limit (dBm)
2402	2	-3.22	-8.45	
2440		-4.29	-9.52	8dBm/3kHz
2480)	-4.76	-9.99	
		BLE Mode		


2402 MHz

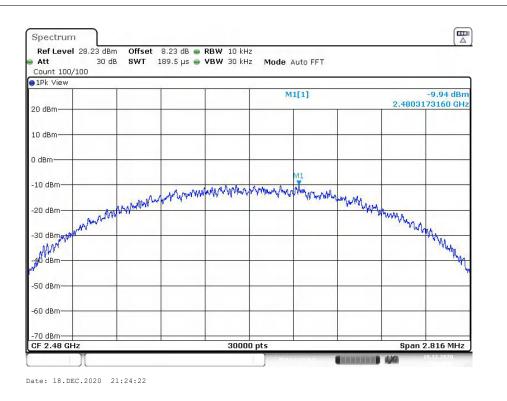
Date: 7.DEC.2020 10:36:25


Page 23 of 52

GFSK_2M


Test Mode:	BLE Mode	e / Y		
Channel Fre (MHz		Power Density (dBm/10kHz)	Power Density (dBm/3kHz)	Limit (dBm)
2402	2	-7.16	-12.39	
2440)	-7.59	-12.82	8dBm/3kHz
2480)	-9.94	-15.17	
		BLE Mode		
		2402 MHz		

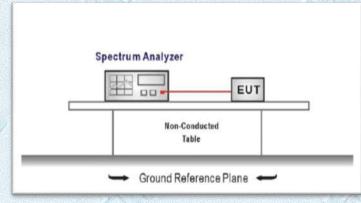
Date: 18.DEC.2020 21:15:46



2440 MHz

Date: 18.DEC.2020 21:21:08

2480 MHz


3.5. Band edge and Spurious Emission (conducted)

Limit

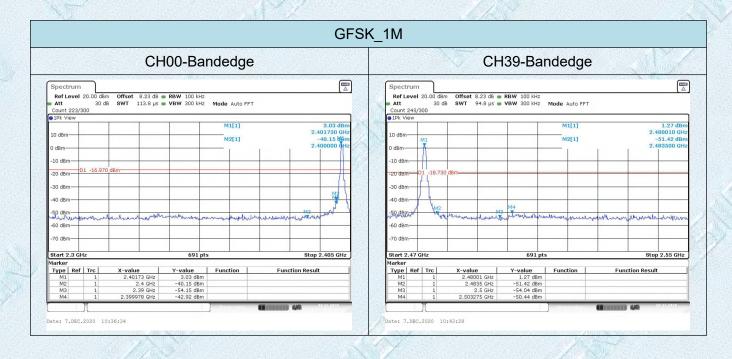
FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Test Configuration

Test Procedure

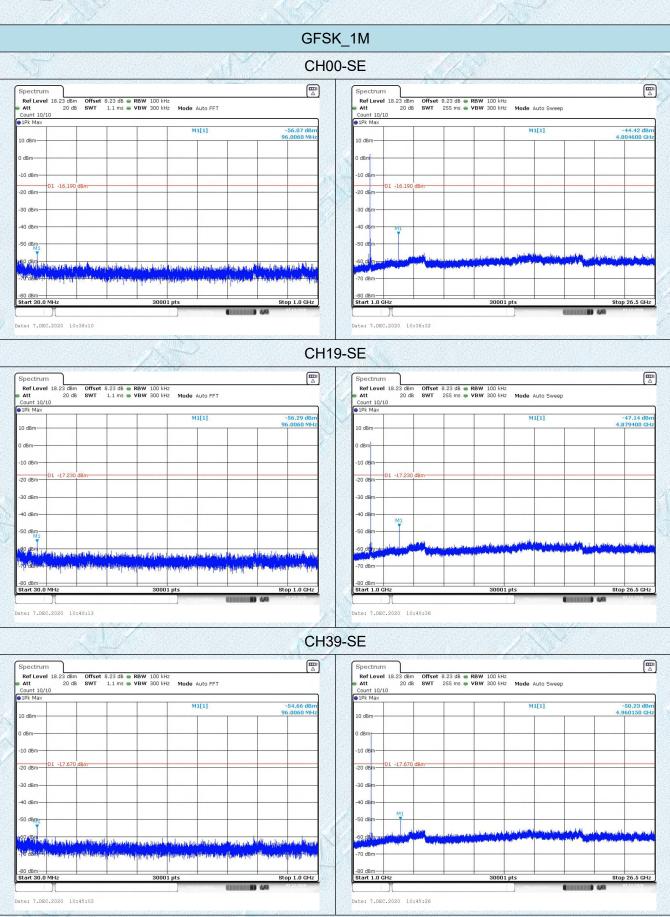
- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. Spectrum Setting:
 - RBW=100KHz
 - VBW=300KHz.
 - Detector function: Peak. Trace: Max hold. Sweep = Auto couple.


