KSIGN (Guangdong) Testing Co., Ltd.

KSIGN®

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu,Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China Tel.: + (86)755-29852678 Fax: + (86)755-29852397 E-mail: info@gdksign.cn Website: www.gdksign.com

TEST REPORT

Report No:	KS2104S1022E		
FCC ID:	2AO94-M2		
Applicant	MOKO TECHNOLOGY LIMITED		
Address	2F, Building1,No.37 Xiaxintang Xintang village,Fucheng Street,Longhua District,Shenzhen,Guangdong Province,China		
Manufacturer	MOKO TECHNOLOGY Ltd		
Address	2F, Building1,No.37 Xiaxintang Xintang village,Fucheng Street,Longhua District,Shenzhen,Guangdong Province,China		
Factory	MOKO TECHNOLOHY Ltd		
Address	2F, Building1, No. 37 Xiaxintang Xintang village, Fucheng Street, Longhua District, Shenzhen, Guangdong Province, China		
Product Name:	Bluetooth Beacon		
Trade Mark	N/A		
Model/Type reference:	M2		
Listed Model(s)	M2-PNFAX-HA, M2-PNFA-HA, M2-PNFN-HA, M2-PNFNX-HA, M2-PNFA, M2-PNFN, M2-PNFAX, M2-PNFNX		
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of Receipt	May. 08, 2021		
Date of Test Date:	May. 08, 2021~May. 19, 2021		
Date of issue	May. 19, 2021		
Test result:	Pass		
Compiled by:	Rory Huang Rory Huang Jangdong) Tege		
(Printed name+signature)	Rory Huang		
Supervised by:	FR. 1 S		
(Printed name+signature)	Eder Zhan Call. Man KSIGN		
Approved by:			
(Printed name+signature)	Cary Luo		
Testing Laboratory Name::	KSIGN(Guangdong) Testing Co., Ltd.		
Address	West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu,Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China		

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

TABLE OF CONTENTS

	TABLE OF CONTENTS	Page
1. TEST SUMMARY		<u></u>
1.1. Test Standards		A Long
1.5. MEASUREMENT UNCERTAINTY		
1.6. ENVIRONMENTAL CONDITIONS		
2. GENERAL INFORMATION	20202	<u> </u>
2.1 GENERAL DESCRIPTION OF ELIT	N/2	
3. TEST ITEM AND RESULTS	10 N	1
	233	
	CONDUCTED)	
	CONDUCTED	
	<u> </u>	
4. EUT TEST PHOTOS		

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

KDB 558074 D01 : The measurement guidance provided herein is applicable only to Digital Transmission System (DTS) devices operating in the 902-928 MHz. 2400-2483.5 MHz and/or 5725-5850 MHz bands under § 15.247 of the FCC rules (Title 47 of the Code of Federal Regulations)

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	May. 19, 2021	Original
		624
200 A	N/	
		N 7
	N State	
155	(
	125	
	N.Y	
		2007
	Ś	
	5	
		2
KAY -		5.03
	and the second s	
No. 1		
8		
	N. CONTRACTOR	
	ST I	
2.		

1.3. Test Description

FCC Part 15 Subpart C(15.247)					
Test Hans	Standard Section	Decell	Test Engineer		
Test Item	FCC	Result			
Antenna Requirement	15.203	Pass	Rory Huang		
Conducted Emission	15.207	N/A	N/A		
Restricted Bands	15.205	Pass	Rory Huang		
Peak Output Power	15.247(b)	Pass	Rory Huang		
Band Edge Emissions	15.247(d)	Pass	Rory Huang		
Power Spectral Density	15.247(e)	Pass	Rory Huang		
Radiated Emission	15.205&15.209	Pass	Rory Huang		
6dB Bandwidth	15.247(a)(2)	Pass	Rory Huang		
Spurious RF Conducted Emission	15.247(d)	Pass	Rory Huang		

Note:

The measurement uncertainty is not included in the test result.

1.4. Test Facility

Address of the report laboratory

KSIGN(Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L13261

KSIGN(Guangdong) Testing Co., Ltd. has been assessed and proved to be in Compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: CN0096

The 3m alternate test site of KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0096

FCC-Registration No.: CN1272

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

Test Items	Measurement Uncertainty	Notes	
Transmitter power conducted	0.42 dB	(1)	
Transmitter power Radiated	2.14 dB	(1)	
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)	
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)	
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)	
Radiated Emissions 30~1000MHz	4.70 dB	(1)	
Radiated Emissions 1~18GHz	5.00 dB	(1)	
Radiated Emissions 18~40GHz	5.54 dB	(1)	
Occupied Bandwidth	2.80 dB	(1)	

