

FCC RADIO TEST REPORT

No. 180102505SHA-001

Applicant	:	Jiangyin Wonder Electronic Co., Ltd No.129 Yungu Road, Gushan Town, China 214413
Manufacturing site	:	Jiangyin Wonder Electronic Co., Ltd No.129 Yungu Road, Gushan Town, China 214413
Product Name	:	WMFZ WiFi module
Type/Model	:	WMFZ
TEST RESULT	:	PASS

SUMMARY

The equipment complies with the requirements according to the following standard(s) or specification:

47CFR Part 15 (2017): Radio Frequency Devices (Subpart C)

ANSI C63.10 (2013): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

RSS-247 Issue 2 (February 2017): Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

RSS-Gen Issue 5 (April 2018): General Requirements for Compliance of Radio Apparatus

Date of issue: June 26, 2018

Prepared by:

Gnick Liu

Erick Liu (Project engineer)

Reviewed by:

Daniel Zhao (Reviewer)

FCC ID: 2AO8JWDR001

TTRF15.247-03_V1 © 2017 Intertek

Contents

SL	SUMMARY1			
RE	VISIC	DN HISTORY	4	
1	G	ENERAL INFORMATION	5	
	1.1	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	5	
	1.2	RF TECHNICAL INFORMATION	5	
	1.3	DESCRIPTION OF TEST FACILITY	6	
2	TE	EST SPECIFICATIONS	7	
	2.1	Standards or specification	7	
	2.2	MODE OF OPERATION DURING THE TEST	7	
	2.3	TEST ENVIRONMENT CONDITION:	8	
	2.4	Test peripherals used	8	
	2.5	Test software list:	8	
	2.6	INSTRUMENT LIST	9	
	2.7	Measurement Uncertainty	. 10	
	2.8	Test Summary	. 11	
3	Μ	1INIMUM 6DB BANDWIDTH	12	
	3.1	Сіміт	12	
	3.2	Measurement Procedure		
	3.3	TEST CONFIGURATION		
	3.4	Test Results of Minimum 6dB bandwidth		
4	M	IAXIMUM CONDUCTED OUTPUT POWER AND E.I.R.P	13	
4				
4	4.1	Liмit	. 13	
4	4.1 4.2	Limit Measurement Procedure	. 13 . 13	
4	4.1	Liмit	. 13 . 13 . 14	
4	4.1 4.2 4.3 4.4	Limit Measurement Procedure Test Configuration	. 13 . 13 . 14 . 14	
-	4.1 4.2 4.3 4.4	LIMIT Measurement Procedure Test Configuration Test Results of Maximum conducted output power OWER SPECTRUM DENSITY	. 13 . 13 . 14 . 14 . 1 5	
-	4.1 4.2 4.3 4.4	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT	. 13 . 13 . 14 . 14 . 15 . 15	
-	4.1 4.2 4.3 4.4 P (5.1	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT MEASUREMENT PROCEDURE	. 13 . 13 . 14 . 14 . 15 . 15	
-	4.1 4.2 4.3 4.4 P(5.1 5.2	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT	. 13 . 13 . 14 . 14 . 15 . 15 . 15 . 16	
-	4.1 4.2 4.3 4.4 P(5.1 5.2 5.3 5.4	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION	. 13 . 13 . 14 . 14 . 15 . 15 . 15 . 16 . 16	
5	4.1 4.2 4.3 4.4 P(5.1 5.2 5.3 5.4	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY	. 13 . 13 . 14 . 14 . 15 . 15 . 15 . 16 . 16	
5	4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY MISSION OUTSIDE THE FREQUENCY BAND	. 13 . 13 . 14 . 14 . 15 . 15 . 15 . 16 . 16 . 16 . 17	
5	4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4 Ef 6.1	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY MISSION OUTSIDE THE FREQUENCY BAND	. 13 . 13 . 14 . 14 . 15 . 15 . 15 . 16 . 16 . 16 . 17 . 17	
5	4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4 EI 6.1 6.2	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY MISSION OUTSIDE THE FREQUENCY BAND LIMIT MEASUREMENT PROCEDURE	. 13 . 13 . 14 . 14 . 15 . 15 . 15 . 16 . 16 . 16 . 17 . 17 . 18	
5	4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4 6.1 6.2 6.3 6.4	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY MISSION OUTSIDE THE FREQUENCY BAND LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST CONFIGURATION	. 13 . 13 . 14 . 14 . 15 . 15 . 16 . 16 . 17 . 17 . 17 . 18 . 18	
5	4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4 6.1 6.2 6.3 6.4	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY UIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY MISSION OUTSIDE THE FREQUENCY BAND LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST CONFIGURATION TEST CONFIGURATION TEST CONFIGURATION TEST CONFIGURATION TEST CONFIGURATION THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND	. 13 . 13 . 14 . 14 . 15 . 15 . 15 . 16 . 16 . 17 . 17 . 17 . 18 . 18 . 18	
5	4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4 6.1 6.2 6.3 6.4 R	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY MISSION OUTSIDE THE FREQUENCY BAND LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND	. 13 . 13 . 14 . 14 . 15 . 15 . 15 . 16 . 16 . 17 . 17 . 17 . 18 . 18 . 18 19	
5	4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4 6.1 6.2 6.3 6.4 7.1	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY MISSION OUTSIDE THE FREQUENCY BAND LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST CONFIGURATION THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND THE RESULTS OF EMISSION SIN RESTRICTED FREQUENCY BANDS LIMIT	. 13 . 13 . 14 . 14 . 15 . 15 . 15 . 16 . 16 . 17 . 17 . 17 . 18 . 18 . 19 . 19 . 19	

intertek

Total Quality. Assured.

