

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC161467 Page: 1 of 76

FCC Radio Test Report FCC ID: 2A083-ZS160

Original Grant

Report No.	÷	TB-FCC161467
Applicant	102	Shenzhen Fuxingneng Industrial Co., Ltd
Equipment Under	Test	(EUT)
EUT Name	-	WiFi Smart Outlet
Model No.	12	ZS160
Series Model No.	190	ZS161
Brand Name	-	
Receipt Date	R.L	2018-08-14
Test Date	a: \	2018-08-14 to 2018-08-24
Issue Date	2	2018-08-27
Standards	1	FCC Part 15, Subpart C (15.247: 2017)
Test Method	-	ANSI C63.10: 2013
Conclusions	1	PASS

Jason xu

WRN SU fuglis.

In the configuration tested, the EUT complied with the standards specified above, The EUT technically complies with the FCC and IC requirements

HNYason

n Stt

Test/Witness Engineer

Test/Witness Engineer

Approved& Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	9
	1.7 Measurement Uncertainty	9
	1.8 Test Facility	10
2.	TEST SUMMARY	
3.	TEST EQUIPMENT	12
4.	CONDUCTED EMISSION TEST	
	4.1 Test Standard and Limit	
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	
	4.5 Test Data	
5.	RADIATED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	17
	5.4 EUT Operating Condition	
	5.5 Test Data	
6.	RESTRICTED BANDS REQUIREMENT	
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 EUT Operating Condition	20
	6.5 Test Data	20
7.	BANDWIDTH TEST	
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	21
	7.5 Test Data	
8.	PEAK OUTPUT POWER TEST	
	8.1 Test Standard and Limit	

	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 EUT Operating Condition	
	8.5 Test Data	
9.	POWER SPECTRAL DENSITY TEST	23
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	23
	9.4 EUT Operating Condition	23
	9.5 Test Data	23
10.	ANTENNA REQUIREMENT	24
	10.1 Standard Requirement	
	10.2 Antenna Connected Construction	24
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	25
ATT	ACHMENT B RADIATED EMISSION TEST DATA	
ATT	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	47
	ACHMENT D BANDWIDTH TEST DATA	
	ACHMENT E PEAK OUTPUT POWER TEST DATA	
ATT	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	71

Report No.: TB-FCC161467 Page: 4 of 76

Revision History

Report No.	Version	Description	Issued Date
TB-FCC161467	Rev.01	Initial issue of report	2018-08-25
and the			
The start	100	The second second	
and the			EP A
THE REAL		A COLORIDA	
	3 2002		AN COLD
		TOTAL COLOR OF	
		DI LON LON LO	
EL TON	- TOP -	T TON TO TO	1 TON
De al		mail in the mail	CP 0
an and	3 COB		100 - 100

1. General Information about EUT

1.1 Client Information

Applicant	:	Shenzhen Fuxingneng Industrial Co., Ltd		
Address	:	Floor 7, B1-2,Lintai Industrial Park No.1 Industrial Area, Baihua Community, Guangming District, Shenzhen, China		
Manufacturer	:	Shenzhen Fuxingneng Industrial Co., Ltd		
Address	•	Floor 7, B1-2,Lintai Industrial Park No.1 Industrial Area, Baihua Community, Guangming District, Shenzhen, China		

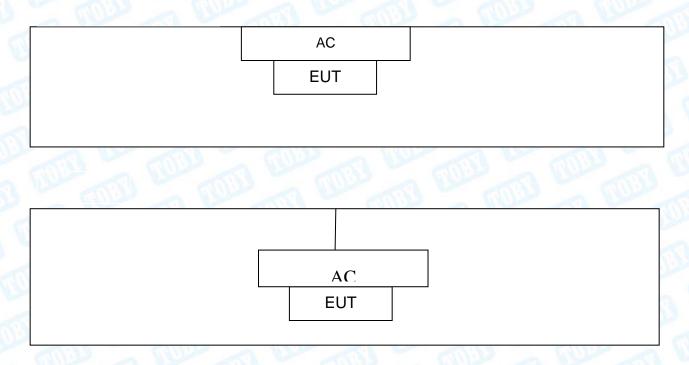
1.2 General Description of EUT (Equipment Under Test)

EUT Name		WiFi Smart Outlet		
Models No.		ZS160, ZS161		
Model Different	:	All these models are the same PCB, layout and electrical circuit, the only difference is appearance.		
	2	Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz	
	V	Number of Channel:	802.11b/g/n(HT20):11 channels see note(3)	
		RF Output Power:	802.11b: -1.41dBm 802.11g: 12.18dBm 802.11n (HT20): 12.14dBm	
Product		Antenna Gain:	1dBi PCB Antenna	
Description	B	Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK,QPSK,16QAM, 64QAM)	
TOD TOT		Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6 Mbps 802.11n:up to 150Mbps	
Power Supply		AC Voltage supplied		
Power Rating	ŀ	Input: AC100~120V,15A,60Hz,Max.1800W(max) Output: AC100~120V,15A,60Hz,Max.1800W(max)		
Software Version	:	VI.0		
Hardware Version	:	V1.0		
Connecting I/O Port(S)		Please refer to the User's Manual		

Report No.: TB-FCC161467 Page: 6 of 76

Note:

- (1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v04.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.



(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		
Note: CH 01~CH 1	1 for 802.11b/g/n(HT2	20)			

(4) The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

The EUT has been tested as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode	Description			
Mode 1	Normal Working with TX B Mode			

For Radiated Test		
Final Test Mode	Description	
Mode 2	TX Mode B Mode Channel 01/06/11	
Mode 3	TX Mode G Mode Channel 01/06/11	
Mode 4	TX Mode N(HT20) Mode Channel 01/06/11	

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps)

802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel & Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version	SecureCRT.exe		
Channel	CH 01	CH 06	CH 11
IEEE 802.11b DSSS	80	90	90
IEEE 802.11g OFDM	40	40	40
IEEE 802.11n (HT20)	40	40	40

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dedicted Emission	Level Accuracy:	
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy:	
	30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy:	
	Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

2. Test Summary

Standard Section		T		_	
FCC	IC	Test Item	Judgment	Remark	
15.203	1	Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A	
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A	
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A	
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	PASS	N/A	
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A	
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A	
15.247(d)& 15.209	RSS 247 5.5	Transmitter Radiated Spurious Emission	PASS	N/A	

N/A is an abbreviation for Not Applicable.

3. Test Equipment

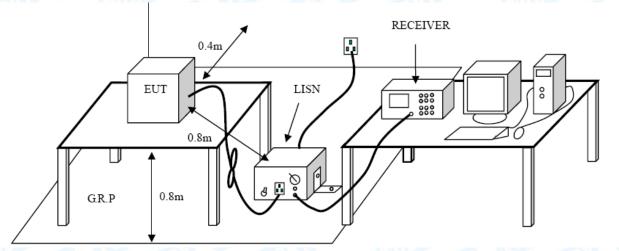
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019
Radiation Emissio	on Test	<u>.</u>	±	-	-
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul. 13, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.17, 2018	Mar. 16, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.17, 2018	Mar. 16, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.17, 2018	Mar. 16, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Oct. 26, 2017	Oct. 25, 2018
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Oct. 26, 2017	Oct. 25, 2018

4. Conducted Emission Test

- 4.1 Test Standard and Limit
 - 4.1.1Test Standard FCC Part 15.207
 - 4.1.2 Test Limit

Conducted	Emission	Test L	imit

Frequency	Maximum RF Lin	e Voltage (dBµV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

5. Radiated Emission Test

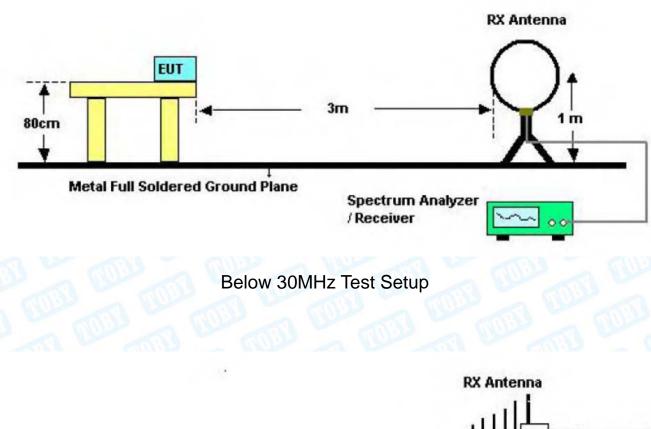
- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.209
 - 5.1.2 Test Limit

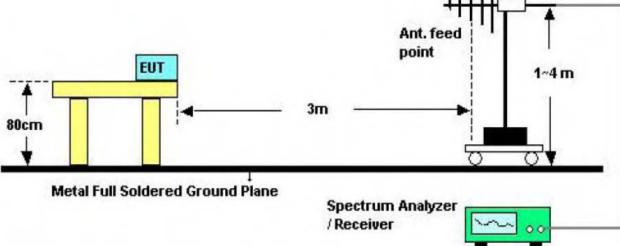
Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

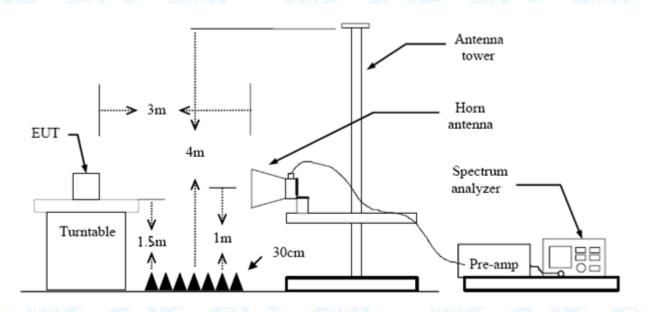
Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3	3m (dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54


Note:


(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


5.2 Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

5.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

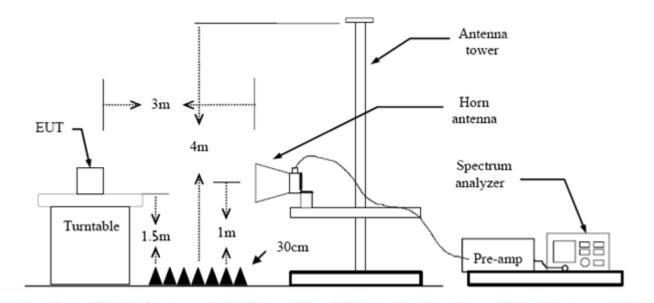
(8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values. Please refer to the Attachment B.


6. Restricted Bands Requirement

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard FCC Part 15.247(d) FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)		
Band (MHz)	Peak	Average	
2310 ~2390	74	54	
2483.5 ~2500	74	54	

6.2 Test Setup

6.3 Test Procedure

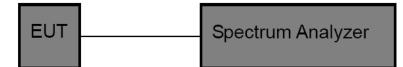
- (1) The measuring distance of 3m shall be used for measurements at frequency Below 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.
- 6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment C.



7. Bandwidth Test

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard
 - FCC Part 15.247 (a)(2)
 - 7.1.2 Test Limit

	FCC Part 15 Subpart C(15.2	247)
Test Item	Limit	Frequency Range(MHz)
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

7.2 Test Setup

7.3 Test Procedure

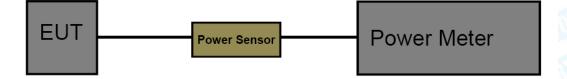
- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.