Allow the trace to stabilize.

Test Mode

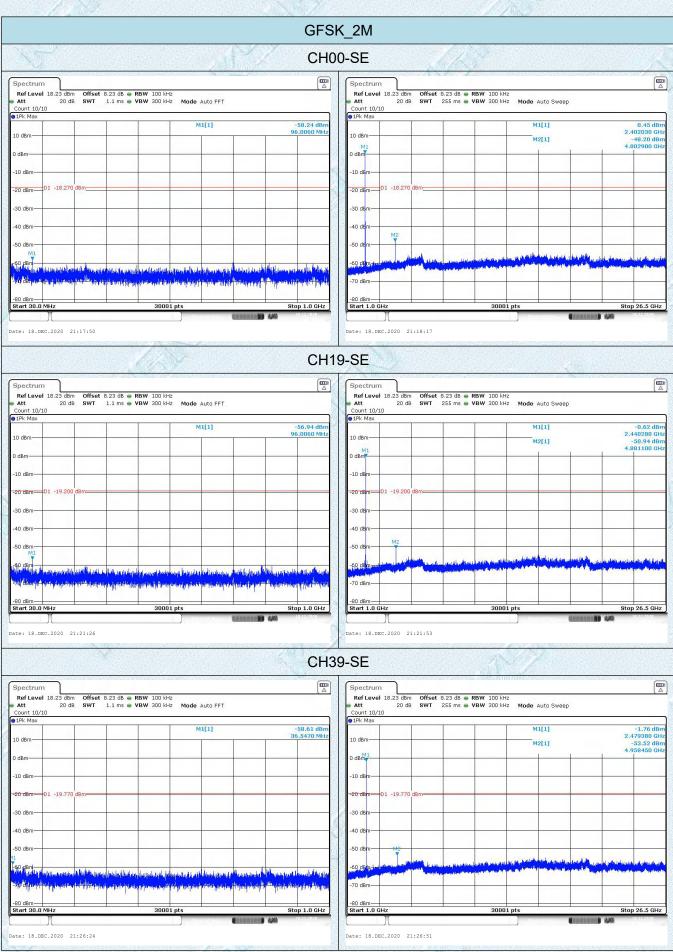
Please refer to the clause 2.3.

Test Results


GFSK_2M

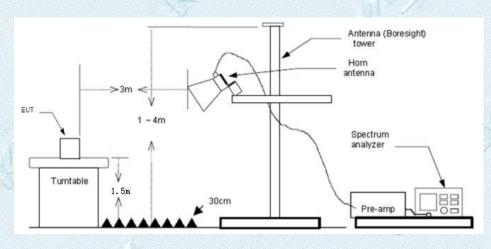
	С	H00-Bai	ndedge	and the second			Cł	139-Ba	ndedge		
pectrum					Spectrum		1000000000000				ſ
Ref Level 20.00 dB	m Offset 8.23 dB B SWT 75.8 µs	 RBW 100 kHz VBW 300 kHz 	Mode Auto FFT	(4)	Ref Level 20. Att Count 241/300	30 dB SW		RBW 100 kHz VBW 300 kHz	Mode Auto FFT		
1Pk View					O 1Pk View						
			M1[1]	1.00 dBm					M1[1]		-0.75 dE
) dBm				2.4021740 GHz	10 dBm						2.479780 G
J ubili			M2[1]	-30.6§1dBm	M1				M2[1]		-52.20 dt
dBm-		_		2.400000 GHz	0 dBm			_			2.483500 0
D dBm					-10 dBm						
0 dBm D1 -19.00	dem				00 40m						
J dBm-01 -19.00	ubin-				-20 dBm-01	-20.750 dBm					
0 dBm				Ma	-30 dBm						
5 dom				N 7	N	0					
0 dBm					-40 dBm			-			
				was well	S	412		M4			
0 dBm	and a some and allow	1 A CH I COM I AL INT	LALAN LANDAL	M3 milion of h	-59 dent	mound	man make a son a so	31 whentheren	madrial second	annesthanissing grand	بر المراميل سراري الم
0 dBm	the the menanega	na man name the	00000000000000000000000000000000000000		-60 dBm		- mailward -		and the state analy	and the second back	a multi aba aba aba.
U UBIII					-00 dBill						
0 dBm				2	-70 dBm						
art 2.35 GHz		691 pt		Stop 2.405 GHz	Start 2.47 GHz			691 p	ts		Stop 2.55 G
irker					Marker						
ype Ref Trc	X-value	Y-value	Function	Function Result	Type Ref T		value	Y-value	Function	Function	Result
M1 1 M2 1	2.402174 GHz 2.4 GHz	1.00 dBm -30.65 dBm			M1 M2		2.47978 GHz	-0.75 dBm -52.20 dBm			
M2 1 M3 1	2.4 GHZ 2.39 GHZ	-30.65 dBm -53.42 dBm			M2 M3	1	2.4835 GHZ 2.5 GHz	-52.20 dBm			
M4 1	2.39 GHz 2.3999783 GHz	-32.11 dBm			M4		506522 GHz	-50.37 dBm			
Y			thensuring	1 1 1 1 1 1 1 1 1 1	T T				transumer	frames 44	18.12.2020
)								
e: 18.DEC.2020	1.16.00				Date: 18.DEC.2	020 21:24:3	5				