8	РС	OWER LINE CONDUCTED EMISSION	27
	8.1	MEASUREMENT PROCEDURE	
		Test Configuration	
	8.3	TEST RESULTS OF POWER LINE CONDUCTED EMISSION	
9	A	NTENNA REQUIREMENT	
10	00	CCUPIED BANDWIDTH	31
	10.1	Liмit	
	10.2	Measurement Procedure	
	10.3	Test Configuration	
	10.4	The results of Occupied Bandwidth	
AP	PEND	DIX A: TEST RESULTS	32

Revision History

Issue No.	Version	Description	Date Issued
180102505SHA-001	Rev. 01	Initial issue of report	June 26, 2018

1 GENERAL INFORMATION

1.1 Description of Equipment Under Test (EUT)

Product name	:	WMFZ WiFi module	
Type/Model	:	WMFZ	
Description of EUT	:	EUT is a Wireless Module with WiFi function, and has only one model. The module was installed to a bulb for all radiated emission tests.	
Rating	:	Module: 3.3V DC Bulb: 110VAC/60Hz 9W	
Sample received date	:	March 12, 2018	
Date of test	:	March 12, 2018 ~ March 22, 2018	

1.2 RF Technical Information

Assigned Frequency Band	:	2400MHz to 2483.5MHz
Operating Frequency	:	802.11b/g/n(HT20): 2412MHz to 2462MHz
Type of Modulation	:	802.11b: DSSS (DBPSK, DQPSK, CCK) 802.11g: OFDM (BPSK, QPSK, 16QAM, 64QAM) 802.11n(HT20): OFDM (BPSK, QPSK, 16QAM, 64QAM)
Number of Channels	:	802.11b/g/n(HT20): 11 Channels
Channel Separation	:	5MHz
Antenna Type	:	PCB antenna
Antenna Gain	:	2.5dBi
FCC ID	:	2AO8JWDR001

1.3 Description of Test Facility

•	:	
The test facility is recognized, certified, or accredited by these organizations	:	CNAS Accreditation Lab Registration No. CNAS L0139 FCC Accredited Lab Designation Number: CN1175 IC Registration Lab Registration code No.: 2042B-1 VCCI Registration Lab Registration No.: R-4243, G-845, C-4723, T-2252 NVLAP Accreditation Lab NVLAP LAB CODE: 200849-0 A2LA Accreditation Lab Certificate Number: 3309.02

2 TEST SPECIFICATIONS

2.1 Standards or specification

47CFR Part 15 (2017) ANSI C63.10 (2013) KDB 558074 (v04) RSS-247 Issue 2 (February 2017) RSS-Gen Issue 5 (April 2018)

2.2 Mode of operation during the test

Three axes (X, Y, Z) were observed while the test receiver worked as "max hold" continuously and the highest reading among the whole test procedure was recorded. Compare with the test results that X axis is the worst case.

The lowest, middle and highest channel were tested as representatives.

Frequency Band	Mode	Lowest	Middle	Highest
(MHz)		(MHz)	(MHz)	(MHz)
2400-2483.5	802.11b	2412	2437	2462
	802.11g	2412	2437	2462
	802.11n(HT20)	2412	2437	2462

Test software and Power Setting parameter					
Test Software	SecureCRT				
Working Mode	2.4G Wifi				
Test Channel	2412MHz	2437MHz	2462MHz		
Power Setting	0	0	0		

After this pre-scan, the following data rata was chosen to do the test as the worst case.

Frequency Band (MHz)	Mode	Worst case data rate	
	802.11b	1Mbps	
2400-2483.5	802.11g	6Mbps	
	802.11n(HT20)	MCS0	

2.3 Test environment condition:

Temperature:	20-26°C	
Humidity:	52-60% RH	
Atmospheric Pressure:	101-102kPa	

2.4 Test peripherals used

Item No	Description	Manufacturer	Model No.	Serial Number
1	Laptop computer	HP	4230s	-
2	Bulb	Jiangyin Wonder Electronic Co.,Ltd	WMFL-0109C1	-

2.5 Test software list:

Test Items	Software	Manufacturer	Version
Conducted emission	ESxS-K1	R&S	V2.1.0
Radiated emission	ES-K1	R&S	V1.71