8. Peak Output Power Test

- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard FCC Part 15.247 (b)
 - 8.1.2 Test Limit

FCC	C Part 15 Subpart C(15.247	7)
Test Item	Limit	Frequency Range(MHz)
Peak Output Power	1 Watt or 30 dBm	2400~2483.5

8.2 Test Setup

8.3 Test Procedure

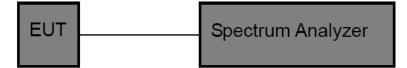
The measurement is according to section 9.1.2 of KDB 558074 D01 DTS Meas Guidance v04. The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.



9. Power Spectral Density Test

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard FCC Part 15.247 (e)
 - 9.1.2 Test Limit

FC	CC Part 15 Subpart C(15.24	47)
Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz
- (5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard

FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 1dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type	
Permanent attached antenna	DOPT
Unique connector antenna	(COM)
Professional installation antenna	5

Attachment A-- Conducted Emission Test Data

TOBY

Temperature:	24 ℃	Rela	tive Humidity:	56%	
Test Voltage:	AC 120V/60Hz		0000		a v
Terminal:	Line	E BU	AU33	~ 0	100
Test Mode:	Normal working	with TX B Mod	le	000	2 1000
Remark:	Only worse case	e is reported		- nu	
90.0 dBuV					
				QP: AVE	
40					
A. O.a Marr	An Mar X				
amhter i hi i	m in m	$M \cap \Delta$	(V/V/V/W)	Jahr Advertigen	peak
o Antim MM	Marriel Marriel and Mar	\sqrt{V}	$\wedge \wedge \wedge \wedge \wedge \vee$	MMMmm	AVG
	When weather	\vee \vee \vee	VVVV		
-10 0.150	0.5	(MHz)	5		30.000
	Reading Co	rrect Measure	-		
No. Mk. Fre		actor ment	Limit Over		
MH	z dBuV o	IB dBuV	dBuV dB	Detector	Comment
1 0.210	00 25.70 9	.64 35.34	63.20 -27.86	QP	
2 0.210	00 7.82 9	.64 17.46	53.20 -35.74	AVG	
3 0.254	40 22.92 9	.61 32.53	61.62 -29.09	QP	
4 0.254	40 6.72 9	.61 16.33	51.62 -35.29	AVG	
5 * 0.370	00 23.56 9	.58 33.14	58.50 -25.36	QP	
6 0.370	00 9.21 9	.58 18.79	48.50 -29.71	AVG	
7 1.05	30 14.37 9	.59 23.96	56.00 -32.04	QP	
8 1.05	30 8.18 9	.59 17.77	46.00 -28.23	AVG	
9 1.690	00 13.02 9	.60 22.62	56.00 -33.38	QP	
10 1.690	00 7.79 9	.60 17.39	46.00 -28.61	AVG	
11 2.378	30 13.01 9	.63 22.64	56.00 -33.36	QP	
12 2.378	30 8.10 9	.63 17.73	46.00 -28.27	AVG	
*:Maximum data	x:Over limit !	over margin:			
Emission Level	= Read Level+ Co	orrect Factor			

Temperatu	re: 2	24 ℃	RUSS	Re	lative H	lumidit	: y: 50	6%	
Fest Voltag	je: A	AC 120V/60	OHz						
Ferminal:	١	Veutral	183	5 6	UPP -	-	1 Ser	100	1P
Test Mode:	: N	ormal wor	king with	TX B Mod	de	(D)	-	A COL	
Remark:	(Only worse	case is r	eported	10	- 1	1000		and the
10.0 dBuV									
								QP: AVG:	
40	ur walder	MMM		$\tilde{\gamma}$	Ŵ	- VWV	mm WWww	Monorman and a	
			V						
0.150		0.5	V	1 (MH2)		5			30.000
	Freq.	0.5 Reading Level	Correct Factor	(MHz) Measure- ment	Limit	5 Over			30.000
0.150 No. Mk.	MHz	Reading Level dBuV		Measure-			Detector	Comme	
0.150 No. Mk.	MHz 1.0780	Reading Level dBuV 25.70	Factor	Measure- ment dBuV 35.29	Limit dBuV	Over	QP	Commo	
0.150 No. Mk. 1 2 *	MHz 1.0780 1.0780	Reading Level dBuV 25.70 22.13	Factor dB	Measure- ment dBuV 35.29 31.72	Limit dBuV 56.00 46.00	Over dB -20.71 -14.28	QP AVG	Commo	
0.150 No. Mk. 1 2 * 3	MHz 1.0780 1.0780 1.7940	Reading Level dBuV 25.70	Factor dB 9.59	Measure- ment dBuV 35.29 31.72 35.01	Limit dBuV 56.00 46.00 56.00	Over dB -20.71 -14.28 -20.99	QP AVG QP	Comme	
0.150 No. Mk. 1 2 * 3 4	MHz 1.0780 1.0780 1.7940 1.7940	Reading Level dBuV 25.70 22.13 25.40 21.81	Factor dB 9.59 9.59 9.61 9.61	Measure- ment dBuV 35.29 31.72 35.01 31.42	Limit dBuV 56.00 46.00 56.00 46.00	Over dB -20.71 -14.28 -20.99 -14.58	QP AVG	Comme	
0.150 No. Mk. 1 2 * 3 4 5	MHz 1.0780 1.0780 1.7940 1.7940 2.4460	Reading Level dBuV 25.70 22.13 25.40 21.81 25.54	Factor dB 9.59 9.61 9.61 9.63	Measure- ment dBuV 35.29 31.72 35.01 31.42 35.17	Limit dBuV 56.00 46.00 56.00 46.00 56.00	Over dB -20.71 -14.28 -20.99 -14.58 -20.83	QP AVG QP AVG QP	Comme	
0.150 No. Mk. 1 2 * 3 4 5 5	MHz 1.0780 1.0780 1.7940 1.7940 2.4460 2.4460	Reading Level dBuV 25.70 22.13 25.40 21.81 25.54 22.04	Factor dB 9.59 9.61 9.61 9.63 9.63	Measure- ment dBuV 35.29 31.72 35.01 31.42 35.17 31.67	Limit dBuV 56.00 46.00 56.00 46.00 46.00	Over dB -20.71 -14.28 -20.99 -14.58 -20.83 -14.33	QP AVG QP AVG QP AVG	Comme	
0.150 No. Mk. 1 2 * 3 4 5 5 6 7	MHz 1.0780 1.0780 1.7940 1.7940 2.4460 2.4460 3.1340	Reading Level dBuV 25.70 22.13 25.40 21.81 25.54 22.04 25.31	Factor dB 9.59 9.61 9.61 9.63 9.63 9.63 9.67	Measure- ment dBuV 35.29 31.72 35.01 31.42 35.17 31.67 34.98	Limit dBuV 56.00 46.00 56.00 46.00 56.00 56.00	Over dB -20.71 -14.28 -20.99 -14.58 -20.83 -14.33 -21.02	QP AVG QP AVG QP AVG QP	Comm	
0.150 No. Mk. 1 2 * 3 4 5 5 7 8	MHz 1.0780 1.7940 1.7940 2.4460 2.4460 3.1340 3.1340	Reading Level dBuV 25.70 22.13 25.40 21.81 25.54 22.04 25.31 21.75	Factor dB 9.59 9.61 9.61 9.63 9.63	Measure- ment dBuV 35.29 31.72 35.01 31.42 35.17 31.67	Limit dBuV 56.00 46.00 56.00 46.00 56.00 46.00 46.00	Over dB -20.71 -14.28 -20.99 -14.58 -20.83 -21.02 -14.33	QP AVG QP AVG QP AVG	Comme	
0.150 No. Mk. 1 2 * 3 4 5 5 7 8	MHz 1.0780 1.0780 1.7940 1.7940 2.4460 2.4460 3.1340	Reading Level dBuV 25.70 22.13 25.40 21.81 25.54 22.04 25.31	Factor dB 9.59 9.61 9.61 9.63 9.63 9.63 9.67	Measure- ment dBuV 35.29 31.72 35.01 31.42 35.17 31.67 34.98	Limit dBuV 56.00 46.00 56.00 46.00 56.00 46.00 46.00	Over dB -20.71 -14.28 -20.99 -14.58 -20.83 -14.33 -21.02	QP AVG QP AVG QP AVG QP	Comm	
0.150 No. Mk. 1 2 * 3 4 5 5 6 7 8 9	MHz 1.0780 1.7940 1.7940 2.4460 2.4460 3.1340 3.1340	Reading Level dBuV 25.70 22.13 25.40 21.81 25.54 22.04 25.31 21.75	Factor dB 9.59 9.61 9.61 9.63 9.63 9.63 9.67	Measure- ment dBuV 35.29 31.72 35.01 31.42 35.17 31.67 34.98 31.42	Limit dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Over dB -20.71 -14.28 -20.99 -14.58 -20.83 -21.02 -14.33	QP AVG QP AVG QP AVG QP AVG	Comme	
0.150 No. Mk. 1 2 * 3 4 5 5 6 7 8 9 4 10	MHz 1.0780 1.7940 1.7940 2.4460 2.4460 3.1340 3.1340 4.5140	Reading Level dBuV 25.70 22.13 25.40 21.81 25.54 22.04 25.31 21.75 24.70	Factor dB 9.59 9.61 9.61 9.63 9.63 9.63 9.67 9.67 9.82	Measure- ment dBuV 35.29 31.72 35.01 31.42 35.17 31.67 34.98 31.42 34.52	Limit dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Over dB -20.71 -14.28 -20.99 -14.58 -20.83 -14.33 -21.02 -14.58 -21.48	QP AVG QP AVG QP AVG QP AVG QP	Commo	

*:Maximum data x:Over limit !:over margin

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz~1GHz

	_		A 13			-0133	
Temperatur	re: 24 °	0	W S	Relative Hur	nidity:	56%	all l
Test Voltage	e: AC 1	20V/60HZ	(Internet)				2
Ant. Pol.	Horiz	zontal	3	(III)	21	No.	A V
Test Mode:	TX B	8 Mode 2412N	Л <mark>Н</mark> z	110	89 J	2 1	
Remark:	Only	worse case i	s reported	The second		60	a nu
80.0 dBuV/m		2	3 	4 56 4 56		15C 3M Radiation Margin -6	
-20	50 60	70 80	(MHz)	300	400 5	500 600 700	1000.000
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 *	32.1795	33.62	-14.64	18.98	40.00	-21.02	QP
2	84.7019	33.50	-22.27	11.23	40.00	-28.77	QP
3	176.8878	35.59	-20.27	15.32	43.50	-28.18	QP
4	281.0075	39.36	-16.57	22.79	46.00	-23.21	QP
5	309.9977	39.55	-15.88	23.67	46.00	-22.33	QP
6	321.0608	40.23	-15.52	24.71	46.00	-21.29	QP