Page 28 of 52


Report No.:KS2011S02133E

Page 29 of 52

Report No.:KS2011S02133E


3.6. Band Edge Emissions(Radiated)

Limit

Restricted Frequency Band	(dBuV/	m)(at 3m)
(MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

Note: All restriction bands have been tested, only the worst case is reported.

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=10Hz with PEAK Detector for Average Value.

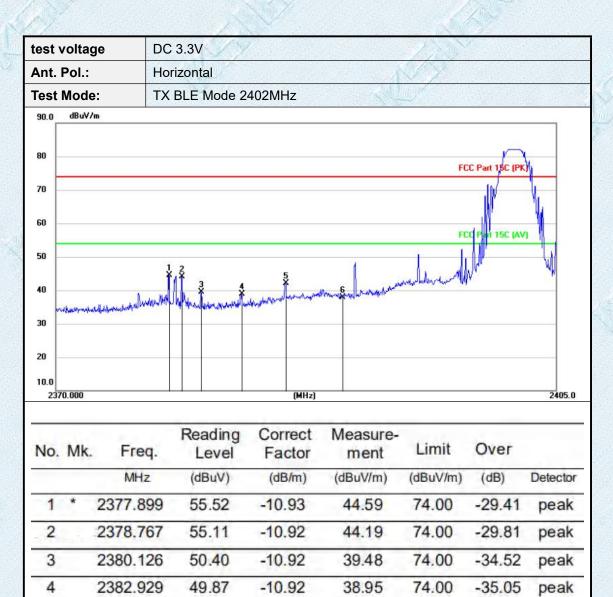
Test Mode

Please refer to the clause 2.2.

Test Results

Note:

(1)Measurement = Reading level + Correct Factor


(2)Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

(3)All modulation modes were tested, and only the worst data of GFSK_1M was recorded in the report.

5

6

42.10

37.88

74.00

74.00

-31.90

-36.12

peak

peak

Emission Level= Read Level+ Correct Factor

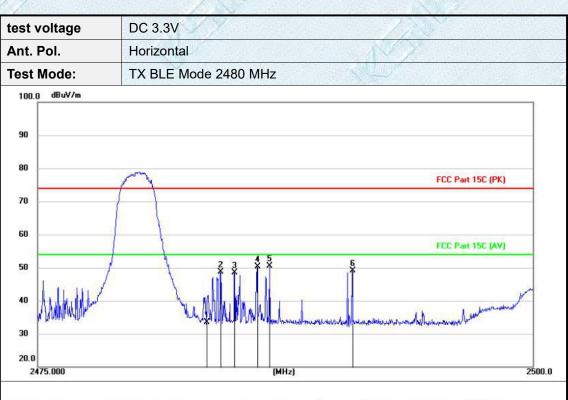
53.02

48.80

-10.92

-10.92

2386.006


2390.000

KSIGN®

test v	oltag	je DC	3.3V			and the		
Ant.	t. Pol. Vertical							
Test	Test Mode: TX BLE Mode 2402MHz 100.0 dBwV/m							
100.0	dBuV∕r	n						
90								_
80						FCC	Part 15C (PK)	
70								
60 -							1	
50						FCC	15C (AV)	Via
40		1 ² 3	4	5	1	1 MM		ΨĮ
14	Northerhore	Jeren March	Herr Judge Manuscription	Justimmum	www. Sullinger denter	Winner		
30								
20.0 237	0.000			(MHz)				2405.0
			Reading	Correct	Measure-			
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
	-	MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2373.195	50.22	-10.93	39.29	74.00	-34.71	peak
2	*	2376.423	51.56	-10.93	40.63	74.00	-33.37	peak
3		2377.501	50.65	-10.93	39.72	74.00	-34.28	peak
4		2379.394	50.77	-10.92	39.85	74.00	-34.15	peak
5		2384.052	50.30	-10.92	39.38	74.00	-34.62	peak
6		2390.000	46.84	-10.92	35.92	74.00	-38.08	peak

