

FCC TEST REPORT

Test report On Behalf of

SHENZHEN JINGDU TECHNOLOGY CO.,LTD

For Wireless Handheld Microphone System

Model No.: WXM27, WXM27A, WXM27B, WXM27C, WXM27D, WXM27-1, WXM27-2, WXM27-3, WXM27-4

FCC ID: 2AO85-WXM27

Prepared For: SHENZHEN JINGDU TECHNOLOGY CO.,LTD

3F, Building D, Fuxinlin Park Hangcheng industrial Park, Qianjin 2 Road, Baoan

District, ShenzhenXixiang town, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Mar. 02, 2022 ~ Mar. 23, 2022

Date of Report: Mar. 23, 2022

Report Number: HK2203020805-E

TEST RESULT CERTIFICATION

Applicant's name: SHENZHEN JINGDU TECHNOLOGY CO.,LTD

. 3F, Building D, Fuxinlin Park Hangcheng industrial Park, Qianjin 2

Road, Baoan District, ShenzhenXixiang town, China

Manufacture's Name.....: Shenzhen LongXiang Intelligent Technology Co. Ltd.

FLOOR 4, BUILDING D, FUXINLIN INDUSTRIAL AREA,

Report No.: HK2203020805-E

Address...... HENGCHENG INDUSTRIAL ZONE FUHUA COMMUNITY

XIXIANG STREET, BAOAN DISTRICT SHENZHEN

GUANGDONG CHINA

Product description

Trade Mark Bietrun, Kapebow

Product name......: Wireless Handheld Microphone System

Model and/or type reference : WXM27, WXM27A, WXM27B, WXM27C, WXM27D, WXM27-1,

WXM27-2, WXM27-3, WXM27-4

Standards FCC Rules and Regulations Part 15 Subpart C Section 15.236

ANSI C63.4: 2014

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests...... Mar. 02, 2022 ~ Mar. 23, 2022

Test Result...... Pass

Testing Engineer

(Gary Qian)

Gang Dia

Technical Manager

- I-M

(Eden Hu)

Authorized Signatory:

Tasin Www.

(Jason Zhou)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

TABLE OF CONTENTS

Report No.: HK2203020805-E

1	TEST SUMMARY	(b) Y	<u> </u>		
	1.1 TEST PROCEDURES AND RESULTS				
	1.2 TEST FACILITY	N HOM TESTING	ALLAY TESTING	A HOLY TESTING	HOM TESTING
	1.3 MEASUREMENT UNCERTAINTY) 			
ES	GENERAL INFORMATION				STING
2					
	2.1 GENERAL DESCRIPTION OF EUT				
	2.2 CARRIER FREQUENCY OF CHANNEL	LS		U ^{AR}	
	2.3 OPERATION OF EUT DURING TESTI	NG	White In	HUANTES.	
	2.4 DESCRIPTION OF TEST SETUP				9
	2.5 DESCRIPTION OF SUPPORT UNITS	TEETING	THE TIME	THE TIME	10
3	TEST RESULTS AND MEASUREMEN	T DATA		m [©]	12
	3.1 CONDUCTED EMISSIONS TEST	NY TESTIL		NYTESTI	12
	3.2 RADIATED EMISSION TEST	<u> </u>	HURKTER	(iii)	15 A. M.
	3.3 CONDUCTED OUTPUT POWER				
	3.4 OCCUPIED BANDWIDTH MEASURE	MENT		- HUMITES III	22
	3.5. NECESSARY BANDWIDTH				26
	3.6. FREQUENCY STABILITY				30
	3.7. ANTENNA REQUIREMENT	JUAN TESTIN	MAKTESTIL	MAKTESTIL	32
4	PHOTOGRAPH OF TEST	AK TESTAP	W TESTING	March Comp	33

Report No.: HK2203020805-E Page 4 of 35

** Modified History **

Revision	Description	Issued Data	Remark	
Revision 1.0	Initial Test Report Release	Mar. 23, 2022	Jason Zhou	
CTNG	TIME STIME	STING	G STING	
HUAKTE	HUAKTE	HUAK TES	HUAKTES	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com. HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1 TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

Requirement	CFR 47 Section	Result
Conducted Emission	15.207	PASS
Conducted Peak Output Power	15.236(d)(1)	PASS
Occupied Bandwidth Emission	15.236(f)(2)	PASS
Radiated Spurious Emission	15.236(g)	PASS
Frequency Stability	15.236(f)(3)	PASS
Antenna requirement	15.203	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2 TEST FACILITY

Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01.

FCC Designation Number is CN1229.

Canada IC CAB identifier is CN0045.

CNAS Registration Number is L9589.

al.