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

2. GENERAL INFORMATION

2.1. General Description of EUT

Test Sample Number 1:	1-1-1(Normal Sample),1-1-2(Engineering Sample)
Product Name:	Bluetooth Beacon
Trade Mark:	N/A
Model/Type reference:	M2
Listed Model(s):	M2-PNFAX-HA, M2-PNFA-HA, M2-PNFN-HA, M2-PNFNX-HA, M2-PNFA, M2-PNFN, M2-PNFAX, M2-PNFNX
Model Difference:	The difference between product models only depends on the appearance color and the model naming is different. Other power supply methods, safety structure and key components are the same, which do not affect the safety and electromagnetic compatibility performance.
Power Source:	N/A
Power supply (Battery):	DC 3.0V
Hardware version:	V1.0
Software version:	V1.0
Bluetooth V5.1	
Modulation:	GFSK
Operation frequency:	2402MHz~2480MHz
Max Peak Output Power:	-1.96 dBm
Channel number:	40
Channel separation:	2MHz
Antenna type:	PCB Antenna
Antenna gain:	2.46 dBi

2.2. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BLE, 40 channels are provided to the EUT. Channels 00/19/39 were selected for testing. Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2404
19	2440
20	2442
21	2444
38	2478
39	2480

Note: The display in grey were the channel selected for testing.

Test mode

NO.	TEST MODE DESCRIPTION			
1	Low channel TX (2402MHz)			
2	Middle channel TX (2440MHz)			
3	High channel TX (2480MHz)			

Note:

1. Only the result of the worst case was recorded in the report, if no other cases..

2. The test software is the SecureCRTSecure_V7.0.0.326 which can set the EUT into the individual test modes.

2.3. Measurement Instruments List

	Та	onscend JS0806-2	Test system		
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	Spectrum Analyzer	R&S	FSV40-N	101798	03/22/2022
2	Vector Signal Generator	Agilent	N5182A	MY50142520	03/18/2022
3	Analog Signal Generator	HP	83752A	3344A00337	03/18/2022
4	Power Sensor	Agilent	E9304A	MY50390009	03/18/2022
5	Power Sensor	Agilent	E9300A	MY41498315	03/18/2022
6	Wideband Radio Communication Tester	R&S	CMW500	157282	03/18/2022
7	Climate Chamber	Angul	AGNH80L	1903042120	03/18/2022
8	Dual Output DC Power Supply	Agilent	E3646A	MY40009992	03/18/2022
9	RF Control Unit	Tonscend	JS0806-2	1	03/18/2022

	Transmitter spur	rious emissions & Re	eceiver spurious en	nissions	
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	EMI Test Receiver	R&S	ESR	102525	03/18/2022
2	High Pass Filter	Chengdu E-Microwave	OHF-3-18-S	0E01901038	03/22/2022
3	High Pass Filter	Chengdu E-Microwave	OHF-6.5-18-S	0E01901039	03/22/2022
4	Spectrum Analyzer	HP	8593E	3831U02087	03/22/2022
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	03/29/2023
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	03/27/2022
7	Spectrum Analyzer	R&S	FSV40-N	101798	03/22/2022
8	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	03/29/2023
9	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	03/22/2022
10	Pre-Amplifier	EMCI	EMC051835SE	980662	03/22/2022

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	LISN	R&S	ENV432	1326.6105.02	03/18/2022
2	EMI Test Receiver	R&S	ESR	102524	03/18/2022
3	Manual RF Switch	JS TOYO	A P	MSW-01/002	03/18/2022

Note:

The Cal. Interval was one year.
The cable loss has calculated in test result which connection between each test instruments.

2.5. Test Software

Software name	Model	Version
Conducted emission Measurement Software	EZ-EMC	EMC-Con 3A1.1
Radiated emission Measurement Software	EZ-EMC	FA-03A.2.RE
Bluetooth and WIFI Test System	JS1120-3	2.5.77.0418

3. TEST ITEM AND RESULTS

3.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

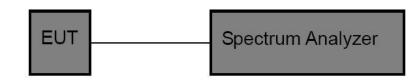
FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

Note: The antenna is permanently fixed to the EUT



3.2. Peak Output Power

Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	1 Watt or 30 dBm	2400~2483.5

Test Configuration

Test Procedure

1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator..

2. Spectrum Setting:

Peak Detector: RBW≥DTS Bandwidth, VBW≥3*RBW.

Sweep time=Auto.

Detector= Peak.

Trace mode= Maxhold.