*:Maximum data x:Over limit !:over margin

iem	peratur	e:	24	°C				Re	lative Hu	imic	lity:	56	5%	5		33	
Test	t Voltage	e:	AC	120\	//60	ΗZ	(UI)	٢.				1	3			5	5
Ant	Pol.		Vert	ical	1		-	1	U.S.	~		22		1			
Test	t Mode:		TX E	3 Mo	de	2412	2MHz		2 1	10		2		1		-	1
Ren	nark:		Only	/ woi	rse	case	is repo	rted			D	122		1		C.	1
80.0) dBuV/m																_
											(RF	FCC 1	15C 3I	M Rad	liatior	n	
															gin -6		ď
	1									4 X		5	6				
30	, Xn	2 X			3 ×							Ť	Ĭ,			M	N
		\sim		1	\sim		<u></u>	h		1h	mm	Inte	the	mb	w.w		
			\rightarrow	N		5	<u>م</u> م کر	- Un	minum	Mar . W	AP * ***						
			Ant														
20																	
-20 3().000 40	50	60	70 80)		(M)	Hz)		300	40	0 4	500	600	700	100	0.00
).000 40	50	60								40	0 !	500	600	700	100	D. OC
30				Re	ead	ing	Corre	ect	Measure							100	D. OC
30	0.000 40 0. Mk.	Fre	eq.	Re	ead .eve	el	Corre Fact	ect or	ment	e-	Lim	it)ve			
30	o. Mk.	Fre MH	eq. z	Re	eadi .eve dBu\	el V	Corre Fact dB/m	ect or	ment dBuV/m	9- 1	Lim dBu	it √/m	C)ve dB	r	100 Dete	
30		Fre	eq. z	Re	ead .eve	el V	Corre Fact	ect or	ment	9- 1	Lim	it √/m	C)ve	r		cto
30 N	o. Mk.	Fre MH	eq. z 986	Re L	eadi .eve dBu\	el V 86	Corre Fact dB/m	ect or 6	ment dBuV/m	e-	Lim dBu	it V/m 00	C)ve dB	r 00	Dete	cto P
з(N	o. Mk.	Fre MH 33.79	eq. z)86)40	Re L	eadi eve dBu\ 4.8	el V 86 24	Corre Fact dB/m -15.8	ect or 6	ment dBuV/m 29.00	e-	Lim dBu	it V/m 00 00	-1 -1)ve dB 11.(r 00 33	Dete	cto P P
з N 1 2	o. Mk. *	Fre MH 33.79 47.99	eq. z 986 940 00	Re L 4 4	eadi eve dBu\ 4.8	el V 86 24 89	Corre Fact dB/m -15.8 -22.5	ect or 6 7	ment dBuV/m 29.00 25.67	9-	Lim dBu' 40. 40.	it V/m 00 00	-1 -1 -1)ve dB 11.(r 00 33 91	Dete Q Q	cto P P
з N 1 2 3	o. Mk. *	Fre MH 33.79 47.99 84.11	eq. z 986 940 00 608	Re L 4 4 4	eve dBu 4.8 8.2	el V 26 24 39 56	Corre Fact dB/m -15.8 -22.5 -22.3	ect or 6 7 0 2	ment dBuV/m 29.00 25.67 23.09	9-	Lim dBu' 40. 40.	it V/m 00 00 00 00	-1 -1 -1	Dve dB 11.(14.(16.(r 00 33 91 86	Dete Q Q Q	etc P P P

*:Maximum data x:Over limit !:over margin

Above 1GHz

em	perature:	24 ℃		Relative Hu	umidity:	56%				
est	Voltage:	AC 120	V/60HZ	1000						
Ant.	Pol.	Horizon	tal	TUDE		and a				
est	Mode:	ТХВМ	ode 2412MH	z	100	2 4				
Rem	ark:	No repo	ort for the emi	ssion which more t	nore than 10 dB below the prescri					
		limit.			3	1000				
100.0	dBuV/m									
					(BF) (CC PART 15C (PEAK)				
		2 X								
		×			(RF)	FCC PART 15C (AVG)				
50		1 X								
		^								
0.0	00.000 3550.00	6100.00	8650.00 11200.0							

No	. Mk	. Freq.			Correct Measure- Factor ment		Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4823.952	29.66	14.55	44.21	54.00	-9.79	AVG
2		4824.360	43.41	14.55	57.96	74.00	-16.04	peak

Tem	perature:		24 ℃			Rel	ative Humidity	: 56%				
Test	t Voltage:		AC 12	0V/60HZ	z m	2	1 Martin	<u> </u>				
Ant	. Pol.		Vertica	ann l	2	200		001				
Test	t Mode:		TX B Mode 2412MHz					a le				
Ren	nark:			ort for th bed limi		on which	more than 10 d	than 10 dB below the				
100.0) dBuV/m											
							(RF) F	CC PART 15C (PEAK)				
		1 X					(RF)	FCC PART 15C (AVG)				
50		2										
		x										
0.0												

No	o. Mk. Freq.		Reading Correct Measu Level Factor ment			Limit Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	
1		4825.500	40.96	14.57	55.53	74.00	-18.47	peak	
2	*	4825.500	29.24	14.57	43.81	54.00	-10.19	AVG	

AC 120V Horizont		Mar	-	No.					
Horizont									
HUHZUHL	al		MUE	1	1000				
TX B Mo	2 4								
		emission	which m	ore than 10 dE	3 below the				
	1		1	i					
				(RF) FC	C PART 15C (PEAK)				
				(RF) F	CC PART 15C (AVG)				
	No repor			No report for the emission which m	No report for the emission which more than 10 dE prescribed limit.				

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4875.224	44.19	14.87	59.06	74.00	-14.94	peak
2	*	4875.224	29.40	14.87	44.27	54.00	-9.73	AVG

Temperatu	re:	24 ℃		Relative Hu	midity:	56%			
est Voltag	e:	AC 120)V/60HZ		-				
nt. Pol.		Vertica	Can Bu	RUDE	au	- CON			
est Mode:	1	TXBM	lode 2437MHz	z	2	B below the			
Remark:			ort for the emi bed limit.	ssion which more t	han 10 di				
100.0 dBuV/m									
					(RF) FC	C PART 15C (PEAK)			
	1 X				(RF) F	CC PART 15C (AVG)			
50	2								
0.0									

No	. Mk	. Freq.			Correct Measure- Factor ment		Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.730	42.79	14.86	57.65	74.00	-16.35	peak
2	*	4873.730	29.42	14.86	44.28	54.00	-9.72	AVG

len	nperatur	e:	24 °	Ċ			R	elative	Humidity:	56%					
Tes	t Voltage	: :	AC	120V/	60HZ	11	90	~		1200	in the				
Ant	. Pol.		Hori	zonta	NBS		100	1999		THE P					
Tes	t Mode:		TX E	3 Mod	le 246	2MHz	3								
Rer	nark:				for the	emis:	sion wh	ich mor	e than 10 c	dB below	the				
100.0) dBuV/m														
									(RF)	FCC PART 150	C (PEAK)				
		1													
		×	_						(RF	FCC PART 1	5C (AVG)				
50		2 X													
		^													
0.0															
	00.000 3550.	00 6	100.00	8650.0	0 11	200.00	13750.00	16300.00	18850.00	21400.00	26500.00 M				

No.	Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.198	44.38	15.17	59.55	74.00	-14.45	peak
2	*	4924.252	29.91	15.17	45.08	54.00	-8.92	AVG

ienił	perature:	24 ℃			Relat	ive Hum	idity:	56%			
Test	Voltage:	AC 120V/60HZ									
Ant.	Pol.	Vertical	Vertical TX B Mode 2462MHz No report for the emission which more than 10 dB below the prescribed limit.								
Test	Mode:	TX B Mo									
Rem	ark:										
100.0	dBuV/m										
							(RF) FCC	PART 15C (PEAK)			
	Z X						(RF) FC	C PART 15C (AVG)			
50	1 X										
	*										
0.0											
	0.000 3550.00 6	100.00 865	i0.00 11200.	00 13750).00 1630	0.00 1885	0.00 214	00.00 2650	0.00 M		

	No.	Mk.	Freq.	Level		ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	1		4924.330	29.84	15.17	45.01	74.00	-28.99	peak
2	2	*	4925.374	43.59	15.19	58.78	74.00	-15.22	peak

empe	rature:	24 °CRelative Humidity:					idity:	56%			
est Vo	ltage:	AC 120	AC 120V/60HZ Horizontal TX G Mode 2412MHz								
nt. Po	ol.	Horizor									
est M	ode:	TXGN									
lemar	k:		ort for the bed limit.	emission	which	more tha	in 10 dB	below th	e		
00.0 de	BuV/m										
							(RF) FCC	C PART 15C (P	EAK)		
	2 X						(BF) FC	C PART 15C (V61		
50	1								-		
	×										
0.0	0 3550.00 (5100.00 8	650.00 112	200.00 13750	0.00 163	00.00 188	50.00 214	00.00	26500.00 MI		

No	o. Mk	. Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4824.066	29.72	14.55	44.27	54.00	-9.73	AVG
2		4825.068	43.18	14.56	57.74	74.00	-16.26	peak

em	perature:		24 °CRelative Humidity:56%										
Fest	Voltage:		AC 120V/60HZ										
۹nt.	Pol.		Vertic	al	B		- 5	N/V	2	2	CO.	10	
Test Mode: TX G Mode 2412MHz													
Rem	ark:			port f		emis	sion w	hich	more	than 10	0 dB	below tl	he
100.0	dBuV/m												
										(F	IF) FCC	PART 15C (I	PEAK)
-													
-		1 X									RF) FCC	PART 15C	(AVG)
50		2											
-		x											
0.0													
	0.000 3550.00	61(00.00	8650.00	J 112	00.00	13750.0	0 163	00.00	18850.00	2140	0.00	26500.00 MI

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4822.572	43.69	14.55	58.24	74.00	-15.76	peak
2	*	4822.572	29.30	14.55	43.85	54.00	-10.15	AVG

em	perature:		24 °	C				Relat	ive Hur	nidity:	56%	
est	Voltage:		AC	120V	//60H	Z	10	~	2 13		120	6
nt.	Pol.		Hori	zonta	al	3		alle	2	a W		20 C
est	Mode:		TX (G Mo	de 24	137M⊦	lz	1	MUL	2	3 8	
em	ark:				t for t d lim		issior	n which	more th	an 10 di	3 below	the
00.0	dBuV/m											
										(RF) FC	C PART 150	C(PEAK)
		_										
		2 X								(RF) F	CC PART 1	5C (AVG)
50		1 X										
-		^										
0.0												
100	0.000 3550.00) 61	00.00	8650). 00	11200.00	1375	0.00 163	00.00 188	50.00 214	400.00	26500.00 M

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4874.390	29.53	14.86	44.39	54.00	-9.61	AVG
2		4875.302	43.07	14.87	57.94	74.00	-16.06	peak

Temperature:24 °CRelative Humidity:56%								tive Hur	nidity:	56%	
est	Voltage	:	AC 1	20V/6	50HZ	MU	2	2 13		A	1001
۸nt.	Pol.		Verti	cal	B		W/S	P	aU	-6	302
est	Mode:		TX G	6 Mod	e 2437	MHz	-	MUL	2	3 19	
Rem	ark:			eport f		emissic	on which	more th	an 10 dE	3 below th	ie
100.0	dBuV/m										
									(RF) FC	C PART 15C (P	EAK)
		1									
		×							(RF) F	CC PART 15C	AVGJ
50		2 X									
		•									
0.0											
10	00.000 3550.	00 6	61 00.00	8650.0	0 112	00.00 13	750.00 163	300.00 18	850.00 21	400.00	26500.00 MI