1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

хрргожин.	atoly 66 70.	16
No.	Item	MU
1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3	Spurious emissions, conducted	±0.11dB
4 1116	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
ESTING 7	Humidity	±1.0%

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Wireless Handheld Microphone System
Model Name	WXM27
Serial No.	WXM27A, WXM27B, WXM27C, WXM27D, WXM27-1, WXM27-2, WXM27-3, WXM27-4
Model Difference	All model's the function, software and electric circuit are the same, only with a Trade Mark and model named different. Te sample model: WXM27.
Trade Mark	Bietrun, Kapebow
FCC ID	2AO85-WXM27
Hardware Version	V1.0
Software Version	V1.0
Operation frequency	CHA: 560.5MHz-574.5MHz CHB: 580.5MHz-594.5HMz
Number of Channels	15
Antenna Type	Internal Antenna
Antenna Gain	1dBi Muham
Modulation Type	FM
Power Source	DC 5V from USB or DC 3.7V from Battery

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

2.2 CARRIER FREQUENCY OF CHANNELS

	Channel	Frequency	Channel	Frequency
CHA	- ma	- MA	KTE	- JUAK TE
(D)	01	560.5	09	567.5
	02	561.5	10	569.5
-1G	03	562.5	. 11	570.5
V TESTING	04	563.5	12	571.5
HUPE	05	564.5	13	572.5
	06	565.5	14	573.5
	07	566.5	15	574.5
ESTING	08	567.5	STING (1)	TING
CHB		WAK TES HUAK		MAKTES
	01	580.5	09	588.5
	02	581.5	10	589.5
	03	582.5	11	590.5
STILL	04	583.5	12	591.5
- MAKTE	05	584.5	13	592.5
(a)	06	585.5	14	593.5
	07	584.5	15	594.5
.Ca	08	587.5	G	KTESTIII

2.3 OPERATION OF EUT DURING TESTING

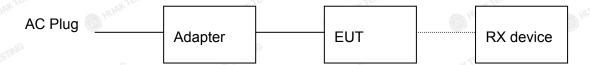
Operating Mode

The mode is used: Transmitting mode for A

Low Channel: CH01: 560.5MHz Middle Channel: CH08: 567.5MHz High Channel: CH15: 574.5MHz

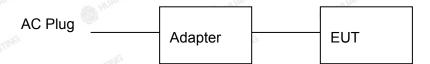
The mode is used: Transmitting mode for B

Low Channel: CH01: 580.5MHz Middle Channel: CH08: 587.5MHz High Channel: CH15: 594.5MHz


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2.4 DESCRIPTION OF TEST SETUP


Operation of EUT during radiation below 1GHz testing:

Operation of EUT during radiation above 1GHz testing:

Operation of EUT during conducted testing:

Adapter information Model: HW-059200CHQ

Input: 100-240V, 50-60Hz, 0.5A

Output: 5VDC, 2A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Report No.: HK2203020805-E

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Description	Model No.	Manufacturer	Remark	Certificate		
ING /	NG I NYTES	N.C. I	W.TESTING	1		
HUAKTES	, 0,000	HIAKTESTA	1	HUAKTESTIN		

Note:

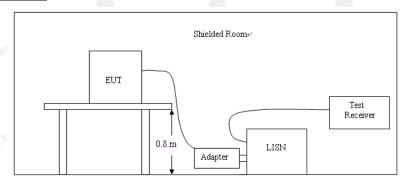
- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

2.6 MEASUREMENT INSTRUMENTS LIST

	-TIN -C51. W		251	100	7111	~65°
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
JAX TEST	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 09, 2021	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 09, 2021	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 09, 2021	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 09, 2021	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 09, 2021	1 Year
8.51	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 09, 2021	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519B	HKE-014	Dec. 09, 2021	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 09, 2021	1 Year
11.	Pre-amplifier	EMCI	EMC051845SE	HKE-015	Dec. 09, 2021	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 09, 2021	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	N/A	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 09, 2021	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Dec. 09, 2021	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Dec. 09, 2021	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 17, 2020	3 Year
19.	Power Meter	R&S	NRVD	SEL0069	Dec. 09, 2021	1 Year
20.	High Gain Antenna	Schewarzbeck	LB-180400KF	HKE-054	Dec. 09, 2021	1 Year

3 TEST RESULTS AND MEASUREMENT DATA

3.1 CONDUCTED EMISSIONS TEST


<u>LIMIT</u>

According to FCC CFR Title 47 Part 15 Subpart C Section 15.207 and RSS Gen 8.8, AC Power Line Conducted Emissions Limits for License-Exempt Radio Apparatus as below:

TESTING (ALL) SHIP	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5 5 100 0 100	56 (5m ²)	46				
5-30	60	50				

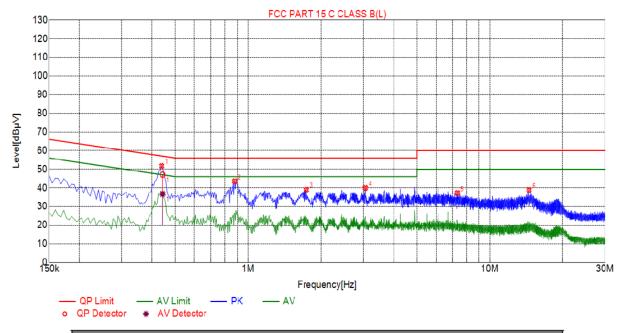
^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

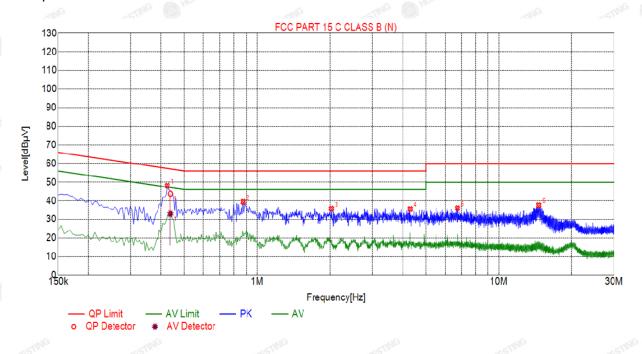
- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.cor


HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

TEST RESULTS

Test Specification: Line


Sus	Suspected List										
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре			
1	0.4380	51.75	20.05	57.10	5.35	31.70	PK	L			
2	0.8790	43.54	20.06	56.00	12.46	23.48	PK	L			
3	1.7385	39.00	20.14	56.00	17.00	18.86	PK	L			
4	3.0525	39.97	20.22	56.00	16.03	19.75	PK	L			
5	7.3365	37.24	20.18	60.00	22.76	17.06	PK	L			
6	14.5095	38.84	19.95	60.00	21.16	18.89	PK	L			

Final Data List											
NO.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	QP Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	AV Reading [dBµV]	Туре
1	0.4424	20.05	47.13	57.02	9.89	27.08	36.75	47.02	10.27	16.70	L

Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

Test Specification: Neutral

Sus	Suspected List										
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре			
1	0.4245	48.09	20.04	57.36	9.27	28.05	PK	N			
2	0.8745	39.43	20.06	56.00	16.57	19.37	PK	N			
3	2.0265	35.77	20.15	56.00	20.23	15.62	PK	N			
4	4.2945	35.57	20.25	56.00	20.43	15.32	PK	N			
5	6.7425	36.03	20.21	60.00	23.97	15.82	PK	N			
6	14.6355	37.62	19.95	60.00	22.38	17.67	PK	N			

Final	Final Data List										
NO.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	QP Reading [dBµV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	ΑV Reading [dBμV]	Туре
1	0.4370	20.05	43.77	57.12	13.35	23.72	33.01	47.12	14.11	12.96	N

Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

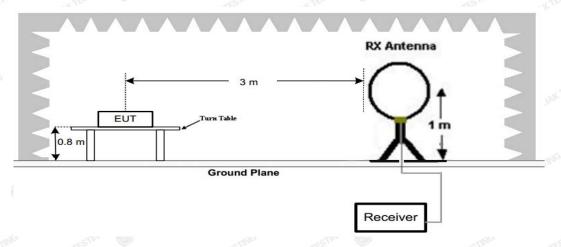
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

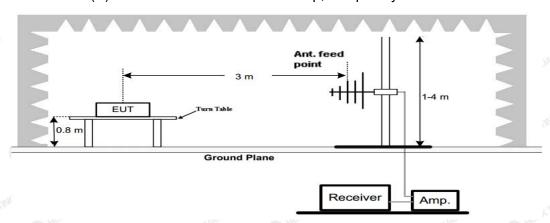
TESTING

Report No.: HK2203020805-E

3.2 RADIATED EMISSION TEST

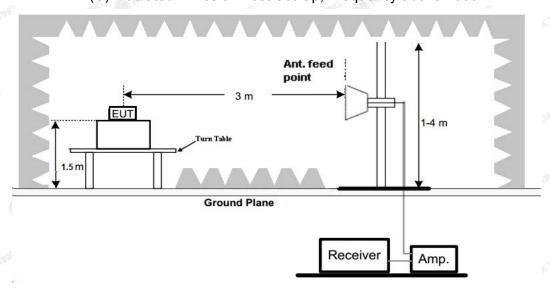

Limit

Emissions within the band from one megahertz below to one megahertz above the carrier frequency shall comply with the emission mask in §8.3 of ETSI EN 300 422-1 V1.4.2 (2011-08).


Emissions outside of this band shall comply with the limits specified in section 8.4 of ETSI EN 300 422-1 V1.4.2 (2011-08).

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz.



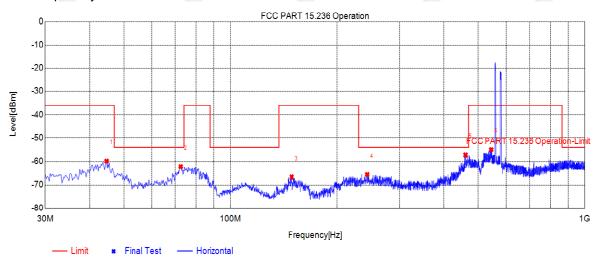
(B) Radiated Emission Test Set-Up, Frequency below 1000MHz.

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz.

Report No.: HK2203020805-E

Frequency: 9kHz-30MHz	Frequency: 30MHz-1GHz	Frequency: Above 1GHz
RBW=10KHz	RBW=120KHz	RBW=1MHz
VBW =30KHz	VBW=300KHz	VBW=3MHz(Peak)
Sweep time= Auto	Sweep time= Auto	Sweep time= Auto
Trace = max hold	Trace = max hold	Trace = max hold
Detector function = peak	Detector function = peak	Detector function = peak

Test Procedure

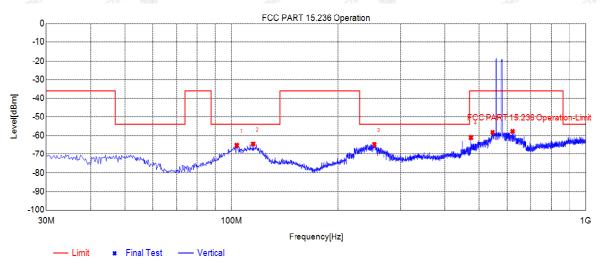

- 1. The setup of EUT is according with per TIA/EIA Standard 603 and ANSI C63.4-2014 measurement procedure.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna heightand polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4.Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable.