2.6 Instrument list

Conducted Emission											
Used	Equipment	Manufacturer	Туре	Internal no.	Due date						
\boxtimes	Test Receiver	R&S	ESCS 30	EC 2107	2018-09-12						
\boxtimes	A.M.N.	R&S	ESH2-Z5	EC 3119	2018-12-01						
	A.M.N.	R&S	ENV 216	EC 3393	2018-07-30						
Radiated Emission											
Used	Equipment	Manufacturer	Туре	Internal no.	Due date						
\boxtimes	Test Receiver	R&S	ESIB 26	EC 3045	2018-09-12						
\boxtimes	Bilog Antenna	TESEQ	CBL 6112D	EC 4206	2019-05-30						
	Horn antenna	R&S	HF 906	EC 3049	2018-09-23						
\boxtimes	Horn antenna	ETS	3117	EC 4792-1	2018-08-24						
\boxtimes	Horn antenna	ΤΟΥΟ	HAP18-26W	EC 4792-3	2020-07-09						
\boxtimes	Pre-amplifier	R&S	Pre-amp 18	EC5881	2019-06-19						
\boxtimes	Active loop antenna	Schwarzbeck	FMZB1519	EC 5345	2019-01-25						
RF test											
Used	Equipment	Manufacturer	Туре	Internal no.	Due date						
\boxtimes	PXA Signal Analyzer	Keysight	N9030A	EC 5338	2018-09-10						
	Power sensor/ Power meter	Agilent	N1911A/ N1921A	EC4318	2019-05-12						
	Test Receiver	R&S	ESCI 7	EC 4501	2018-09-12						
Tet Site	5										
Used	Equipment	Manufacturer	Туре	Internal no.	Due date						
	Shielded room	Zhongyu	-	EC 2838	2019-01-08						
\boxtimes	Semi-anechoic chamber	Albatross project	-	EC 3048	2019-03-09						
Additio	nal instrument										
Used	Equipment	Manufacturer	Туре	Internal no.	Due date						
	Therom- Hygrograph	ZJ1-2A	S.M.I.F.	EC 3323	2019-06-14						
	Therom- Hygrograph	ZJ1-2A	S.M.I.F.	EC 3324	2019-04-09						
\boxtimes	Therom- Hygrograph	ZJ1-2A	S.M.I.F.	EC 3325	2019-03-23						
\boxtimes	Pressure meter	YM3	Shanghai Mengde	EC 3320	2019-06-28						

2.7 Measurement Uncertainty

Test Items	Expanded Uncertainty (k=2) (±)
Maximum conducted output power	0.74dB
Radiated Emissions in restricted frequency bands below 1GHz	4.90dB
Radiated Emissions in restricted frequency bands above 1GHz	5.02dB
Emission outside the frequency band	2.89dB
Power line conducted emission	3.19dB

2.8 Test Summary

This report applies to tested sample only. The test results have been compared directly with the limits, and the measurement uncertainty is recorded. This report shall not be reproduced in part without written approval of Intertek Testing Services Shanghai.

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
Minimum 6dB bandwidth	15.247(a)(2)	RSS-247 Issue 2 Clause 5.2	Pass
Maximum conducted output power and e.i.r.p.	15.247(b)	RSS-247 Issue 2 Clause 5.4	Pass
Power Spectrum density	15.247(e)	RSS-247 Issue 2 Clause 5.2	Pass
Emission outside the frequency band	15.247(d)	RSS-247 Issue 2 Clause 5.5	Pass
Radiated Emissions in restricted frequency bands	15.205 & 15.209	RSS-Gen Issue 4 Clause 8.9 & 8.10	Pass
Power line conducted emission	15.207	RSS-Gen Issue 4 Clause 8.8	Pass
Antenna requirement	15.203	-	Pass
Occupied bandwidth	-	RSS-Gen Issue 4 Clause 6.6	Tested

Notes: 1: NA =Not Applicable

2: This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

3 Minimum 6dB bandwidth

Test result: Pass

3.1 Limit

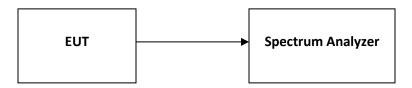
For systems using digital modulation techniques that may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz bands, the minimum 6 dB bandwidth shall be at least 500 kHz.

3.2 Measurement Procedure

The minimum 6dB bandwidth per FCC §15.247(a)(2) is measured using the Spectrum Analyzer according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" for compliance to FCC 47CFR 15.247 requirements (clause 8.2).

a) Set RBW = 100 kHz.

- b) Set the video bandwidth (VBW) \ge 3 × RBW.
- c) Detector = Peak.


d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.3 Test Configuration

3.4 Test Results of Minimum 6dB bandwidth

Please refer to Appendix A

4 Maximum conducted output power and e.i.r.p.

Test result: Pass

4.1 Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt

For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 W. (The e.i.r.p. shall not exceed 4 W)

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 30dBm and 30+ (6 –antenna gain-beam forming gain).

4.2 Measurement Procedure

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" for compliance to FCC 47CFR 15.247 requirements (clause 9.2.2.4).

a) Measure the duty cycle, x, of the transmitter output signal as described in Section 6.0.

b) Set span to at least 1.5 x OBW.

c) Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz.