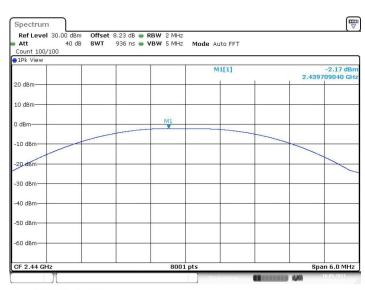
Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.2.

Test Result

GFSK_1M


Test Mode:	BLE Mode		
Channel freque	ency (MHz)	Test Result (dBm)	Limit (dBm)
2402	2	-2.05	
2440)	-2.17	30
2480)	-2.68	
		BLE Mode	
		2402 MHz	

BLE Mode

2440 MHz

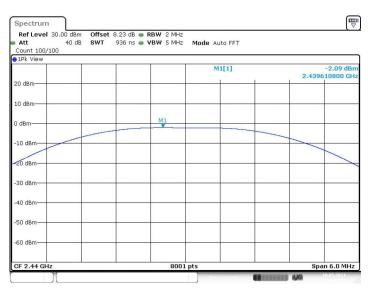
Date: 10.MAY.2021 10:00:26

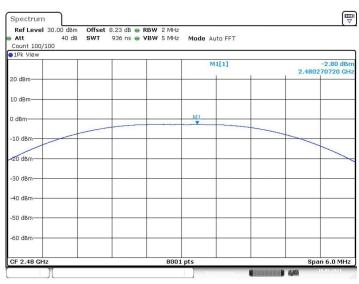
BLE Mode 2480 MHz

♥ Spectrum Ref Level 30.00 dBm Offset 8.23 dB RBW 2 MHz Att 40 dB SWT 936 ns VBW 5 MHz Mode Auto FFT Count 100/100 1Pk View M1[1] -2.68 dBr 58010 GH 2.47995 20 dBm 10 dBm 0 dB -10 dBm -20 d8m -30 dBm -40 dBm -50 dBm -60 dBi Span 6.0 MHz 8001 pt CF 2.48 G

Date: 10.MAY.2021 10:02:13

Page 14 of 58


Test Mode:	BLE Mode		148
Channel frequ	ency (MHz)	Test Result (dBm)	Limit (dBm)
2402	2	-1.96	
2440	0	-2.09	30
2480	0	-2.8	
		BLE Mode	
		2402 MHz	


Page 15 of 58

2440 MHz

Date: 10.MAY.2021 10:07:52

2480MHz

Date: 10.MAY.2021 10:09:48

3.3. Power Spectral Density

Limit

	FCC Part 15 Subpart C(15.247)
Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

Test Configuration

EUT	 Spectrum Analyzer
	Y: 27

Test Procedure

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.b-6.ii of KDB 558074 D01 DTS Meas Guidance v05r02.
- 3. Spectrum Setting:

Set analyser center frequency to DTS channel center frequency. Set the span to 1.5 times the DTS bandwidth. Set the RBW to: 10 kHz Set the VBW to: 30 kHz Detector: peak Sweep time: auto Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.2.

Test Result

Note:

Power Density(dBm/3kHz)=Power Density(dBm/10kHz)-10*Log(10/3)

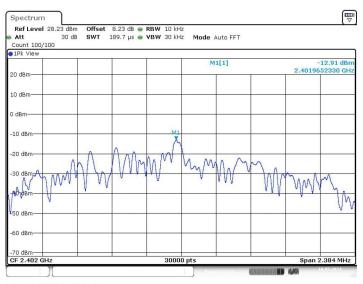
GFSK_1M

Test Mode:	BLE Mode	e	665		
Channel Fro (MHz		Power Density (dBm/10kHz)	Power Density (dBm/3kHz)	Limit (dBm)	
2402	2	-12.05	-17.28		
2440		-12.21	-17.44	8dBm/3kHz	
2480		-12.88	-18.11	-	
		BLE Mode			
		2402 MHz			

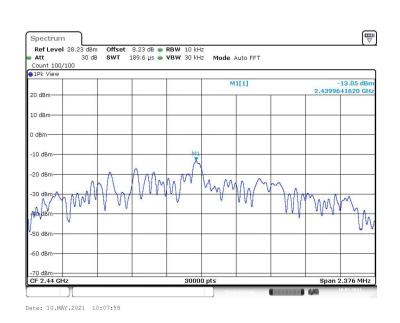
BLE Mode

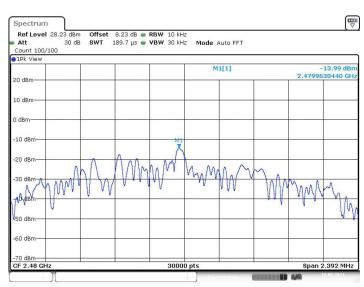
2440 MHz

BLE Mode



GFSK_2M


Test Mode:	BLE Mode	e //	6/28	
Channel Fr (MH	• •	Power Density (dBm/10kHz)	Power Density (dBm/3kHz)	Limit (dBm)
240	2	-12.91	-18.14	
2440		-13.05	-18.28	8dBm/3kHz
2480		-13.99	-19.22	
		BLE Mode		
		2402 MHz		