No	. Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4874.366	43.79	14.86	58.65	74.00	-15.35	peak
2	*	4874.786	29.49	14.86	44.35	54.00	-9.65	AVG

:	24 °C			R	elative l	-lumidity:	56%		
:	AC 1	20V/60	HZ	10	~		1200	Ind	
	Horiz	ontal	331		11000			500	
	TX G	Mode	2462MH	z	10	100	28		
Remark: No report for the emission which more than 10 dB below the prescribed limit.								the	
						(RF) F	CC PART 150	(PEAK)	
1									
×						(RF)	FCC PART 15C (AVG)		
2 X									
				13750.00	16300.00	18850.00 2	1400.00	26500.00 MI	
	2 ×	: AC 1 Horiz TX G No re preso	AC 120V/60 Horizontal TX G Mode 2 No report for prescribed lin	AC 120V/60HZ Horizontal TX G Mode 2462MH No report for the emis prescribed limit.	AC 120V/60HZ Horizontal TX G Mode 2462MHz No report for the emission wh prescribed limit.	AC 120V/60HZ Horizontal TX G Mode 2462MHz No report for the emission which more prescribed limit.	AC 120V/60HZ Horizontal TX G Mode 2462MHz No report for the emission which more than 10 d prescribed limit. (PF) F	AC 120V/60HZ Horizontal TX G Mode 2462MHz No report for the emission which more than 10 dB below prescribed limit. (RF) FCC PART 150 (RF) FCC PART 150	

No	. Mk	. Freq.	Level		ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4925.314	43.72	15.19	58.91	74.00	-15.09	peak
2	*	4925.314	29.77	15.19	44.96	54.00	-9.04	AVG

lem	perature:	24 °C			Relative Humidity	: 56%				
Fes t	Voltage:	AC 1	20V/60HZ	Lan						
Ant.	Pol.	Vertic	al		RUDD A					
Fest	Mode:	TX G	Mode 24	62MHz	The second	2 4				
Rem	ark:		port for th ribed limit		ssion which more than 10 dB below the					
00.0	dBu∀/m		1	i						
					(RF)	FCC PART 15C (PEAK)				
	1 ×				(B)	F) FCC PART 15C (AVG)				
50	2									
	×									
0.0										
	0.000 3550.00	6100.00	8650.00 1	1200.00 137	50.00 16300.00 18850.00	21400.00 26500.00 MI				

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.576	43.30	15.17	58.47	74.00	-15.53	peak
2	*	4924.576	29.80	15.17	44.97	54.00	-9.03	AVG

Temp	erature:	24 ℃		Relative Humidity:	56%				
Test V	oltage:	AC 120	V/60HZ						
Ant. P	ol.	Horizon	tal	RULD OF					
Test N	lode:	TX N(H	T20) Mode 241	2MHz	a vert				
Rema	rk:	No repo prescrib		ssion which more than 10 dB below the					
100.0	dBuV/m								
				(BF) F	CC PART 15C (PEAK)				
	1 X			(RF)	FCC PART 15C (AVG)				
50	2								
	×								
0.0									
	000 3550.00 (5100.00	50.00 11200.00 1	3750.00 16300.00 18850.00 2	1400.00 26500.00 M				

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.214	43.57	14.55	58.12	74.00	-15.88	peak
2	*	4823.928	29.74	14.55	44.29	54.00	-9.71	AVG

emperatu	re:	24 ℃			Relative I	lumidity:	56%				
est Voltag	ge:	AC 120	AC 120V/60HZ								
nt. Pol.		Vertical	Cana	-	RUDD	A V					
est Mode	:	TX N(H	T20) Mod	le 2412M	Hz		alle				
emark:			ort for the bed limit.	emission which more than 10 dB below the							
00.0 dBuV/m											
						(RF) FC	C PART 15C (PEAK)				
	2 X					(BF) F	CC PART 15C (AVG)				
50	1 X										
0.0		100.00 86	50.00 112	0.00 1375	0.00 16300.00	18850.00 21	400.00 26500.00 M				

No. Mk.		. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4823.832	29.76	14.55	44.31	54.00	-9.69	AVG
2		4824.168	43.93	14.55	58.48	74.00	-15.52	peak

empe	erature:	24 ℃			Relativ	ve Humidity:	56%	
est V	/oltage:	AC 120	V/60HZ	MID	-	1 contractions	A	1110
nt. P	Pol.	Horizon	tal		MUN		1	a P
est N	lode:	TX N(H	T20) Mod	e 2437M	Hz	00000	2 22	
ema	rk:		ort for the bed limit.	emission	which n	nore than 10 d	B below th	e
00.0	dBuV/m							
						(RF) FC	CC PART 15C (PI	AK)
	1 ×					(RF) F	-CC PART 15C (/	¥¥6]
50	2 ×							
	^							
0.0								
1000.0	000 3550.00 (6100.00 86	50.00 1120	0.00 13750).00 16300	0.00 18850.00 21	400.00	26500.00 MI

No.	Mk.	Freq.	Level		ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.910	43.47	14.86	58.33	74.00	-15.67	peak
2	*	4874.228	29.52	14.86	44.38	54.00	-9.62	AVG

emperature:	24 ℃		Relative Humidity:	56%							
est Voltage:	AC 120	AC 120V/60HZ									
nt. Pol.	Vertica	Vertical									
est Mode:	TX N(H	T20) Mode 2437	MHz	2 1000							
emark:		ort for the emissic bed limit.	on which more than 10 dl	B below the							
00.0 dBu∀/m				· · · · · · · · · · · · · · · · · · ·							
			(RF) FC	C PART 15C (PEAK)							
1											
×			(RF) F	CC PART 15C (AVG)							
50 2 ×											
0.0		350.00 11200.00 13 7	/50.00 16300.00 18850.00 21	400.00 26500.00 MH							

No.	Mk.	Freq.	Level		ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.700	43.68	14.86	58.54	74.00	-15.46	peak
2	*	4873.700	29.45	14.86	44.31	54.00	-9.69	AVG

2

ſem	peratu	re:	24	°C	160		2	Rela	ative	Humidity:	56%	1133
ſest	Voltag	e:	AC	120V	/60HZ			-		Ser .	12	64
۹nt.	Pol.		Но	izonta	al			MUS.	2	20	1	611 E
ſest	Mode:		ΤХ	N(HT	20) M	ode 246	2Mł	Ηz	17	100	2 8	
Rem	nark:		10 million (19		t for th ed limi		ion	which ı	more	than 10 dl	B below t	the
100.0	dBu∀/m											
										(RF) FC	C PART 15C	(PEAK)
		2 X								(95)	CC DADT 15	
50										(nr)	CC PART 15	
		×										
			_									
0.0												
10	D0.000 355	6.00 6	100.00	8650	0.00	11200.00	13750	.00 163	DO.OO	18850.00 21	400.00	26500.00 M
				Rea	ding	Corre	ct	Measu	ıre-			
No	. Mk.	Free		Lev		Facto	or	men	t	Limit	Over	
		MHz		dB	uV	dB/m		dBuV	/m	dBuV/m	dB	Detector
	* /	1922.9	1.4	29.	07	15.17	,	45.0	4	54.00	-8.96	AVG

Emission Level= Read Level+ Correct Factor

43.46

15.18

58.64

74.00 -15.36 peak

4924.780

ſem	perature	e:	24 ℃				Rela	ative Hun	nidity:	56%	
Test	t Voltage):	AC 12	20V/60H	ΙΖ	100	-	1 Le		18	100
۹nt.	Pol.		Vertic	al	33	-	When			10	2000
est	t Mode:		TX N(HT20)	Mode	2462M	Hz	MUS	-	N NY	-00
Ren	nark:			oort for ribed lin		nission	which	more thar	10 dB	below th	ne
100.0 	∣ dBuV/m										
									(RF) FCC	PART 15C (I	PEAK)
		2 X								C PART 15C	
50		ı X							(nr)rc	C FANT FJC	(AYU)
0.0											
···· [00.000 3550.	.00 6	100.00	8650.00	11200.0	0 1375	0.00 163	00.00 18850	.00 2140	0.00	26500.00 M

No	. Mk	. Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4923.712	29.84	15.17	45.01	54.00	-8.99	AVG
2		4924.876	43.35	15.18	58.53	74.00	-15.47	peak

(1)

Attachment C-- Restricted Bands Requirement Test Data

Temp	eratı	ıre:	24	Č		Re	lative H	lumidity:	56%	10
Test \	/olta	ge:	AC	120V/60H	Z		1070		a gue	
Ant. F	ol.		Hori	izontal	No.	TAN		600	1	20
Test I	lode	:	TXI	B Mode 24	12MHz		and i		0033	
Rema	rk:		N/A	25	NUE		Charles and the second	(im)	5	AR BL
110.0	dBuV/m									
									4 ×	
									3 X	
_			_						$ \longrightarrow $	\leftarrow
_										
-								(RF) FLU	PART 15C (PEA	<u>K)</u>
60			_				1 X		PART 15C (AV	6)
							~~~2 X			
						/	^	$\sim$		
10.0										
2323.	000 23	33.00 23	343.00	2353.00	2363.00 23	73.00 23	383.00 2	2393.00 2403.	.00	2423.00 M
				Reading	g Corre	ct Me	asure-			
No.	Mk.	. Free	q.	Level	Facto	or n	nent	Limit	Over	
		MHz	z	dBuV	dB/m	d	BuV/m	dBuV/m	dB	Detecto
1		2390.0	000	55.05	2.82	5	7.87	74.00	-16.13	peal
2		2390.0	000	44.41	2.82	4	7.23	54.00	-6.77	AVG
3	*	2411.4	100	92.53	2.94	9	5.47		Frequency -	AVG
					2.95	1(		_	_	peal



Tem	peratu	ire:	24 °	С		Relat	ive Hu	midity:	56%	
Test	t Volta	ge:	AC	20V/60HZ	MOD	1			21	That
Ant	Pol.		Verti	cal		WID	2	au	100	10
Test	t Mode	:	TX E	Mode 24	2MHz	1	MU	2	2 Car	-
Ren	nark:		N/A	1 Con	6	nBY	-	000	-	1000
110.0	) dBuV/n	1						1		
		1 X								
		2						(RF) FCC	PART 15C (PEAK	]
	- 1		1							
60	لم		4					(05) 50		
				3				(RF) FU	C PART 15C (AVG	1
	m			um t						
10.0 24	49.000 24	59.00	2469.00	2479.00 2	489.00 2499	.00 250	9.00 2	519.00 252	9.00 2	549.00 MH
_										
				Reading	Correc	t Mos	asure-			
N	o. Mk	. Fre	eq.	Level	Facto		ent	Limit	Over	
		MH	lz	dBuV	dB/m	dB	uV/m	dBuV/n	n dB	Detecto
1	Х	2462	000	82.41	3.27	8	5.68	Fundament	al Frequency	peak
2	*	2462		72.86	3.27		6.13	_	al Frequency –	AVG
2					3.41		3.03			
		2483.		49.62				74.00		peak
4		2483.	500	37.69	3.41	4	1.10	54.00	-12.90	AVG