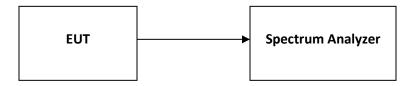
d) Set VBW \geq 3 x RBW.

e) Number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\le \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)

f) Sweep time = auto.

g) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

h) Do not use sweep triggering. Allow the sweep to "free run".


i) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the on and off periods of the transmitter.

j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

k) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on- and off-times of the transmission). For example, add 10 log (1/0.25) = 6 dB if the duty cycle is 25 %.

4.3 Test Configuration

4.4 Test Results of Maximum conducted output power

Please refer to Appendix A

5 Power spectrum density

Test result: Pass

5.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 8dBm/MHz and 8+ (6 –antenna gain-beam forming gain).

5.2 Measurement Procedure

The power output per FCC §15.247(e) was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" (clause 10.5) for compliance to FCC 47CFR 15.247 requirements.

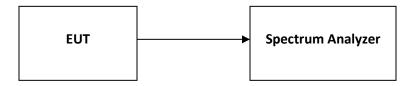
This procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., duty cycle < 98 %), and when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level, and when the transmission duty cycle is constant (i.e., duty cycle variations are less than ± 2 %):

a) Measure the duty cycle (x) of the transmitter output signal as described in Section 6.0.

b) Set instrument center frequency to DTS channel center frequency.

c) Set span to at least 1.5 x OBW.

d) Set RBW to: 3 kHz \leq RBW \leq 100 kHz.


- e) Set VBW ≥3 x RBW.
- f) Detector = power averaging (RMS) or sample detector (when RMS not available).
- g) Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- h) Sweep time = auto couple.
- i) Do not use sweep triggering. Allow sweep to "free run".
- j) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- k) Use the peak marker function to determine the maximum amplitude level.

I) Add 10 log (1/x), where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time.

m) If resultant value exceeds the limit, then reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

5.3 Test Configuration

5.4 Test Results of Power spectrum density

Please refer to Appendix A

6 Emission outside the frequency band

Test result: Pass

6.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

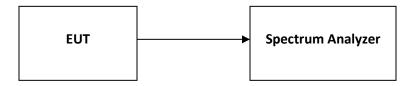
6.2 Measurement Procedure

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" (clause 11.0) for compliance to FCC 47CFR 15.247 requirements.

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to \geq 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.


Emission level measurement

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq 3 x RBW.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

6.3 Test Configuration

6.4 The results of Emission outside the frequency band

Please refer to Appendix A

7 Radiated Emissions in restricted frequency bands

Test result: Pass

7.1 Limit

The radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) showed as below:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

7.2 Measurement Procedure

For Radiated emission below 30MHz:

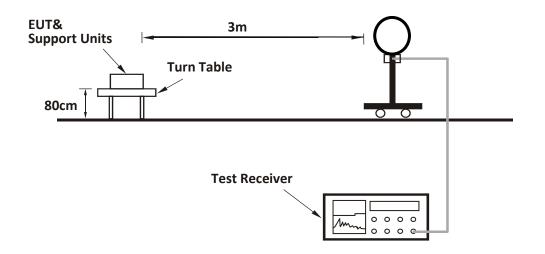
- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

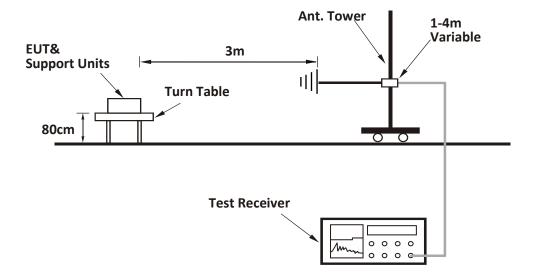
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

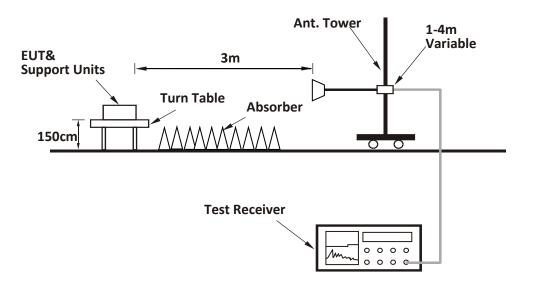

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 3 x RBW (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported


Intertek Total Quality. Assured.

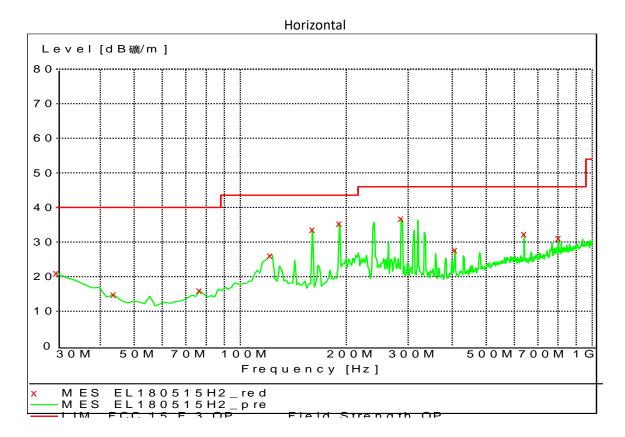
7.3 Test Configuration

For Radiated emission below 30MHz:



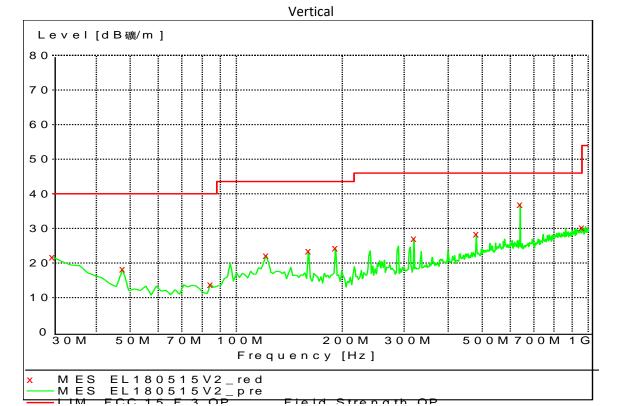
For Radiated emission 30MHz to 1GHz:

For Radiated emission above 1GHz:



7.4 Test Results of Radiated Emissions

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.


EUT was tested with Wifi on and off, and the worst data was listed in the report.

The worst waveform from 30MHz to 1000MHz is listed as below:

Test report no. 180102505SHA-001 Page 24 of 55

Test data below 1GHz

Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	121.36	26.10	13.30	43.50	17.40	РК
н	160.24	33.50	11.10	43.50	10.00	РК
Н	191.34	35.30	10.60	43.50	8.20	РК
Н	286.59	36.80	14.40	46.00	9.20	РК
н	640.38	32.30	20.70	46.00	13.70	РК
н	801.72	31.10	22.30	46.00	14.90	РК
V	30.00	21.70	19.20	40.00	18.30	РК
V	191.34	24.30	10.60	43.50	19.20	РК
V	319.64	27.00	15.20	46.00	19.00	РК
V	480.98	28.40	18.90	46.00	17.60	РК
V	640.38	36.90	20.70	46.00	9.10	РК
V	959.18	30.20	23.60	46.00	15.80	РК

Test result above 1GHz:

The emission was conducted from 1GHz to 25GHz

802.11b

СН	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2412	107.00	34.10	Fundamental	/	РК
	Н	2383.87	53.58	34.20	74.00	20.42	РК
L	V	2383.87	51.50	34.20	74.00	22.50	РК
	Н	4824.54	45.40	-3.60	74.00	28.60	РК
м	Н	2437	106.50	34.20	Fundamental	/	PK
IVI	Н	4874.15	45.80	-3.50	74.00	28.20	РК
	Н	2462	106.00	34.40	34.40 Fundamental		PK
н	Н	2483.63	53.57	34.80	74.00	20.43	РК
н	V	2483.63	50.50	34.80	74.00	23.50	РК
	Н	4924.80	45.60	-3.30	74.00	28.40	РК

802.11g

СН	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2412	108.00	34.10	Fundamental	/	PK
	Н	2388.48	61.67	34.20	74.00	12.33	РК
L	Н	2388.48	44.00	34.20	54.00	10.00	AV
	V	2388.48	60.20	34.20	74.00	13.80	РК
	V	2388.48	43.50	34.20	54.00	10.50	AV
NA	Н	2437	107.10	34.20	Fundamental	/	РК
M	Н	4874.60	46.20	-3.60	74.00	27.80	РК
	Н	2462	105.70	34.40	Fundamental	/	РК
Н	Н	2483.50	60.13	34.80	74.00	13.87	РК

intertek Total Quality. Assured.

	Н	2483.50	44.00	34.80	54.00	10.00	AV
	V	2483.50	57.80	34.80	74.00	16.20	РК
	V	2483.50	43.00	34.80	54.00	11.00	AV

802.11n(HT20)

СН	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2412	109.40	34.10	Fundamental	/	PK
	Н	2390.00	66.92	34.20	74.00	7.08	РК
	Н	2390.00	49.50	34.20	54.00	4.50	РК
	V	2390.00	63.02	34.20	74.00	10.98	РК
	V	2390.00	46.50	34.20	54.00	7.50	РК
	Н	4824.60	47.20	-3.60	74.00	26.80	РК
NA	Н	2437	108.70	34.20	Fundamental	/	РК
M	Н	4874.20	46.60	-3.60	74.00	27.40	РК
	Н	2462	107.90	34.40 Fundamental		/	РК
	Н	2483.50	65.94	34.80	74.00	8.06	РК
н	Н	2483.50	47.00	34.80	54.00	7.00	AV
	V	2483.50	62.50	34.80	74.00	11.50	РК
	V	2483.50	46.00	34.80	54.00	8.00	AV

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.