Emission Level= Read Level+ Correct Factor

KSIGN

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2483.500	44.39	-10.88	33.51	74.00	-40.49	peak
2		2484.205	59.49	-10.88	48.61	74.00	-25.39	peak
3	- 1	2484.915	59.42	-10.88	48.54	74.00	-25.46	peak
4	-	2486.060	61.24	-10.88	50.36	74.00	-23.64	peak
5	*	2486.670	61.42	-10.88	50.54	74.00	-23.46	peak
6	-	2490.863	60.09	-10.89	49.20	74.00	-24.80	peak

Emission Level= Read Level+ Correct Factor

KSIGN

est vo	oltage	DC 3.3V	
Ant. P	ol.	Vertical	
est N	/lode:	TX BLE Mode 2480 MHz	
00.0	dBuV/m		
90			
0		FCC Part 150	C (PK)
70			
.0		FCC Part 150	
	million	MWINH When I bound wind and an and and and and and and and an	advance and
30			20-010
20.0 2475.0	000	(MHz)	2500
		(a)	0
No.	Mk.	Reading Correct Measure- Freq. Level Factor ment Limit Ove	r

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2483.500	52.23	-10.88	41.35	74.00	-32.65	peak
2	*	2485.122	61.08	-10.88	50.20	74.00	-23.80	peak
3		2486.190	60.98	-10.88	50.10	74.00	-23.90	peak
4		2486.590	60.61	-10.88	49.73	74.00	-24.27	peak
5		2491.668	59.88	-10.89	48.99	74.00	-25.01	peak
6		2494.520	56.89	-10.87	46.02	74.00	-27.98	peak

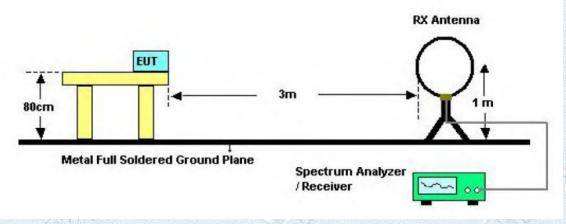
Emission Level= Read Level+ Correct Factor

3.7. Spurious Emission (Radiated)

<u>Limit</u>

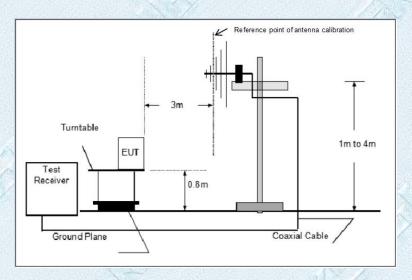
Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

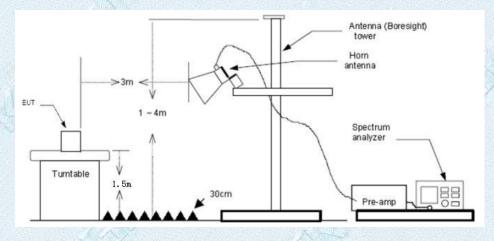

Radiated Emission Limit (Above 1000MHz)

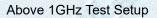
Frequency	Distance Meters(at 3m)					
(MHz)	Peak	Average				
Above 1000	74	54				

Note:


- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration




Below 30MHz Test Setup

Below 1000MHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:
 - RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=10Hz Peak detector for Average value.

Test Mode

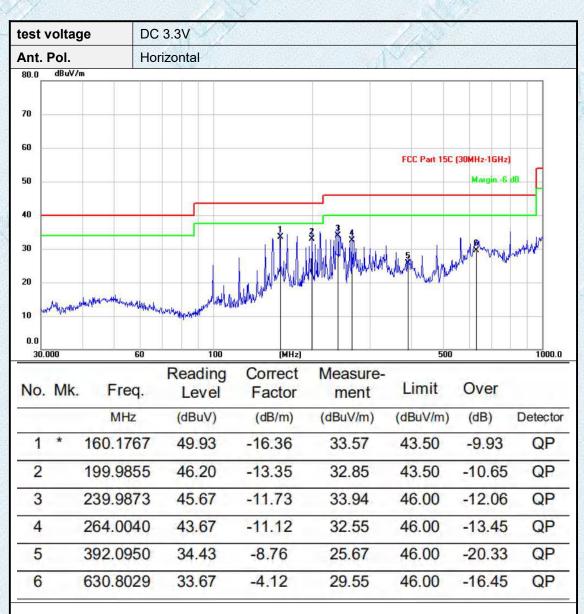
Please refer to the clause 2.3.