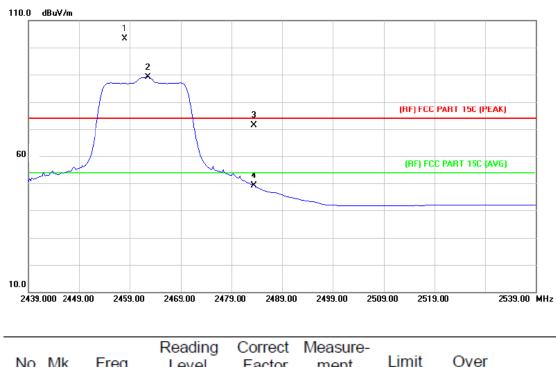


Tem	peratu	re:	24 °	С	600	-	F	Relative	Hum	idity:	56%	
Test	Voltag	je:	AC	120V/6	OHZ	MUL	Ρ.		600	-01	3 2	ma
Ant.	Pol.		Hori	zontal	33	-	5	10.22	~	100	00	10
Test	Mode		TX E	3 Mode	2462	MHz		- M	N.P.	1	1 Mar	-
Rem	nark:		N/A	-	3		T		-	aue	1	U
110.0	) dBu¥/m											
			1 X									
			2 X									
										(RF) FCC F	ART 15C (PEA)	( <b>)</b>
1		1										
60						3						
	(	/		$\leftarrow$		×				(RF) FCC	PART 15C (AVC	i)
	wal			h	~~~_	4						
10.0	44.432 24	F4 10	2463.95	2473.71	240	3.47 24	33.23	2502.99	2512	.75 2522.	<u></u>	2542.03 MH;
24	44.432 24	54.19	2463.99	2473.71	248	3.47 243	JJ.ZJ	2502.99	2512	.75 2522.	51 4	(942.U3 MH)
				Read	ling	Corre	ot	Measur	~			
N	o. Mk.	Fr	eq.	Lev	-	Fact		ment		Limit	Over	
		M	· ·	dBu	IV	dB/m		dBuV/n	n	dBuV/m	dB	Detecto
1	Х	2462	000	89.0	13	3.27		92.30		undamental	Fraguanay	peak
· ·	*					3.27		84.73				· ·
2		2462		81.4						undamental		AVG
3		2483	.500	52.	75	3.41		56.16	6	74.00	-17.84	peak
4		2483	500	38.6	67	3.41		42.08	3	54.00	-11.92	AVG



Tem	peratu	re:	24	°C				Relative	e Humi	dity:	56%	
Test	Voltag	ge:	AC	120V	/60HZ	MIR	2	2	199	-	20	110
Ant.	Pol.		Vert	ical	C B D	-	1	1000		100	-00	S-P
Test	Mode	:	TX E	З Мос	de 2462	2MHz		-	100	1	A Real	-
Rem	ark:		N/A	-			11	83	1	ADD	1	1 Street
110.0	dBuV/m	i .										
			1									
			2 2				_					
		لم	N,									
ł		+	$\rightarrow$							(RF) FCC	PART 15C (PEA	.K]
		1		$\sum$								
60		1		$\uparrow$		3 ×				(RF) FCC	PART 15C (AV	<b>/G)</b>
				$\overline{}$								
4	M				ma	×^						
10.0												
10.0 244	4.432 24	54.19	2463.95	2473	3.71 24	83.47 24	93.23	2502.99	2512.	75 2522	.51	2542.03 MH
				Dev	a alian au	0.000	-	Magaz				
No	. Mk.	Fre	ea		ading evel	Corre Facto		Measu		Limit	Over	
		MH	· · ·		BuV			dBuV/	it.	dBuV/m	dB	Detector
						dB/m						
1	Х	2462.	000	89	9.03	3.27		92.3	3 <mark>0</mark> Fu	ndamental	Frequency	peak
2	*	2462.	586	81	1.46	3.27		84.7	' <mark>3</mark> Fu	ndamental	Frequency	AVG
		2483.	500	52	2.75	3.41		56.1	6	74.00	-17.84	peak
3												




ſem	peratu	re:	24 °	C		Relative H	umidity:	56%	
<b>Fest</b>	Voltag	ge:	AC 1	20V/60HZ	MUP			100	110
Ant.	Pol.		Horiz	zontal	5	RUPE	AU	000	100
est	Mode	:	TX C	Mode 241	2MHz			3 100	
Rem	ark:		N/A	1990		BU J	- au	2	No.
110.0	dBuV/m								
							3 X		
								4	
								×	
							(RF) FC	C PART 150 (PEA	AKJ
						-			
60						1 X			
⊢						2		CC PART 15C AV	/6)
									m
10.0	3.000 23	42.00	2353.00	2363.00 23	73.00 2383.0	0 2393.00	2403.00 24	13.00	2433.00 M
200			2000.00						2103.00
No	. Mk	. Fr	eq.	Reading Level	Correct Factor	Measure ment	Limit	Over	
		M	Hz	dBuV	dB/m	dBuV/m	dBuV/n	n dB	Detecto
1		2390	.000	59.42	2.82	62.24	74.00	-11.76	peak
2		2390	.000	45.10	2.82	47.92	54.00	-6.08	AVG
3	Х	2410	.400	100.76	2.93	103.69	Fundamenta	al Frequency	peak
4	*	2412	600	86,70	2.94	89.64		al Frequency	AVG



Tem	peratu	re:	24 °	°C			Re	elative H	lumidity:	56%		
Test	t Voltag	ge:	AC	AC 120V/60HZ								
Ant	. Pol.		Vert	ical	83		10	20	a	-		
Test	t Mode	:	TX (	G Mode	241	2MHz		Um I	2	No.	-	
Ren	nark:		N/A	-			m		aus	-	Charles and the	
110.0	) dBu∀/m											
										4		
										×		
										3 X		
									(RF)FCC	PART 15C (PEAK		
60								1				
								×	(RF) FCC	: PART 15C (AVG	1	
								2 				
							1					
10.0												
23	27.000 23	37.00 2	347.00	2357.00	230	57.00 237	7.00 2	387.00 2	397.00 2407	.00 2	427.00 MHz	
				Read	lina	Corre	ct M	easure-				
Ν	o. Mk.	Fre	q.	Lev		Facto	or	ment	Limit	Over		
		MH	z	dBu	١V	dB/m	(	dBuV/m	dBuV/m	dB	Detecto	
1		2390.	000	53.9	98	2.82		56.80	74.00	-17.20	peak	
2		2390.	000	42.2	23	2.82		45.05	54.00	-8.95	AVG	
3	*	2412.	600	82.	51	2.94		85.45	— Fundamenta	- I Frequency	AVG	
4	Х	2417.	600	96.0	85	2.98		99.63	 Fundamenta	Frequency	peak	



Temperature:	<b>24</b> ℃	Relative Humidity:	56%
Test Voltage:	AC 120V/60HZ	A WE	
Ant. Pol.	Horizontal		
Test Mode:	TX G Mode 2462MHz		
Remark:	N/A		



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Х	2458.000	100.19	3.24	103.43	Fundamental F	requency	peak
2	*	2462.600	85.79	3.27	89.06	Fundamental F	requency ;	AVG
3		2483.500	68.04	3.41	71.45	74.00	-2.55	peak
4		2483.500	45.60	3.41	49.01	54.00	-4.99	AVG



Ten	perati	ure:	24	°C			9	Rela	ative H	łumidi	ty:	56%	
Tes	t Volta	ge:	AC	120V/	60HZ	010		~	1		-	3 2	11.01
Ant	. Pol.		Ver	tical	180			110	2	2	1	-00	
Tes	t Mode	):	TX	G Mod	de 246	2MHz			MU	900	2	1 Sec	-
Ren	nark:		N/A	-	33		III	35	-		10	-	No.
110.0	dBuV/n												
		1 X											
			2										
			$\checkmark$	-									
						4				(BI	) FCC P	ART 15C (PE	AK)
						×							
60		/								G	RED ECC.	PART 15C (A	VGI
					way	3 X					.,		
10.0													
	42.000 24	52.00 2	462.00	2472.	00 24	82.00 2	492.00	2502	2.00 2	2512.00	2522.0	DO	2542.00 MH
				Rea	ading	Corre	ect	Mea	sure-				
N	o. Mk	. Fre	eq.		vel	Fact	or	me	ent	Lim	it	Over	
		MH	Z	dB	BuV	dB/n	1	dBu	uV/m	dBu	V/m	dB	Detector
1	Х	2458.2	200	99	.85	3.24	ł	103	3.09	 Fundan	nental F	requency	peak
2	*	2462.4	400	85	.46	3.27	7	88	.73	Fundan	nental F	-requency	AVG
3		2483.	500	44	.41	3.41	1	47	.82	54.	00	-6.18	AVG



Temp	peratu	ire:	24 °	С				Relative	Humidi	t <b>y:</b>	56%		
Test	Volta	ge:	AC	20V/60	ΗZ	MAR	-	2		1	3 2	100	
Ant.	Pol.		Hori	zontal	30	-	100	1120	2	90	100	12	
Test	Mode	:	TXN	TX N(HT20) Mode 2412MHz									
Rema	ark:		N/A	100		6	m	39	2 61	122		Cher C	
110.0	dBu∀/m												
											_		
											4 ×		
-									(BF	) FCC P/	ART 15C (PEAK		
									/				
60								1 X					
								2	(B	F) FCC I	PART 15C (AVG	1	
								×	$\sim$			4	
_													
10.0	.000 23		2347.00									427.00 MH	
2321	.000 23.	57.00	2347.00	2357.00		7.00 2377		2387.00	2397.00	2407.0	u 2	427.UU MT	
No	. Mk	. Fr	eq.	Readi Leve	_	Correc Facto		Measur ment	e- Lim	it	Over		
		M	Hz	dBuV	(	dB/m		dBuV/m	n dBu	V/m	dB	Detecto	
1		2390	.000	56.73	3	2.82		59.55	74	.00	-14.45	peal	
2		2390	.000	43.6	3	2.82		46.45	54	.00	-7.55	AVG	
3	Х	2408	.800	98.3	9	2.92		101.31	l Fundai	mental	Frequency	peał	
4	*	2411	800	84.4	8	2.94		87.42	E		Frequency	AVG	



Temp	eratur	<b>e:</b> 24	°C		Relative Hu	midity:	56%	33			
Test \	/oltage	e: AC	120V/60HZ	MUL	A V	1	3 2	110			
Ant. F	Pol.	Ver	Vertical								
Test N	Node:	ТХ	N(HT20) Mod	de 2412MH	z	2	No.	-00			
Rema	rk:	N/A	1 and		BU	MOR		Cher and			
110.0	dBu¥/m										
							4 ×				
							3 X				
						IBELECC	PART 15C (PEAK				
60					1 X	(BE) EC	: PART 15C (AVG				
_					2 ————————————————————————————————————			~			
10.0											
	000 2337	.00 2347.00	2357.00 236	7.00 2377.00	2387.00 23	397.00 2407	.00 2	427.00 MH			
			Reading	Correct	Measure-						
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over				
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto			
1		2390.000	52.95	2.82	55.77	74.00	-18.23	peak			
2		2390.000	40.70	2.82	43.52	54.00	-10.48	AVG			
3	*	2411.800	81.47	2.94	84.41	- Fundamenta	I Frequency	AVG			
4	Х	2415.600	95.29	2.97	98.26	_ Fundamenta	I Frequency	peak			