TEST RESULTS

Below 1GHz Test Results: (Show only the worst test results)

All modes have been tested, and only the worst mode is recorded.

Antenna polarity: H


Ś	Suspected List										
	NO.	Freq.	Reading	Level	Limit	Margin	Factor	Dolovity			
	NO.	[MHz]	[dBm]	[dBm]	[dBm]	[dB]	[dB]	Polarity			
	1	44.7469	-63.60	-59.90	-36.00	23.90	3.70	Horizontal			
	2	72.4945	-66.81	-62.36	-54.00	8.36	4.45	Horizontal			
	3	148.945	-69.75	-66.84	-36.00	30.84	2.91	Horizontal			
	4	243.054	-71.23	-65.73	-54.00	11.73	5.50	Horizontal			
	5	460.960	-62.49	-57.33	-54.00	3.33	5.16	Horizontal			
9	6	545.367	-61.11	-55.01	-36.00	19.01	6.10	Horizontal			

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Antenna polarity: V

Susp	Suspected List									
NO	Freq.	Reading	Level	Limit	Margin	Factor	Dolovity			
NO.	[MHz]	[dBm]	[dBm]	[dBm]	[dB]	[dB]	Polarity			
1	103.540	-74.38	-65.21	-54.00	11.21	9.17	Vertical			
2	114.989	-74.21	-64.45	-54.00	10.45	9.76	Vertical			
3	253.144	-64.47	-64.73	-54.00	10.73	-0.26	Vertical			
4	474.154	-65.15	-60.95	-36.00	24.95	4.20	Vertical			
5	545.949	-63.77	-58.29	-36.00	22.29	5.48	Vertical			
6	621.624	-64.85	-57.73	-36.00	21.73	7.12	Vertical			

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
HUAKTES	M. Huak Ter	HUAKTE
		ESTING
THE THINK HUAN	mc	IN ME
UNK TESTING HUAK TES	- WANTESTIN HUAKTES	HUAKTESTI HUAKTES

Note: 1. Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor.

AFICATIO,

Report No.: HK2203020805-E

^{2.} The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

ABOVE 1GHz test results:

All modes have been tested, and only the worst mode is recorded.

Transmitting at 560.5MHz

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Value Type
1121.00	-36.61	-5.81	-42.42	-30 HUM	-12.42	Horizontal
1121.00	-36.39	-5.81	-42.2	-30	-12.2	Vertical
1681.50	-35.25	-6.06	-41.31	-30	-11.31	Vertical
1681.50	-34.1	-5.81	-39.91	-30	-9.91	Horizontal

Transmitting at 567.5MHz

Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(dBm)	(dB)	(dBm)	(dBm)	(dB)	Value Type
-38.61	-5.81	-44.42	-30	-14.42	Horizontal
-37.54	-5.81	-43.35	-30	-13.35	Vertical
-37.81	-6.06	-43.87	-30	-13.87	Vertical
-35.88	-5.81	-41.69	-30	-11.69	Horizontal
	Reading (dBm) -38.61 -37.54 -37.81	Reading (dBm) (dB) -38.61 -5.81 -37.54 -5.81 -37.81 -6.06	Reading (dBm) (dB) (dBm) -38.61 -5.81 -44.42 -37.54 -5.81 -43.35 -37.81 -6.06 -43.87	Reading (dBm) (dB) (dBm) (dBm) -38.61 -5.81 -44.42 -30 -37.54 -5.81 -43.35 -30 -37.81 -6.06 -43.87 -30	Reading (dBm) (dB) (dBm) (dBm)

Transmitting at 574.5MHz

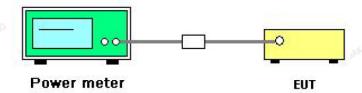
Meter	(M)				The state of the s
Reading	Factor	Emission Level	Limits	Margin	Value Type
(dBm)	(dB)	(dBm)	(dBm)	(dB)	value Type
-38.13	-5.81	-43.94	-30	-13.94	Horizontal
-37.84	-5.81	-43.65	-30	-13.65	Vertical
-36.44	-6.06	-42.5	-30 HUM	-12.5	Vertical
-35.06	-5.81	-40.87	-30	-10.87	Horizontal
	(dBm) -38.13 -37.84 -36.44	Reading (dBm) (dB) -38.13 -5.81 -37.84 -5.81 -36.44 -6.06	Reading (dBm) (dB) (dBm) -38.13 -5.81 -43.94 -37.84 -5.81 -43.65 -36.44 -6.06 -42.5	Reading (dBm) (dB) (dBm) (dBm) -38.13 -5.81 -43.94 -30 -37.84 -5.81 -43.65 -30 -36.44 -6.06 -42.5 -30	Reading (dBm) (dB) (dBm) (dBm) (dBm) -38.13 -5.81 -43.94 -30 -13.94 -37.84 -5.81 -43.65 -30 -13.65 -36.44 -6.06 -42.5 -30 -12.5

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 18 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4)The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