Date: 10.MAY.2021 10:05:24

2440 MHz

2480 MHz

Date: 10.MAY.2021 10:09:55

3.4. 6dB Bandwidth

Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

Test Configuration

EUT	Spectrum Analyzer

Test Procedure

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.
- 3. The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

4. Spectrum Setting:

6dB bandwidth:

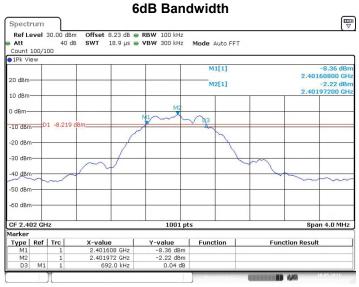
- (1) Set RBW = 100 kHz.
- (2) Set the video bandwidth (VBW) \ge 3 RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.
- (6) Allow the trace to stabilize.

(7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

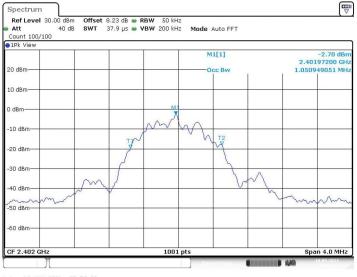
Test Mode

Please refer to the clause 2.2.


Test Results

GFSK_1M

BLE Mode		Selo	
iency (MHz)	6dB Bandwidth (MHz)	99%Bandwi dth(MHz)	Limit (MHz)
2	0.692	1.051	
0	0.692	1.051	≧0.5
0	0.688	1.055	
	BLE Mode ency (MHz) 2 0 0	ency (MHz)6dB Bandwidth (MHz)20.69200.692	6dB Bandwidth (MHz) 99%Bandwi dth(MHz) 2 0.692 1.051 0 0.692 1.051

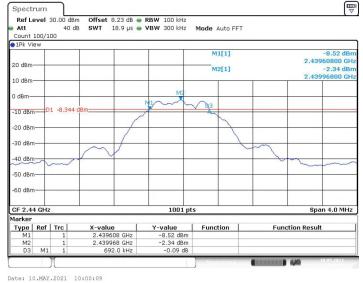

BLE Mode

2402 MHz

Date: 10.MAY.2021 09:56:11

99%Bandwidth

Date: 10.MAY.2021 09:56:22



Page 23 of 58

BLE Mode

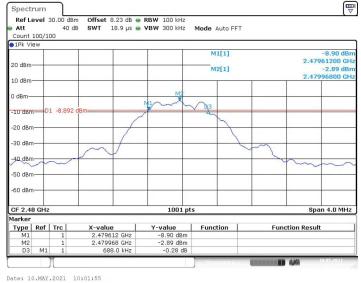

2440 MHz

6dB Bandwidth

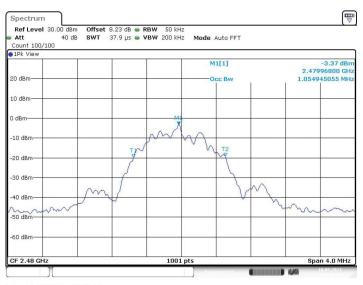
2440MHz

99%Bandwidth

ace: 10.MAI.2021 10:00:20



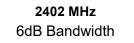
Page 24 of 58


BLE Mode

2480 MHz

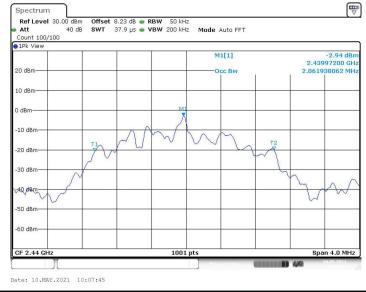
6dB Bandwidth

99%Bandwidth


Date: 10.MAY.2021 10:02:06


GFSK_2M

Test Mode:	BLE Mode		129	
Channel frequ	ency (MHz)	6dB Bandwidth (MHz)	99%Bandwi dth(MHz)	Limit (MHz)
2402	2	1.192	2.062	
2440)	1.188	2.062	≧0.5
2480)	1.196	2.066	


BLE Mode

Date: 10.MAY.2021 10:05:00

99%Bandwidth