Tem	peratu	re:	24 °	С	400	-	Re	lative	Humidity:	56%	133
Test	t Voltag	ge:	AC 1	20V/	60HZ	MAR		av	2	3 5	1177
Ant.	. Pol.		Horiz	zonta	1.82	-	all	2	3	00	300
Test	t Mode	:	TXN	I(HT2	20) Mod	de 2462M	1Hz	100	200	1 Ver	-00
Ren	nark:		N/A	-		6	I BIN		600		C.
110.0	) dBu¥/m										
			1 ×								
			2 X								
		-			}						
					+	_			(RF) FCC	PART 15C (PE	AKJ
						3 X					
60					$\neg$				(RF) FC	C PART 15C (A	VG)
	m				h	<u>4</u>					
						×					
10.0											
24	39.000 24	49.00	2459.00	2469.	00 247	9.00 2489	.00 24	99.00	2509.00 2519	9.00	2539.00 MI
				Rea	ding	Correc	t Me	asure	-		
N	o. Mk.	Fr	eq.		vel	Facto		nent	Limit	Over	
		М	Hz	dE	BuV	dB/m	d	BuV/m	dBuV/m	dB	Detecto
1	Х	2458	.400	98	.52	3.24	1	01.76	Fundament	al Frequency	peak
2	*	2461	.600	84	.60	3.27	8	7.87		al Frequency	AVG
3		2483			.29	3.41		5.70	74.00		
4		2483			.31	3.41		6.72	54.00	-7.28	AVG
+		2403	.500	40	.51	J.41	4	0.72	04.00	-1.20	AVG



Temperature:	24 °	C		Relative Hu	midity:	56%	132
Test Voltage:	AC 1	20V/60HZ	MUL	AV	-	3 -	110
Ant. Pol.	Verti	cal	5	NU22	aw	and a	
Test Mode:	TXN	I(HT20) Mod	de 2462MH	z MV	2	1 Lee	-00
Remark:	N/A	(FOR	(m)	BU	aus		UL
110.0 dBuV/m							
	1 X						
	2						
	2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~					
					(RF) FCC	PART 15C (PEA	iK)
			3 X				
60			×				
man		<u> </u>	4		(RF) FC	C PART 15C (AV	(G)
man		- m	×				
10.0							
2442.000 2452.00	2462.00	2472.00 248	2492.00	2502.00 2	512.00 2522		2542.00 MH
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
1 X 245	57.400	98.36	3.24	101.60	Fundamental	Frequency	peak
2 * 246	61.600	84.34	3.27	87.61	Fundamental	Frequency	AVG
3 248	33.500	60.70	3.41	64.11	74.00	-9.89	peak



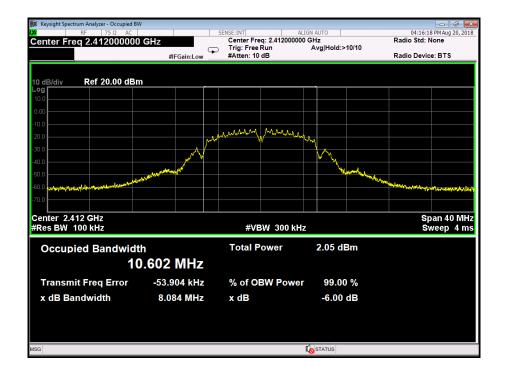
## (2) Conducted Test

mperature:	<b>24</b> ℃	CUL .	Relative Humidity:	56%				
st Voltage:	AC 120V/60HZ							
st Mode:	TX B Mode 2412MHz / TX B Mode 2462MHz							
mark:	The EUT is progr	amed in con	tinuously transmittin	g mode				
💓 Keysight Spectrum				- 7 -				
Center Freq	F 75 Ω AC 2.377000000 GHz PNO: Fast	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:17:28 PM Aug 20, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N				
Ba	f Offset 3.63 dB	Atten: 30 dB	Mk	r1 2.411 5 GHz				
10 dB/div Re	ef 23.63 dBm			-9.428 dBm				
3.63				.1				
-6.37			للقريس	M Marine				
-26.4								
-36.4			3	hora have				
-56.4	ĸŊĸġĊĸĊĸĸĸŎĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸĊĸ	garterialiterialiterialiterialiterialiterialiterialit						
Start 2.32700				Stop 2.42700 GHz				
#Res BW 100		VBW 300 kHz	_	600 ms (1001 pts)				
1 N 1 f 2 N 1 f	2.411 5 GHz -9. 2.400 0 GHz -46.	428 dBm 944 dBm						
3 N 1 f 4 N 1 f 5	2.390 0 GHz -51. 2.386 0 GHz -45.	114 dBm 442 dBm		E				
8 <b>1</b>								
9								
11				*				
A MSG		m	<b>STATUS</b>	•				
MSG	Anabrar - Sugart SA		<b>L</b> STATUS					
MSG MSG Keysight Spectrum ()d R		" SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	04:21:26 PM Aug 20, 2018 TRACE 1 2 34 5 0				
MSG MSG Keysight Spectrum ()d R	F 75 Ω AC		ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:21:26 PM Aug 20, 2018 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P NNNNN				
Keysight Spectrum Center Freq 10 dB/div R	F 75 Ω AC 2.497000000 GHz PNO: Fast	👝 Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:21:26 PM Aug 20, 2018				
Keysight Spectrum Keysight Spectrum Center Freq 10 dB/div Re 13 6	E 75 Ω AC 2.497000000 GHz PNO: Fast IFGain:Low	👝 Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:21:26 PM Aug 20, 2018 TRACE 2 3 4 5 6 TYPE MWWWWW DET P NNNNN T1 2.462 5 GHz				
Keysight Spectrum Keysight Spectrum Center Freq 10 dB/div Re	E 75 Ω AC 2.497000000 GHz PNO: Fast IFGain:Low	👝 Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:21:26 PM Aug 20, 2018 TRACE 2 3 4 5 6 TYPE MWWWWW DET P NNNNN T1 2.462 5 GHz				
Keysight Spectrum Keysight Spectrum Center Freq 10 dB/div Re 13 6 3 60	E 75 Ω AC 2.497000000 GHz PNO: Fast IFGain:Low	👝 Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:21:26 PM Aug 20, 2018 TRACE [2:34:56 TYPE: MANAGE 2:34:56 DET P NNNNN 11 2:462:56 dBz -11.556 dBm				
Image: Sector	F 75 Q. AC 2.497000000 GHz PNO: Fast IFGaint.ow f Offset 3.6 dB ef 23.60 dBm	Trig: Free Run Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:21:26 PM Aug 20, 2018 TRACE 2 3 4 5 6 TYPE MWWWWW DET P NNNNN T1 2.462 5 GHz				
Keysight Spectrum Keysight Spectrum Keysight Spectrum Center Freq 10 dB/div Re 13 6 3 60 -6 40 -16.4 -26.4	E 75 Ω AC 2.497000000 GHz PNO: Fast IFGain:Low	Trig: Free Run Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:21:26 PM Aug 20, 2018 TRACE [2:34:50 TYPE PM AUGUST 12:34:50 DET PM NNNNN 11 2:462:5 GHz -11.556 dBm				
Keysight Spectrum Keysight Spectrum Keysight Spectrum Re Center Freq 10 dB/div Re 13 5 3 50 -6 40 -16 4 -26 4 -36 4 -46 4	F 75 Q. AC 2.497000000 GHz PNO: Fast IFGaint.ow f Offset 3.6 dB ef 23.60 dBm	Trig: Free Run Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:21:26 PM Aug 20, 2018 TRACE [2:34:50 TYPE PM AUGUST 12:34:50 DET PM NNNNN 11 2:462:5 GHz -11.556 dBm				
Image: Sector in the sector	F 759. AC 2.497000000 GHz PNO: Fast IFGain:Low f Offset 3.6 dB ef 23.60 dBm	Trig: Free Run Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:21:26 PM Aug 20, 2018 TRACE [2:34:50 TYPE PM AUGUST 12:34:50 DET PM NNNNN 11 2:462:5 GHz -11.556 dBm				
Keysight Spectrum	F 75 Q. AC 2.497000000 GHz PNO: Fast IFGain:Low f Offset 3.6 dB of 23.60 dBm 1 1 0 GHz kHz 2.462 5 GHz 11	Trig: Free Run Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100 Mkr	04:21:26 PM 4ug 20, 2018 TRAC 2 2 4 5 12 3 4 5 1 TYPE M WWWWW DET 2 NH N N C1 2:462 5 GHz -11.556 dBm -31 62 dBm 400-001 4 2 - 200-000 4 2 5top 2:54700 GHz				
Image: Content Freq         Image: Content Fr	F 75 9. AC 2.497000000 GHz PNO: Fast IFGain:Low f Offset 3.6 dB of 23.60 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	Trig: Free Run Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:21:26 PM Jug 20, 2018 TRAC 1 2:34 5 TYPE H WARKWAR DET 2:34 5 11:556 dBm 31:62 d				
Image: Sector of the sector	F 75 9. AC 2.497000000 GHz PNO: Fast IFGain:Low f Offset 3.6 dB of 23.60 dBm 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Trig: Free Run Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:21:26 PM Jug 20, 2018 TRAC 1 2:34 5 TYPE H WARKWAR DET 2:34 5 11:556 dBm 31:62 d				
Image: Conter Freq         I	F 75 9. AC 2.497000000 GHz PNO: Fast IFGain:Low f Offset 3.6 dB of 23.60 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	Trig: Free Run Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:21:26 PM Jug 20, 2018 TRAC 1 2:34 5 TYPE H WARKWAR DET 2:34 5 11:556 dBm 31:62 d				