A



3.3 CONDUCTED OUTPUT POWER

Limit

According to FCC 15.236(d)(1), for low power auxiliary station operating in the 470-608, and 614-698 MHz bands, In the bands allocated and assigned for broadcast television and in the 600 MHz service band: 50 mW EIRP

TEST CONFIGURATION

Test Procedure:

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Results:

A mode:

Test Channel	frequency (MHz)	Conducted Output Power (dBm)	ANT Gain (dBi)	EIRP (dBm)	Limit (dBm)	Result
CH01	560.5	2.35	1	3.35		PASS
CH08	567.5	3.21	1 HUMATE	4.21	17	PASS
CH15	574.5	2.85	1	3.85	ING	PASS

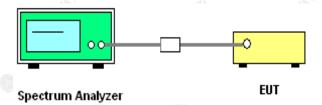
B mode:

Test Channel	frequency (MHz)	Conducted Output Power (dBm)	ANT Gain (dBi)	EIRP (dBm)	Limit (dBm)	Result
CH01	580.5	2.68	1	3.68		PASS
CH08	587.5	2.57	1 HUAKTE	3.57	CTESTING 17	PASS
CH15	594.5	2.92	1	3.92	W _C	PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

3.4 OCCUPIED BANDWIDTH MEASUREMENT

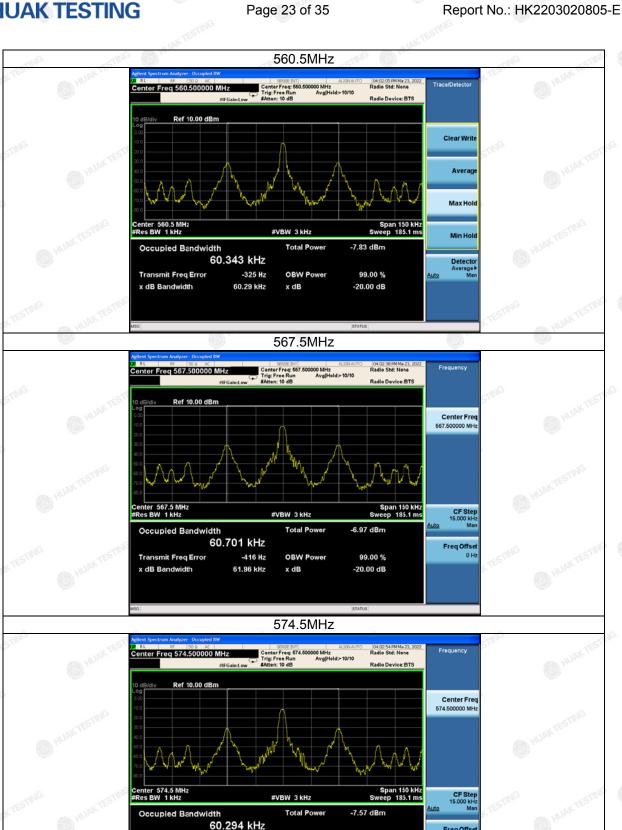

Limit

According to FCC 15.236(f)(2), The operating frequency within a permissible band of operation as defined in paragraph (c) must comply with the following requirements.

- (1) The frequency selection shall be offset from the upper or lower band limits by 25 kHz or an integral multiple thereof.
- (2) One or more adjacent 25 kHz segments within the assignable frequencies may be combined to form a channel whose maximum bandwidth shall not exceed 200 kHz. The operating bandwidth shall not exceed 200kHz.

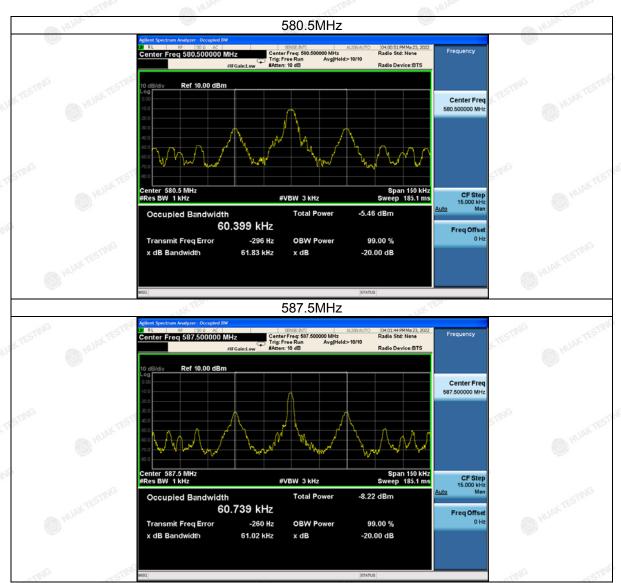
Emissions within the band from one megahertz below to one megahertz above the carrier frequency shall comply with the emission mask in Section 8.3 of ETSI EN 300 422-1 V1.4.2 (2011-08) (incorporated by reference, see §15.38). Emissions outside this band shall comply with the limit specified at the edges of the ETSI mask.