Test Result

9 KHz~30 MHz and 18GHz~25GHz

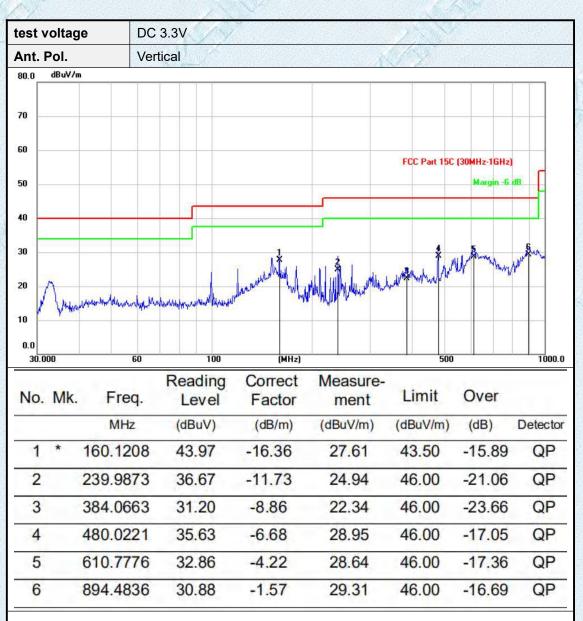
From 9 KHz~30 MHz and 18GHz~25GHz: Conclusion: PASS

Note:


- 1) Measurement = Reading level + Correct Factor Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor
- 2) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4) The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 5) Pre-scan CH00, CH19 and CH39 modulation, and found the GFSK_1M_ CH00 which it is worse case for 30MHz-1GHz, so only show the test data for worse case.

BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

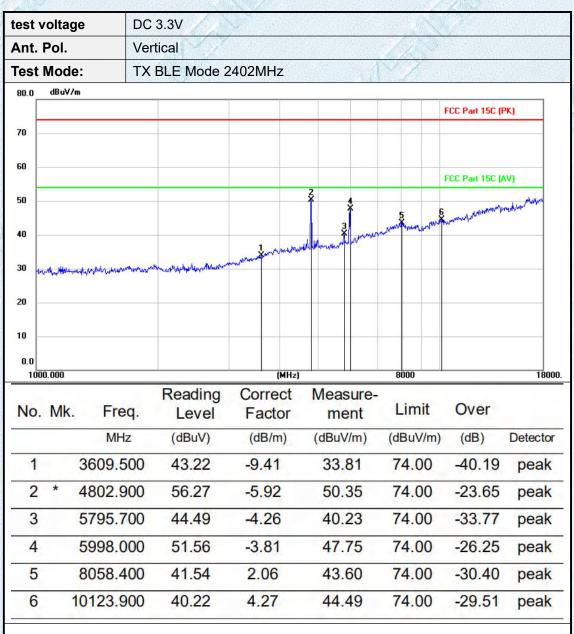


30MHz-1GHz

Emission Level= Read Level+ Correct Factor

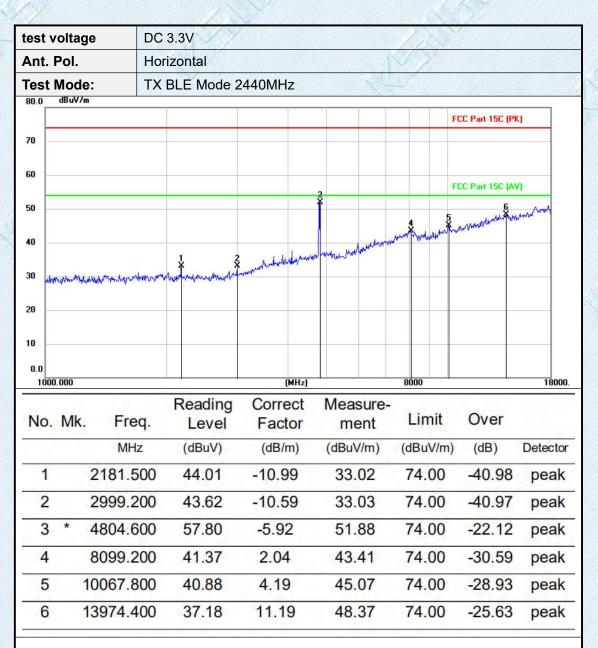
KSIGN

Emission Level= Read Level+ Correct Factor



Adobe 1GHz

test voltage		ge	DC 3	3.3V		1	V X			
Ant. Pol.			Horizontal							
Test I			TX E	BLE Mode 2	402MHz					
80.0	dBuV∕ı	'n								
_							F	FCC Part 15C (PK)	
70										
60										
								FCC Part 15C (AV		
50						3	F 6	wolk-plant-harmond	humanit	
40					1.	t well all	Martin and Martin	ken langt hiv		
						an and a start of the start of				
30 Marta	<i>and the states</i>	-the and the second second	whenhau	where the south and the south and the	Manual .					
20										
10										
0.0										
	.000			Pooding	(MHz)	Maggurga	8000		1800	
0.0		. Fre	eq.	Reading Level	(MH2) Correct Factor	Measure- ment		Over	1800	
0.0		Fre M⊦	· ·	0	Correct				1800 Detecto	
0.0			łz	Level	Correct Factor	ment	Limit			
0.0 1000. No.		MH	Hz 300	Level (dBuV)	Correct Factor (dB/m)	ment (dBuV/m)	Limit (dBuV/m)	(dB)	Detecto	
0.0 1000. No.		MH 4500.3	1z 300 000	Level (dBuV) 45.26	Correct Factor (dB/m) -6.75	ment (dBuV/m) 38.51	Limit (dBuV/m) 74.00	(dB) -35.49	Detecto	
0.0 1000. No.	Mk	MH 4500.3 4689.0	1z 300 000 600	Level (dBuV) 45.26 42.72	Correct Factor (dB/m) -6.75 -6.23	ment (dBuV/m) 38.51 36.49	Limit (dBuV/m) 74.00 74.00	(dB) -35.49 -37.51	Detecto peal peal	
0.0 1000. No. 1 2 3	Mk	MH 4500.3 4689.0 4804.0	Hz 300 000 600 700	Level (dBuV) 45.26 42.72 55.46	Correct Factor (dB/m) -6.75 -6.23 -5.92	ment (dBuV/m) 38.51 36.49 49.54	Limit (dBuV/m) 74.00 74.00 74.00	(dB) -35.49 -37.51 -24.46	Detecto peal peal peal	

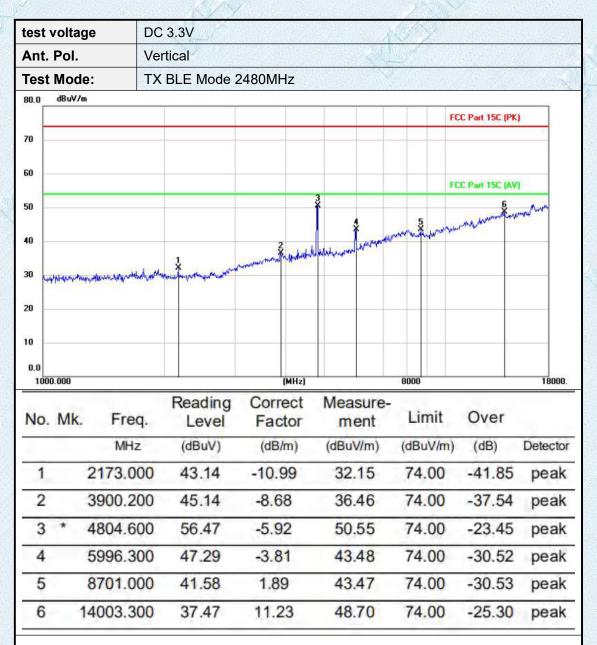

Emission Level= Read Level+ Correct Factor

Emission Level= Read Level+ Correct Factor

KSIGN

Emission Level= Read Level+ Correct Factor

est v	voltag	je	DC 3	3.3V		1	S/Y		
Ant. I	Pol.		Vert	ical		1. A.L.			
Test I	Mode	ə:	TX E	BLE Mode 24	440MHz				
80.0 dBu¥/m								FCC Part 15C (PI	n
70									N
60									
								FCC Part 15C (A)	
50						2 A Antonio de presidentes	4 5	Martin	normal
40							and har working	MAYEN	
					* mound which	a whote water and pres			
30 🙏	Annonan	completelle	holenour	an white a part with the					
20									
10									
0.0									
100 A	.000		1		(MHz)	4	8000		18000
1000									
	. Mk	. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		. Fre M⊦				111	Limit (dBuV/m)		Detector
		10	łz	Level	Factor	ment			Detector peak
No.	. Mk	MH	Iz 800	Level (dBuV)	Factor (dB/m)	ment (dBuV/m)	(dBuV/m)	(dB)	10000000000
No.	. Mk	MF 3199.8	Iz 800 600	Level (dBuV) 44.32	Factor (dB/m) -10.23	ment (dBuV/m) 34.09	(dBuV/m) 74.00	(dB) -39.91	peak
No.	. Mk	MH 3199.8 4804.0	1z 800 600 500	Level (dBuV) 44.32 56.22	Factor (dB/m) -10.23 -5.92	ment (dBuV/m) 34.09 50.30	(dBuV/m) 74.00 74.00	(dB) -39.91 -23.70	peak peak
No.	. Mk	MH 3199.8 4804.6 5989.8	1z 800 600 500 100	Level (dBuV) 44.32 56.22 51.11	Factor (dB/m) -10.23 -5.92 -3.82	ment (dBuV/m) 34.09 50.30 47.29	(dBuV/m) 74.00 74.00 74.00	(dB) -39.91 -23.70 -26.71	peak peak peak