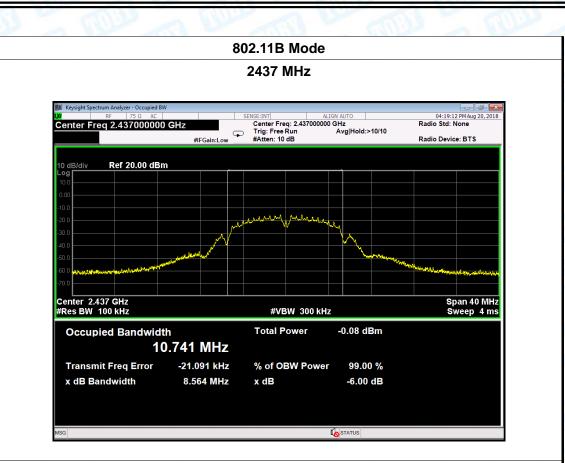


perature:       24 °C       Relative Humidity:       56%         Voltage:       AC 120V/60HZ         Mode:       TX G Mode 2412MHz / TX G Mode 2462MHz         ark:       The EUT is programed in continuously transmitting mode         Image:       Transmitting mode				
Mode:       TX G Mode 2412MHz / TX G Mode 2462MHz         Tark:       The EUT is programed in continuously transmitting mode         Officer Freq 237000000 GHz       Transmitting mode         Start 232700 GHz       Stop 24720 GHz         Start 232700 GHz       Stop 24720 GHz         Stop 24720 GHz       Stop 2570 GHz	erature:	<b>24</b> ℃	Relative Humidity:	56%
	Voltage:	AC 120V/60HZ	A LANG	
Image: Statute readers to the Statute	Mode:	TX G Mode 2412MHz	/ TX G Mode 2462MHz	and a
Image: Section of the section of th	ark:	The EUT is programed	in continuously transmitting	g mode
Center Freq 2.377000000 GHz       Trig: Frea Bun Prediction       Avg Type: Log-Pur And T				
NINK YOLD         Start 2.33700 CHz         Start 2.43700 CHz         Start 2.43700 CHz         Start 2.43700 CHz         Start 2.43700 CHz         Start 2.44700         Start 2.44700 CHz         Start 2.44700 CHz         Start 2.44700 CHz         Start 2.44700 CHz         Start 2.44700 CHz       Start 2.44		2.377000000 GHz	Avg Type: Log-Pwr g: Free Run Avg Hold:>100/100	TRACE 1 2 3 4 5 6
Image: Second Address Second Addres Second Address Second Address Second Address	Re			1 2.413 3 GHz
Image: Sector Delay Sector	Log	ef 23.63 dBm		-4.314 aBm
Image: sector	3.63			
Image: Sector Andrew Sector				100 -24.44 (Bm)
Image: control of the state of the stat			A 13 A	
Stop 2.42700 GHz Hes BW 100 KHz H 1 2 443 3 GHz 2 443 3 GHz 2 443 3 GHz 2 443 3 GHz 2 443 3 GHz 4 457 6Bm 1 2 445 3 GHz Center Freq 2.497000000 GHz FGalnLow Trig: Fre Run Avg Type: Log-Pwr Avg Type: Log-Pwr Avg Type: Log-Pwr Avg Type: Log-Pwr Trig: Fre Run Avg Hold: > 001000 Trig: Fre Run Avg Hold: > 0010000 Trig: Fre Run Avg Hold: > 0010000 Trig: Fre Run Avg Hold: > 001000000000000000000000000000000000	have been been been been been been been be	Haller March and and a start	1 m Halanin and a faite of a fait of	- John Mark
#Res BW 100 kHz       #VBW 300 kHz       Sweep 9.6.00 ns (1001 pts)         Image Mode TRC SQL       2.413 3 GHz       4.314 dBm         1       1       2.400 0 GHz       4.472 dBm         1       1       1       2.400 0 GHz       4.472 dBm         1       1       1       2.400 0 GHz       4.472 dBm         1       1       1       2.375 5 GHz       4.64 dBm         1       1       1       2.376 5 GHz       4.64 dBm         1       1       1       1       2.378 5 GHz       4.64 dBm         1       1       1       1       2.378 5 GHz       4.64 dBm         1       1       1       1       1       1       1.64 dBm         1       1       1       1       1.16 Hz       1.16 Hz       1.16 Hz         1       1       1       1       1.16 Hz       1.16 Hz       1.16 Hz       1.16 Hz         1       1       1       1.16 Hz       1.16 H	-66.4			
3       N       1       f       2400       0+1       -44376       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536       -4536				
3       N       1       f       2.378 5 GHz       -45.461 dBm         1       1       2.378 5 GHz       -45.461 dBm	1 N 1 f	2.413 3 GHz -4.314 dBm	FUNCTION FUNCTION WIDTH FUNCTION	N VALUE
Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA         Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA         Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA         Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA         Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA         Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA         Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA         Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA         Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA         Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA         Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA         Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA       Image: Sector Analyzer - Swept SA         Image: Sector Analyzer	3 N 1 f 4 N 1 f	2.390 0 GHz -48.708 dBm		
i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i	6 7			
Image: Sector Andres - Serget SA       Image: Sector Andres - Serget SA         Image: Sector Andres - Serget SA       Image: Sector Andres - Serget SA         Image: Sector Andres - Serget SA       Image: Sector Andres - Serget SA         Image: Sector Andres - Serget SA       Image: Sector Andres - Serget SA         Image: Sector Andres - Serget SA       Image: Sector Andres - Serget SA         Image: Sector Andres - Serget SA       Image: Sector Andres - Sector - Sector Andres - Sector - Sec	9			
Keydight Spectrum Analyzer - Swept SA       ALC       SENSE:INT       ALCON AUTO       04:28:49 PMag 20, 2018         Center Freq 2.497000000 GHz       PNO: Fast IFGain:Low       Trig: Free Run Atten: 30 dB       Avg Type: Log-Pwr AvgIHold:>100/100       Trace 10:33:33         Ref Offset 3.6 dB       Mkr1 2.463 3.6 GHz -4.443 dBm       -4.443 dBm         10 dB/div       Ref 20.60 dBm       -5.60 dBm         10 dB/div       Ref 20.60 dBm       -6.60 dBm         10 dB/div </td <td>•</td> <td></td> <td></td> <td>• • •</td>	•			• • •
BF     ISO     AC     SENSEINT     ALION AUTO     Of 28:49 PM Aug 20, 2018       Center Freq 2.497000000 GHz     PNO: Fast     Trig: Free Run Atten: 30 dB     Avg Type: Log-Pur Avg Hold:>100!100     True Type: Log-Pur Avg Hold:>100!100       Ref Offset 3.6 dB     Mkr1 2.463 3 GHz       10 dB/dv     Ref 23.60 dBm     -4.443 dBm       136     -4.443 dBm       137     -4.443 dBm       138     -4.443 dBm       139     -5.4700 GHz       #Res BW 100 kHz     #VBW 300 kHz       137     -4.433 dBm       138     -4.433 GHz       139     -4.433 GHz       139     -5.3423 dBm       139     -7.778 dBm       139     -7.778 dBm       139     -7.778 dB				
Ref Offset 3.6 dB         Mkr1 2.463 3 GHz           10 dB/dv         Ref 23.60 dBm         -4.443 dBm           13.6         -4.443 dBm         -4.443 dBm           13.6         -4.443 dBm         -4.443 dBm           13.6         -4.443 dBm         -24.55 dBm           13.6         -4.443 dBm         -24.55 dBm           13.6         -4.443 dBm         -24.55 dBm           15.4         -4.443 dBm         -24.55 dBm           15.4         -4.443 dBm         -24.55 dBm           16.4         -4.443 dBm         -4.443 dBm           17.778 dBm         -4.443 dBm         -4.443 dBm           18.7         -4.443 dBm         -4.443 dBm           19.7         -4.443 dBm         -4.47.778 dBm	LXI R	F 75 Ω AC SENSE:1 2.497000000 GHz	Avg Type: Log-Pwr	04:28:49 PM Aug 20, 2018 TRACE 1 2 3 4 5 6
Net Discussion     -4.443 dBm       136     -4.443 dBm       14     -4.443 dBm       15     -4.443 dBm       14     -4.443 dBm       15     -4.443 dBm       16     -4.443 dBm       16     -4.443 dBm       17     -4.443 dBm       18     -4.443 dBm       19     -4.443 dBm       11     -4.443 dBm       11     -4.443 dBm       14     -4.443 dBm       15     -4.443 dBm       16     -4.443 dBm       17     -4.443 dBm       18     -4.443 dBm       19     -4.443 dBm       19     -4.443 dBm       11     -4.4		IFGain:Low At	en: 30 dB	
360     1     324536m       464     24556m       464     24536m       464     24536m       464     24536m       55art 2.44700 GHz     #VBW 300 KHz       Start 2.4480 GHz     4.443 dBm       1     1       2     N       1     1       2.488 0 GHz     47.778 dBm       3     3       3     3	Re 10 dB/div Re Log	f Offset 3.6 dB •f 23.60 dBm		
10.4     .2453 @b       26.4     .2455 @b       36.4     .2455 @b       46.4     .2453 @b       56.4     .2453 @b       66.4     .2453 @b       85.4     .2453 @b       85.4     .2453 @b       86.8     .2453 @b       9.600 kHz     #VBW 300 kHz       Stop 2.54700 GHz       86.8     .2453 @b       87.8     .2453 @b       9.600 b     .2453 @b       1     f       2.000 0     .2453 @b       4     N       1     f       2.463 & GHz     .443 dBm       4     N       1     f       2.488 0 GHz     .47.778 dBm       9		1		
264     334     345 8m       364     464     464       466     4       466     4       466     4       467     4       468     4       468     4       468     4       468     4       468     4       468     4       468     4       468     4       468     4       468     4       468     4       468     4       468     4       4     1       7     4       8     4       1     1       2     1       4     1       7     4       8     4       9     4       1     1       1     1       2     1       1     1       2     1       1     1       2     1       1     1       2     1       3     1       4     1       4     1       7     1       8     1       8     1       8		ktaladalogosktadata		
46.4     46.4     47.778 dBm       46.4     48.4     48.4       46.4     48.4       46.4     48.4       46.4     48.4       46.4     48.4       46.4     48.4       46.4     48.4       46.4     48.4       46.4     48.4       46.4     48.4       46.4     48.4       46.4     48.4       46.4     49.4       47.778 dBm     49.4       48.4     49.4       49.4     49.4       40.4     47.778 dBm       40.4     49.4       40.4     47.778 dBm       40.4     49.4       40.4     47.778 dBm	-26.4			-24.55 dBm
Start 2.44700 GHz     X WBW 300 KHz     Stop 2.54700 GHz       #Res BW 100 KHz     #VBW 300 KHz     Sweep 9.600 ms (1001 pts)       MRR MODE TRC! SCL     X     Y       FUNCTION WIDTH     FUNCTION WIDTH       2     N     1       1     f       2.600 ms (1001 pts)       3     1       4     N       4     N       5     -       6     -       7     -       8     -       9     -			3	
#Res BW 100 kHz         #VBW 300 kHz         Sweep         9.600 ms (1001 pts)           MRR MODE TRC SCL         X         Y         FUNCTION FUNCTION WIDTH         FUNCTION VALUE           1         N         1         f         2.463 3 GHz         -4.443 dBm           2         N         1         f         2.483 5 GHz         -53.426 dBm           3         N         1         f         2.480 0 GHz         -53.426 dBm           4         N         1         f         2.488 0 GHz         -47.778 dBm           6         -         -         -         -         -           7         -         -         -         -         -           8         -         -         -         -         -           9         -         -         -         -         -			⁹⁶⁶ 99999999 - Synander Synander Synander Synander Synander Synander Sand Synah Sand Synah Sand Synah Sand Synah	สโปกระหาศึกเสราร์กระหาร์สมัยกระหารทร์
MKR         MCDE         TRC         SCL         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE         A           1         N         1         f         2,463.3         GHz         -4.443         dBm         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -				
	MKR MODE TRC SC	X Y	FUNCTION FUNCTION WIDTH FUNCTION	
	2 N 1 f 3 N 1 f	2.463 3 GHz -4.443 dBm 2.483 5 GHz -53.045 dBm 2.500 0 GHz -53.426 dBm		
	5 6	2.488 0 GHz -47.778 dBm		E
	8			
			III.	