TEST CONFIGURATION

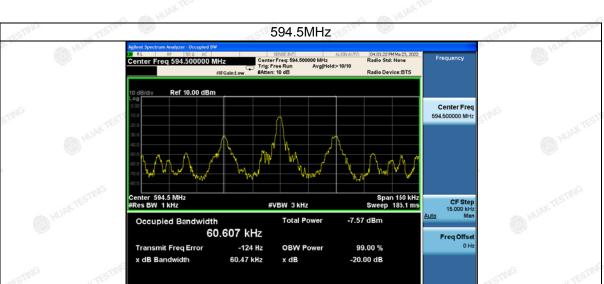

Test Procedure:

According to TIA-603 for additional Test Set-Up procedures, the occupied bandwidth of emission was measured with a Spectrum Analyzer connected to the antenna terminal while EUT was operating in 2.5kHz tone at an input level 16 dB greater than that necessary to produce 50 percent modulation. Then mark the -26dB Bandwidth and record it.

Test Results:


A mode:

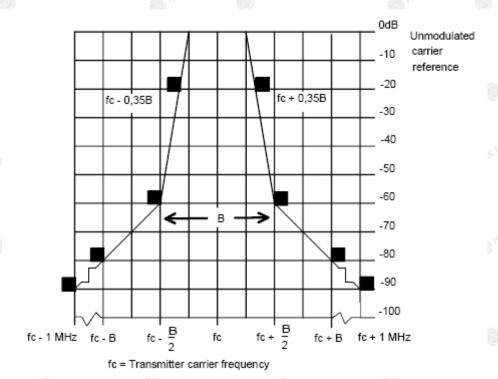
Test Channel	frequency (MHz)	-20Bandwidth (kHz)	99%Bandwidth (kHz)	Limit (kHz)	Result
CH01	560.5	60.29	60.343	OWN	PASS
CH08	567.5	61.96	60.701	200	PASS
CH15	574.5	60.42	60.294	AK TESTING	PASS



B mode:

Test Channel	frequency (MHz)	-20Bandwidth (kHz)	99%Bandwidth (kHz)	Limit (kHz)	Result
CH01	580.5	61.83	60.399	.0	PASS
CH08	587.5	61.02	60.739	200	PASS
CH15	594.5	60.47	60.607		PASS

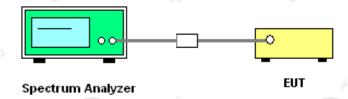
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3.5. NECESSARY BANDWIDTH

Limit



Standard Applicable

According to §15.236 (g) Emissions within the band from one megahertz below to one megahertz above the carrier frequency shall comply with the emission mask in §8.3 of ETSI EN 300 422-1 V1.4.2 (2011-08), Electromagnetic compatibility and Radio spectrum Matters (ERM); Wireless Handheld Microphone System s in the 25 MHz to 3GHz frequency range; Part 1: Technical characteristics and methods of measurement. Emissions outside of this band shall comply with the limits specified in section 8.4 of ETSI EN 300 422-1 V1.4.2 (2011-08).

According to ETSI EN 300 422-2 V2.1.1 section 8.3, the transmitter output spectrum shall be within the mask defined in the following figure.

TEST CONFIGURATION

Test Procedure:

The arrangement of test equipment as shown in figure B.1 shall be used. Note that the noise meter conforms to (quasi peak) without weighting filter (flat).

With the Low Frequency (LF) audio signal generator set to 500 Hz, the audio input level to the DUT shall be adjusted to 8 dB below the limiting threshold (-8 dB (lim)) as declared by the manufacturer.

The corresponding audio output level from the demodulator shall be measured and recorded.

The input impedance of the noise meter shall be sufficiently high to avoid more than 0.1 dB change in input level when the meter is switched between input and output.

The audio input level shall be increased by 20 dB, i.e. to +12 dB (lim), and the corresponding change in output level shall be measured.

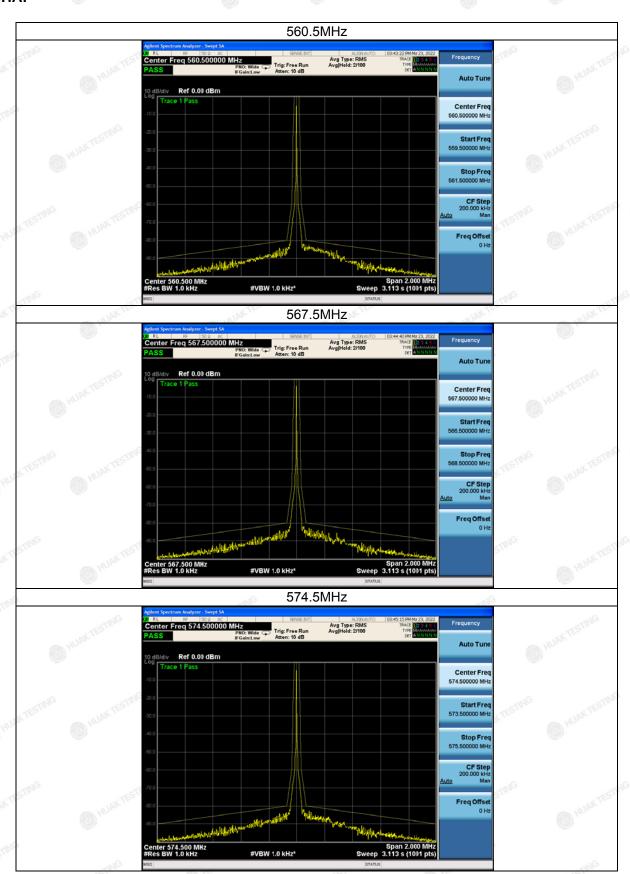
It shall be checked that the audio output level has increased by ≤ 10 dB.