Emission Level= Read Level+ Correct Factor

KSIGN

test voltage DC 3		DC 3.	3V			all the second				
Ant. Pol. Hori		Horizo	ontal							
Test	Мос	de:	TX BLE Mode 2480MHz							
80.0	dBu	√/m						FCC Part 15C (P	'K]	
70										
60								FCC Part 15C (A	M	
50						X	5	www.www.www.w	and the second se	
40					*	Munatorner	June Stranger	and a construction		
30	refeiturit	whateholistic	an applications	how have a second and the second s	and a star and a star and a star		_			
20										
10										
0.0 10	00.000				(MHz)		8000		18000	
No.	Mk	. Fre		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MH	z	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	
1		4299.7	00	46.27	-7.42	38.85	74.00	-35.15	peak	
2		4500.3	00	46.13	-6.75	39.38	74.00	-34.62	peak	
3	*	4804.6	00	57.72	-5.92	51.80	74.00	-22.20	peak	
		5979.3	00	44.36	-3.84	40.52	74.00	-33.48	peak	
4		140 410								
4		8083.9	00	42.09	2.05	44.14	74.00	-29.86	peak	

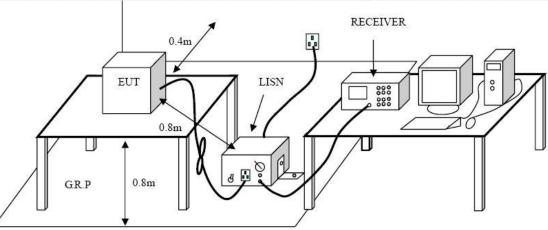
Emission Level= Read Level+ Correct Factor

Emission Level= Read Level+ Correct Factor

Note:All modulation modes were tested, and only the worst data of GFSK_1M was recorded in the report.

3.8. Conducted Emission

Limit


Conducted Emission Test Limit

Frequency	Maximum RF Line Voltage (dBµV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56~46*		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Mode:

Please refer to the clause 2.3.

Test Results

est voltage	AC 12	20V/60Hz	×		128					
Ferminal:	Line	Line								
80.0 dBuV										
70										
60				-	FC	C Part 15 C (QP)	_			
50					FCC	Part 15 C (AVG)	_			
40 Annt				- Phile						
30 MA	Munning	manulatedeeman	mour de la farmante	to the second second	W X2	an many many preserver have	4			
20	mmith	manulatidesensed physican also have	hips and a second and the	town when	WN	and young	peak			
10							AVG			
0										
-10										
-20			(MHz)				30.000			
	14.1	Reading	Correct	Measure-						
No. Mk.	Freq.	Level	Factor	ment	Limit	Over				
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector			
1 *	0.1539	37.35	10.82	48.17	65.79	-17.62	QP			
2	0.1539	21.76	10.82	32.58	55.79	-23.21	AVG			
3	0.1980	29.73	10.88	40.61	63.69	-23.08	QP			
4	0.1980	17.09	10.88	27.97	53.69	-25.72	AVG			
5	0.4900	21.55	10.91	32.46	56.17	-23.71	QP			
6	0.4900	13.35	10.91	24.26	46.17	-21.91	AVG			
7	1.9060	17.53	10.88	28.41	56.00	-27.59	QP			
8	1.9060	11.71	10.88	22.59	46.00	-23.41	AVG			
9	4.1500	23.43	10.96	34.39	56.00	-21.61	QP			
10	4.1500	16.82	10.96	27.78	46.00	-18.22	AVG			
11	9.4620	20.57	10.96	31.53	60.00	-28.47	QP			
12	9.4620	14.91	10.96	25.87	50.00	-24.13	AVG			

Remarks:

1.Measurement = Reading Level+ Correct Factor 2.Over = Measurement -Limit

test v	oltage	AC 1	20V/60Hz			6/18		
Ferm i	inal:	Neuti	ral 🦷		N/			
80.0	dBuV							
70								
60						E	CC Part 15 C (QI	PJ
-						FC	C Part 15 C (AVI	3)
50 ¥	m				_			
40	www	Mummu an			-			
30	M	WWWWWWWWWW	A A . married	Surff Martin	Mun your	12	kingungenheiter	niny
20	WW	Mmunty	here have been and and a	Selond with the second way	much and the state	my May	wanter	pea
10		"UN	white and			V PW		AVE
0								
-10								
-20								
0.15	0		Reading	(MHz) Correct	Measure			30.00
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1620	35.27	10.84	46.11	65.36	-19.25	QP
2		0.1620	15.83	10.84	26.67	55.36	-28.69	AVG
3		0.4780	19.00	10.88	29.88	56.37	-26.49	QP
4		0.4780	11.23	10.88	22.11	46.37	-24.26	AVG
5		1.2540	13.83	10.88	24.71	56.00	-31.29	QP
6		1.2540	8.59	10.88	19.47	46.00	-26.53	AVG
7		1.9460	17.69	10.88	28.57	56.00	-27.43	QP
8		1.9460	12.20	10.88	23.08	46.00	-22.92	AVG
9		4.2860	18.72	10.95	29.67	56.00	-26.33	QP
10		4.2860	11.71	10.95	22.66	46.00	-23.34	AVG
11		8.9980	18.58	10.93	29.51	60.00	-30.49	QP
12		8.9980	13.03	10.93	23.96	50.00	-26.04	AVG

Remarks:

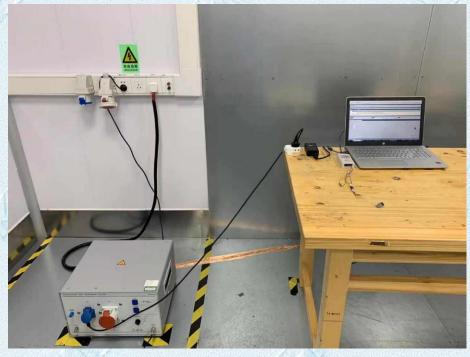
1.Measurement = Reading Level+ Correct Factor 2.Over = Measurement -Limit

Page 49 of 52

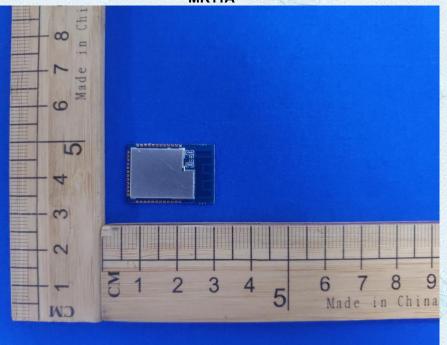
4.EUT TEST PHOTOS

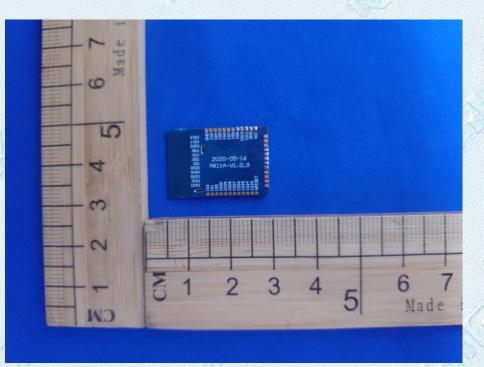
Radiated Measurement (Below 1GHz)

Radiated Measurement (Above 1GHz)



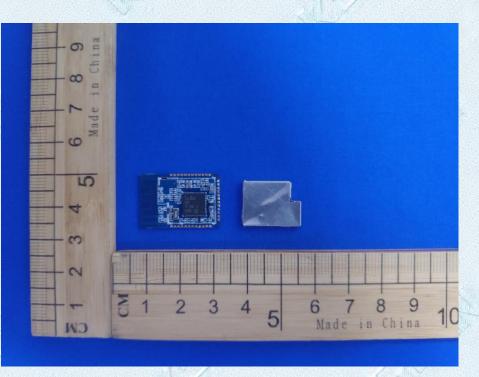
CONDUCTED EMISSION TEST SETUP

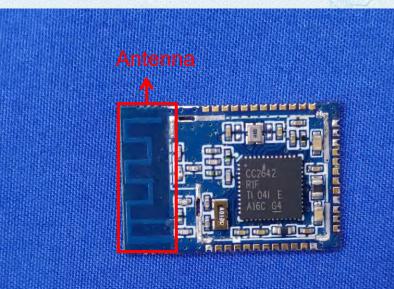




Page 51 of 52

5.PHOTOGRAPHS OF EUT CONSTRUCTIONAL


External Photographs



Internal Photographs

*****THE END*****