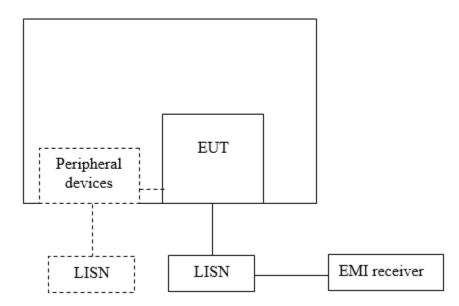
- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = Limit Corrected Reading
- 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV, Limit = 40.00dBuV/m. Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m; Margin = 40.00dBuV/m - 10.20dBuV/m = 29.80dB.

8 Power line conducted emission

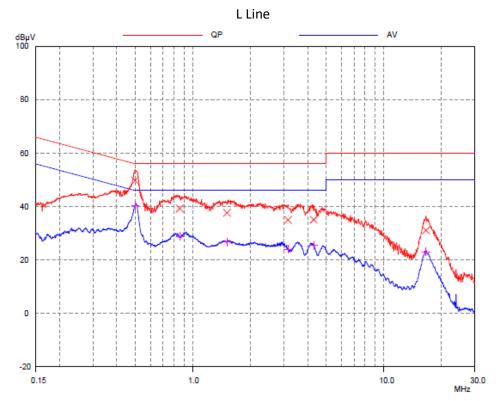
Test result: Pass


8.1 Measurement Procedure

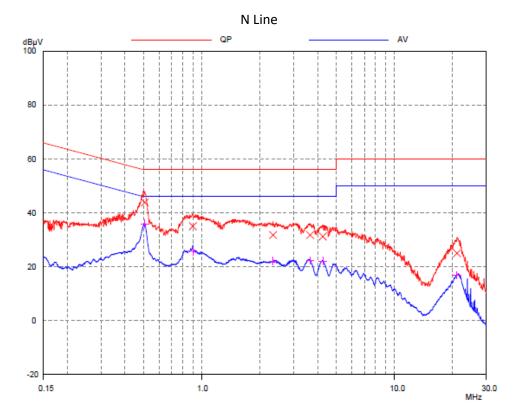
Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.


8.2 Test Configuration

8.3 Test Results of Power line conducted emission


Test Curve:

Test Data:

Frequency (MHz)		Quasi-peak		Average		
	Corrected Reading (dBuV)	Limit (dBuV)	Margin (dB)	Corrected Reading (dBuV)	Limit (dBuV)	Margin (dB)
0.50	49.78	56.02	6.24	40.19	46.02	5.83
0.86	39.24	56.00	16.76	28.85	46.00	17.15
1.51	37.67	56.00	18.33	26.78	46.00	19.22
3.15	34.99	56.00	21.01	24.03	46.00	21.97
4.31	35.11	56.00	20.89	25.40	46.00	20.60
16.67	31.06	60.00	28.94	23.08	50.00	26.92

Test Data:

Frequency (MHz)		Quasi-peak		Average		
	Corrected Reading (dBuV)	Limit (dBuV)	Margin (dB)	Corrected Reading (dBuV)	Limit (dBuV)	Margin (dB)
0.51	43.86	56.00	12.14	35.95	46.00	10.05
0.90	35.04	56.00	20.96	25.76	46.00	20.24
2.35	31.79	56.00	24.21	22.12	46.00	23.88
3.66	31.78	56.00	24.22	22.32	46.00	23.68
4.26	31.23	56.00	24.77	22.11	46.00	23.89
21.18	25.02	60.00	34.98	16.85	50.00	33.15

Remark: 1. Correct Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = Limit Corrected Reading
- 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

Example: Assuming LISN Factor = 10.00dB, Cable Loss = 2.00dB,

Original Receiver Reading = 10.00dBuV, Limit = 66.00dBuV.

Then Correct Factor = 10.00 + 2.00 = 12.00dB;

Corrected Reading = 10dBuV + 12.00dB = 22.00dBuV;

Margin = 66.00dBuV – 22.00dBuV = 44.00dB.

9 Antenna requirement

Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Result:

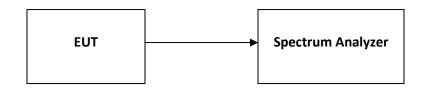
EUT uses permanently attached antenna to the intentional radiator, so it can comply with the provisions of this section.

10 Occupied Bandwidth

Test result: Pass

10.1 Limit

None


10.2 Measurement Procedure

The occupied bandwidth per RSS-Gen Issue 4 Clause 6.6 was measured using the Spectrum Analyzer.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