If this condition is not met, the initial audio input level shall be increased from -8 dB (lim) in 1 dB steps until the above condition is fulfilled, and the input level recorded in the test report. This level replaces the value derived from the manufacturer's declaration and is defined as -8 dB (lim).

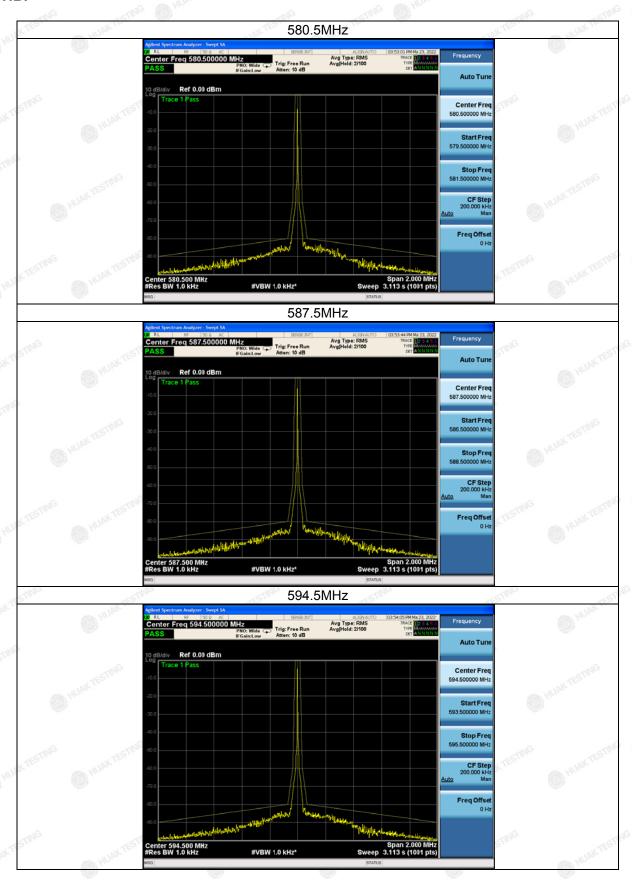
Measure the input level at the transmitter required to give +12 dB (lim).

The LF generator shall be replaced with the weighted noise source to Recommendation ITU-R BS.559-2 [i.3], band-limited to 15 kHz as described in IEC 60244-13 [2], and the level shall be adjusted such that the measured input to the transmitter corresponds to +12 dB (lim).

If the transmitter incorporates any ancillary coding or signalling channels (e.g. pilot-tones), these shall be enabled prior to any spectral measurements.


If the transmitter incorporates more than one audio input, e.g. stereo systems, the second and subsequent channels shall be simultaneously driven from the same noise source, attenuated to a level of -6 dB (lim).

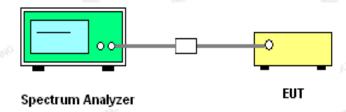
- centre frequency: fc: Transmitter (Tx) nominal frequency;
- dispersion (Span): fc 1 MHz to fc + 1 MHz;
- Resolution BandWidth (RBW):1 kHz;
- Video BandWidth (VBW): 1 kHz;
- detector: Peak hold.



Test Result

CHA:

3.6. FREQUENCY STABILITY


Limit

±50ppm

Standard Applicable

According to FCC 15.236(f)(3), The frequency tolerance of the carrier signal shall be maintained within $\pm 0.005\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. Battery operated equipment shall be tested using a new battery.

TEST CONFIGURATION

Test Procedure:

- 1. Setup the configuration of the ambient temperature form -20°C to 50°C with sufficient time. And measure the different power of the EUT with an artificial power from highest to end point voltage.
- 2. Set frequency counter center frequency to the right frequency needs to be measured band.

Test Result

Note: All modes have been tested, and only the worst mode is recorded.

Test Conditions		Measure Frequency	Frequency Error		Limit	
Voltage (V)	Temperatur e (°C)	(MHz)	(MHz)	ppm	ppm	Result
Mr.	N	560.4939	-0.0061	-10.88	HUA	
N	AK ESTING	560.4955	-0.0045	-8.03		
TESTING	H	560.4911	-0.0089	-15.88	STING	TESTING
HUAR	N	560.4947	-0.0053	-9.46	AKTE OF	HUAK.
L	L	560.4951	-0.0049	-8.74	±50ppm	PASS
	Н	560.4926	-0.0074	-13.20		- iG
MAKTESTIN	N	560.4960	-0.0040	-7.14	ESTINE	MAKTESTINE
Н	L 🔘	560.4950	-0.0050	-8.92		9"
	H	560.4988	-0.0012	-2.14	(6	
	Voltage (V)	Voltage (V) R N L H L H N L H N L H N L H N L H N L H N L H N L H N L H N L H N L H N L H N L H N L H N L H N L H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N N	Voltage (V) Temperatur e (°C) N 560.4939 N	Voltage (V) Temperatur e (°C) (MHz) (MHz) N 560.4939 -0.0061 N 560.4955 -0.0045 H 560.4911 -0.0089 N 560.4947 -0.0053 L L 560.4951 -0.0049 H 560.4926 -0.0074 N 560.4960 -0.0040 H L 560.4950 -0.0050	Voltage (V) Temperatur e (V) (MHz) (MHz) ppm N 560.4939 -0.0061 -10.88 N L 560.4955 -0.0045 -8.03 H 560.4911 -0.0089 -15.88 N 560.4947 -0.0053 -9.46 L L 560.4951 -0.0049 -8.74 H 560.4926 -0.0074 -13.20 N 560.4960 -0.0040 -7.14 H L 560.4950 -0.0050 -8.92	Temperatur