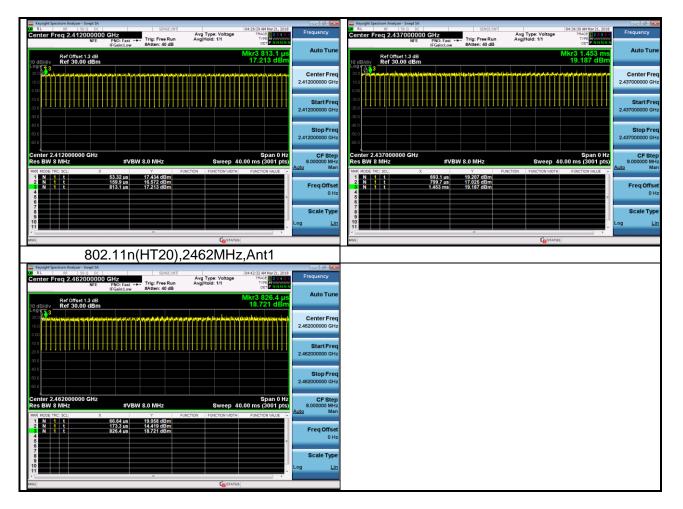
10.3 Test Configuration

10.4 The results of Occupied Bandwidth

Please refer to Appendix A


Appendix A: Test results

- 1. Duty Cycle
 - 1.1 Test Data


WLAN Duty Cycle					
Mode	Test Frequency (MHz)	Ant	Duty Cycle (%)	Duty Cycle Factor (dB)	
802.11b	2412	Ant1	88.98	0.51	
802.11b	2437	Ant1	88.95	0.51	
802.11b	2462	Ant1	88.98	0.51	
802.11g	2412	Ant1	86.67	0.62	
802.11g	2437	Ant1	86.67	0.62	
802.11g	2462	Ant1	86.67	0.62	
802.11n (HT20)	2412	Ant1	85.96	0.66	
802.11n (HT20)	2437	Ant1	85.96	0.66	
802.11n (HT20)	2462	Ant1	85.96	0.66	

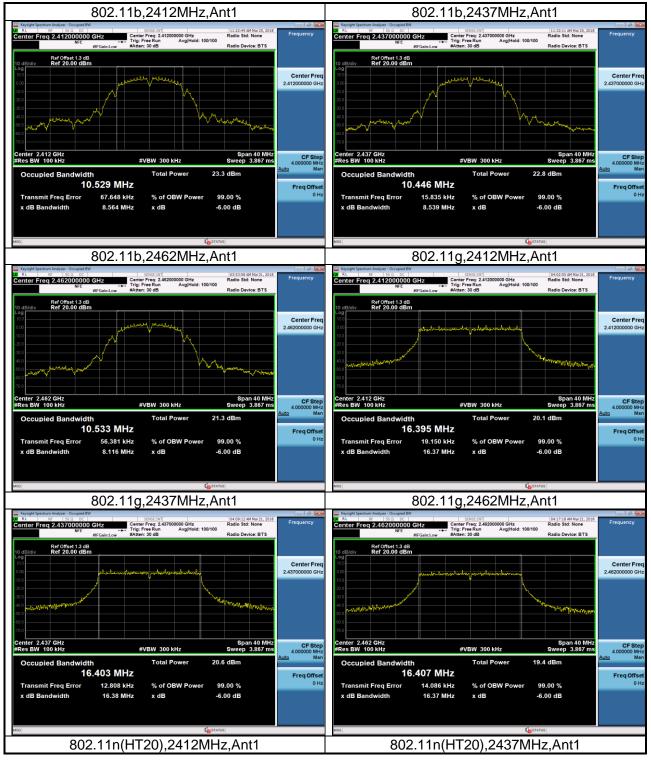
1.2 Test Plots

Test report no. 180102505SHA-001 Page 34 of 55

intertek

Total Quality. Assured.

intertek Total Quality. Assured.


2. Minimum 6dB bandwidth

2.1 Test Data

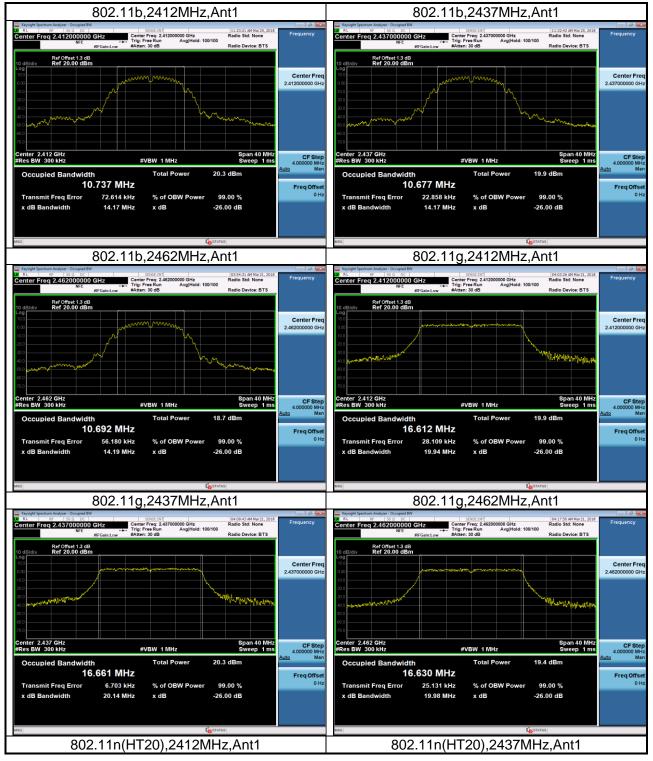
WLAN Occupied 6dB Bandwidth					
Mode	Test Frequency (MHz)	Ant	Occupied Bandwidth (MHz)	Result	
802.11b	2412	Ant1	8.56	Pass	
802.11b	2437	Ant1	8.54	Pass	
802.11b	2462	Ant1	8.12	Pass	
802.11g	2412	Ant1	16.37	Pass	
802.11g	2437	Ant1	16.38	Pass	
802.11g	2462	Ant1	16.37	Pass	
802.11n (HT20)	2412	Ant1	17.34	Pass	
802.11n (HT20)	2437	Ant1	17.29	Pass	
802.11n (HT20)	2462	Ant1	17.34	Pass	

2.2 Test Plots

intertek Total Quality. Assured.

Test report no. 180102505SHA-001 Page 37 of 55

Keysight Spectrum Analyzer - Occupied BW			- 6 -	Keysight Spectrum Analyzer - Occupied BW				6
C RL RF 50 Ω DC	SENSE:INT Center Freq: 2.412000000 GHz	04:25:38 AM Mar 21, 2018 Radio Std: None		(J0 RL RF 50 Ω DC		SENSE:INT	04:35:43 AM Mar 21, 2018 Radio Std: None	
Center Freq 2.412000000 GHz	Trig: Free Run Avg Hold: 100/	100 Radio Device: BTS		Center Freq 2.437000000	Trig:	Free Run Avg Hold: 10 n: 30 dB	0/100 Radio Device: BTS	
	Low Arten. 30 db	Radio Device. D 13				1. 30 db	Radio Device. D 1 3	
Ref Offset 1.3 dB 10 dB/div Ref 20.00 dBm				Ref Offset 1.3 dB 10 dB/div Ref 20.00 dBm				
-og			Contra From	Log				Contor
0.00			Center Freq 2.412000000 GHz	0.00	N I			Center 2.437000000
-10.0				-10.0	The standard on the second	A standard and a standard and a standard and a standard a standard a standard a standard a standard a standard		
-20.0	\ \ \ \			-20.0	<i>,</i>		∖	
30.0		A		30.0			mundanta	
40.0 worth lood on this work of the		man water and		40.0 wowWhite on Maker ala			contraction account and	
50.0				50.0				
70.0				-70.0				
Center 2.412 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 40 MHz Sweep 3.867 ms	CF Step	Center 2.437 GHz #Res BW 100 kHz	+	VBW 300 kHz	Span 40 MHz Sweep 3.867 ms	CF
			4.000000 MHz Auto Man					4.000000 Auto
Occupied Bandwidth		20.2 dBm		Occupied Bandwidth		Total Power	20.6 dBm	
17.593	3 MHz		Freq Offset	17	.583 MHz			Freq O
Transmit Freq Error 21	.229 kHz % of OBW Power	99.00 %	0 Hz	Transmit Freq Error	17.605 kHz	% of OBW Power	99.00 %	
x dB Bandwidth 1	7.34 MHz x dB	-6.00 dB		x dB Bandwidth	17.29 MHz	x dB	-6.00 dB	
ASG	<u>له</u>	STATUS		MSG			STATUS	
802.1	1n(HT20),2462M	Hz Ant1						
Keysight Spectrum Analyzer - Occupied BW	m(11120),240210	112,7 (11(1						
RL RF 50 Ω DC	SENSE:INT	04:41:44 AM Mar 21, 2018						
Center Freq 2.462000000 GHz	Center Freq: 2.462000000 GHz Trig: Free Run Avg Hold: 100/	Radio Std: None 100	requerey					
#IFGain	:Low #Atten: 30 dB	Radio Device: BTS	r					
Ref Offset 1.3 dB 10 dB/div Ref 20.00 dBm								
Log								
0.00			Center Freq 2.46200000 GHz					
-10.0	and a second second and the particular and the second seco		2.402000000 0112					
-20.0	A							
30.0		~~~~						
40.0 walkermale was		Marthally malles have a fear the						
50.0								
70.0								
Center 2.462 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 40 MHz Sweep 3.867 ms	CF Step					
			4.000000 MHz Auto Man					
Occupied Bandwidth	Total Power	19.4 dBm						
17.59	0 MHz		Freq Offset					
Transmit Freq Error 18	.979 kHz % of OBW Power	99.00 %	0 Hz					
	7.34 MHz x dB	-6.00 dB						
sq	40	STATUS						


3. Occupied Bandwidth

3.1 Test Data

WLAN 99% Occupied Bandwidth					
Mode	Test Frequency (MHz)	Ant 99% Occupied Bandwidth (MHz)		Result	
802.11b	2412	Ant1	10.737	Pass	
802.11b	2437	Ant1	10.677	Pass	
802.11b	2462	Ant1	10.692	Pass	
802.11g	2412	Ant1	16.612	Pass	
802.11g	2437	Ant1	16.661	Pass	
802.11g	2462	Ant1	16.630	Pass	
802.11n (HT20)	2412	Ant1	17.753	Pass	
802.11n (HT20)	2437	Ant1	17.749	Pass	
802.11n (HT20)	2462	Ant1	17.716	Pass	

3.2 Test Plots

intertek Total Quality. Assured.

Test report no. 180102505SHA-001 Page 40 of 55