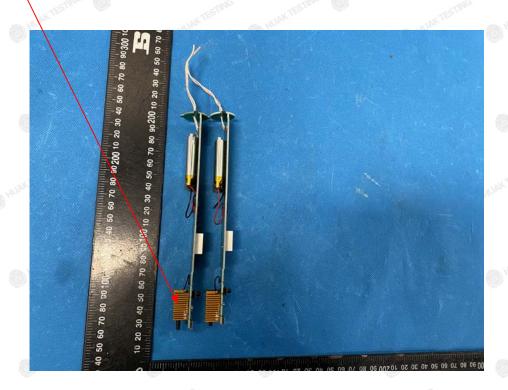
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

AFICATION

Test frequency	Test Conditions		Measure Frequency Frequency Error			Limit	-xG
(MHz)	Voltage (V)	Temperatu re (°C)	(MHz)	(MHz)	ppm	ppm	Result
TESTING	TESTIN	N	567.4900	-0.0100	-17.62	STING	TESTING
HUAKTE	MN	L WHO	567.4970	-0.0030	-5.29		HUAKIL
		Н	567.4970	-0.0030	-5.29		
TESTING	TING	N WAY TE	567.4969	-0.0031	-5.46		TING
567.5MHz	JAK TES. L	2	567.4986	-0.0014	-2.47	±50ppm	PASS
		HSTING	567.4918	-0.0082	-14.45	0	
NUAN TESTING	, MG	HUPN	567.4901	-0.0099	-17.44	.0	-m/G
	HUAYHESTIN	L	567.4928	-0.0072	-12.69	JAK TESTING	WAKTESTILL
	9)	н 🤎	567.4953	-0.0047	-8.28	0	

Test frequency	Test Conditions		Measure Frequency	Frequency Error		Limit	
(MHz)	Voltage (V)	Temperatu re (°C)	(MHz)	(MHz)	ppm	ppm	Result
A V	Jak .	N	574.4989	-0.0011	-1.91	HUAK	
	N	TESTING	574.4942	-0.0058	-10.10		
	STING	HUP H	574.4916	-0.0084	-14.62	-mG	STING
	HUAKTE	N	574.4949	-0.0051	-8.88	JAKTES III	WAKTER
574.5MHz	L	L ®	574.4962	-0.0038	-6.61	\pm 50ppm	PASS
		Н	574.4944	-0.0056	-9.75		
	X TESTIN	N	574.4903	-0.0097	-16.88	TESTING	X TESTIN
	HUAN'	L O HO	574.4994	-0.0006	-1.04		AHUAU
		Н	574.4935	-0.0065	-11.31	30	

3.7. ANTENNA REQUIREMENT

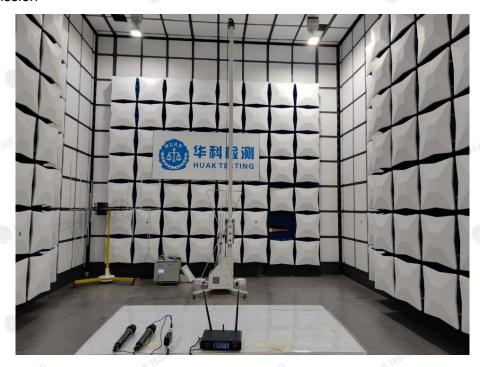

Standard Applicable

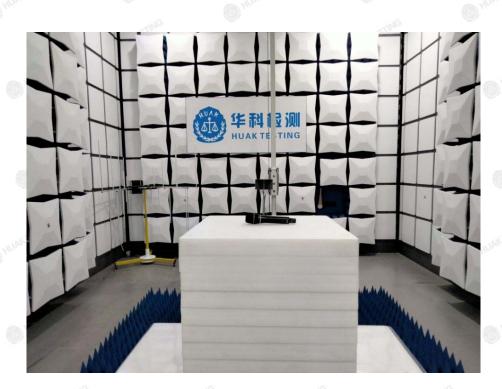
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is a Internal antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 1dBi.

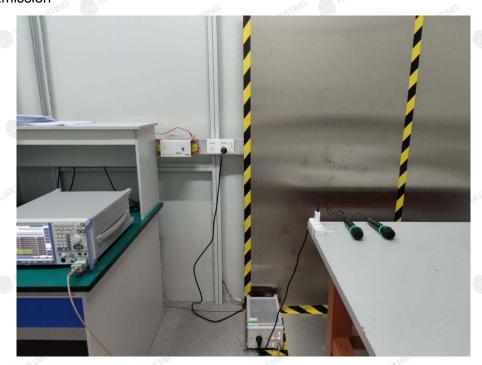
ANTENNA


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4 PHOTOGRAPH OF TEST

Radiated Emission



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

5 PHOTOGRAPH OF EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-End of test report----