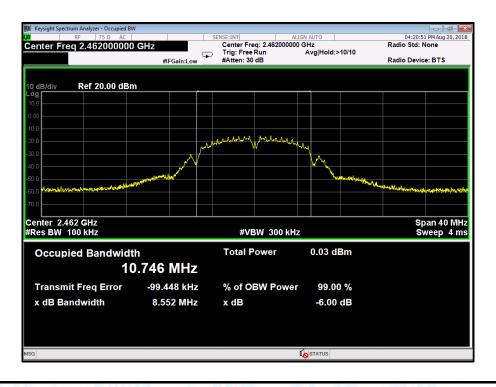



Temperature:	<b>24</b> ℃	Relative Humidity:	56%
Test Voltage:	AC 120V/60HZ	1	ina - In
Test Mode:	TX N(HT20) Mode 2412MH	z / TX N(HT20) Mode 2	462MHz
Remark:	The EUT is programed in co	ontinuously transmitting	mode
💓 Keysight Spectrun	n Analyzer - Swept SA		
	RF     75 Ω     AC     SENSE:INT       2.3770000000     GHz     Trig: Free F       PNO: Fast	ALIGN AUTO Avg Type: Log-Pwr Run Avg Hold:>100/100	04:32:44 PM Aug 20, 2018 TRACE 2 34 5 6 TYPE M
	IFGain:Low Atten: 30 d		1 2.413 3 GHz
10 dB/div R	ef Offset 3.63 dB ef 23.63 dBm		-4.219 dBm
3.63			<u>1</u>
-6.37			n hadaladala
-26.4			24.43 dBm
-36.4		A 3	
-56.4	๛๛๚๚๛๚๛๛๚๛๛๚๛๛๚๛๚๛๛๚๛๛๛๚๚๚๚๛๛๛๚๚๚๚๚๚๚๚๚		
Start 2.32700	) GHz		Stop 2.42700 GHz
#Res BW 100	0 kHz #VBW 300 kHz	Sweep 9.0	600 ms (1001 pts)
1 N 1 1 2 N 1 1	2.413 3 GHz -4.219 dBm 2.400 0 GHz -42.930 dBm		
3 N 1 1 4 N 1 1 5	f 2.390 0 GHz -48.547 dBm f 2.379 7 GHz -44.745 dBm		E
6 7 8			
9 10 11			
MSG		STATUS	•
<b>LXI</b> F	n Analyzer - Swept SA RF 75 Ω AC SENSE:INT 2.497000000 GHz	ALIGN AUTO Avg Type: Log-Pwr	04:36:55 PM Aug 20, 2018 TRACE 2 3 4 5 6
	PNO: Fast Trig: Free F IFGain:Low Atten: 30 d	Run Avg Hold:>100/100 B	DET PNNNN
10 dB/div R	ef Offset 3.6 dB ef 23.60 dBm	Mkr	1 2.455 8 GHz -4.398 dBm
13.6			
3.60 -6.40			
-16.4			-24.41 dBm
-36.4	↓ <u>↓</u> ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		
-46.4	2 24	3	in a star and and a strategic strategic
-66.4			
Start 2.44700 #Res BW 100			Stop 2.54700 GHz 500 ms (1001 pts)
	2 455 8 GHz -4 398 dBm	TION FUNCTION WIDTH FUNCTION	N VALUE
2 N 1 1 3 N 1 1 4 N 1 1	<u>2.483 5 GHz</u> -52.745 dBm 2.500 0 GHz -53.999 dBm		
5			E
8 9 10			
	m		
MSG		STATUS	



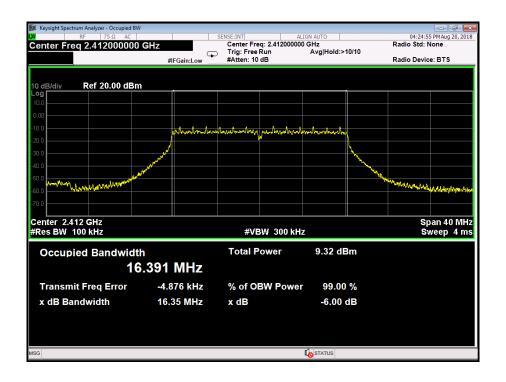

## **Attachment D-- Bandwidth Test Data**

Temperature:	24	l °C	Relative Humidity:	56%
Test Voltage:	A	C 120V/60HZ	TOUS A U	
Test Mode:	Т>	K 802.11B Mode	1000	a la sa
Channel frequen	су	6dB Bandwidth	99% Bandwidth	Limit
(MHz)		(MHz)	(MHz)	(MHz)
2412		8.084	10.602	
2437		8.564	10.741	>=0.5
2462		8.552	10.746	
		900 44 B	Mada	

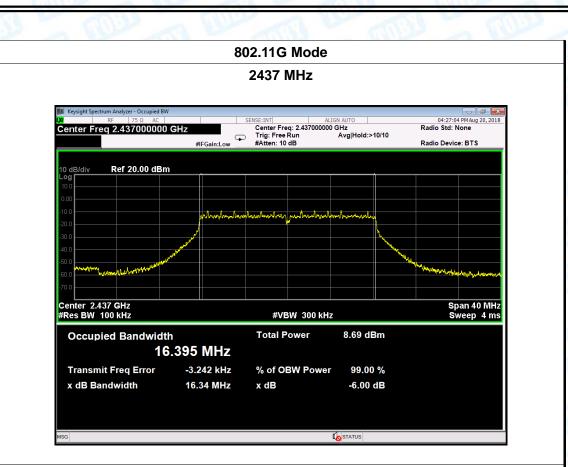

#### 802.11B Mode



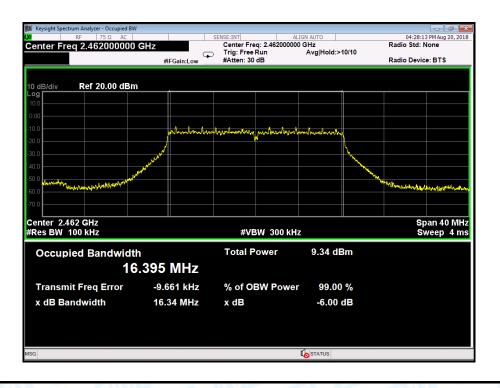





#### 802.11B Mode



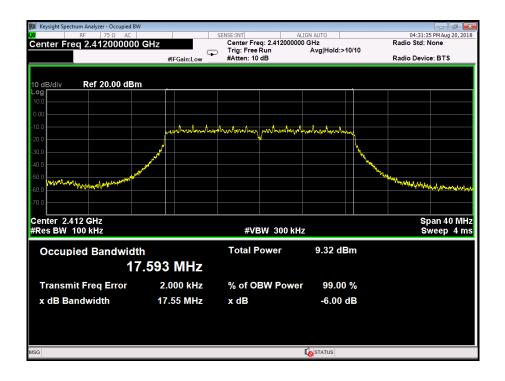




Temperature:	<b>24</b> ℃	Relative Humidity:	56%
Test Voltage:	AC 120V/60HZ		3 - 6
Test Mode:	TX 802.11G Mode	TUP A U	
Channel frequent	el frequency 6dB Bandwidth 99% Bandwidth		Limit
(MHz)	(MHz)	(MHz)	(MHz)
2412	16.35	16.391	
2437	16.34	16.395	>=0.5
2462 16.34		16.395	
	802.11G	Mode	1

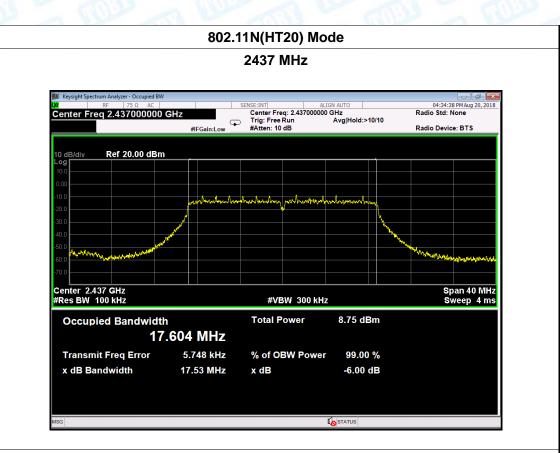




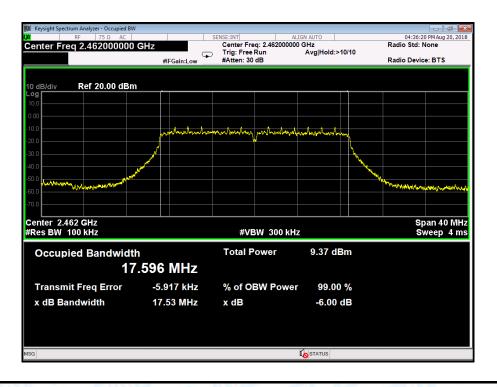



#### 802.11G Mode






Temperature:	24	l °C	Relative Humidity:	56%	
Test Voltage:	A	AC 120V/60HZ			
Test Mode:	T)	K 802.11N(HT20) Mode			
Channel frequen	nnel frequency 6dB Bandwidth 99% Bandwidth		Limit		
(MHz)		(MHz)	(MHz)	(MHz)	
2412		17.55	17.593		
2437		17.53 17.604		>=0.5	
2462 17.53		17.596			


#### 802.11N(HT20) Mode

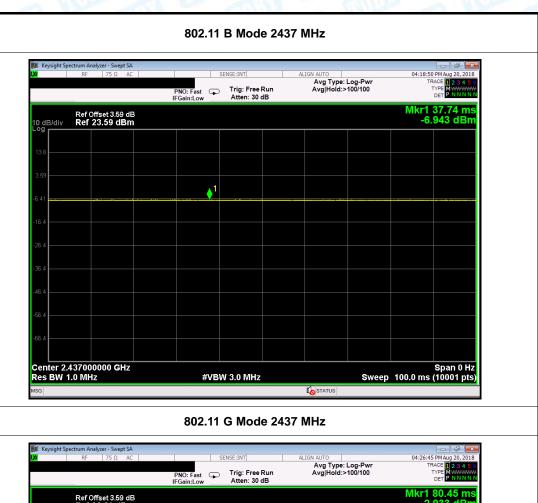






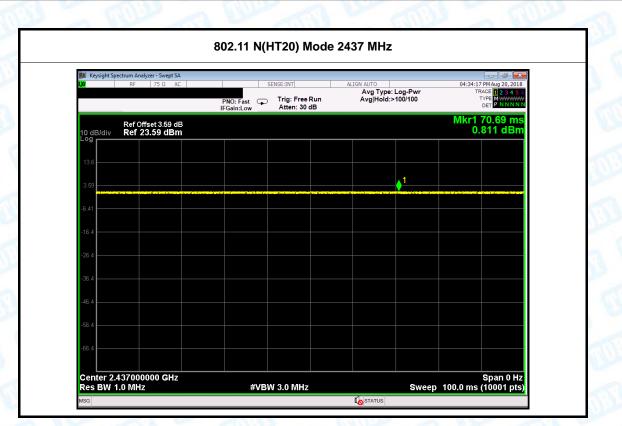
#### 802.11N(HT20) Mode






# Attachment E-- Peak Output Power Test Data

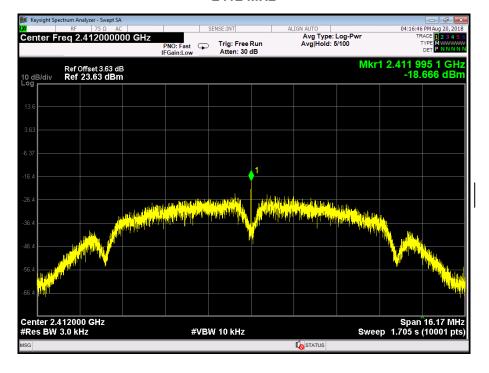
Test Condition	s: Continuous transm	Continuous transmitting Mode			
Temperature:	<b>24</b> °C	Relative Humidity:	56%		
Test Voltage:	AC 120V/60HZ		2		
Mode	Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)		
	2412	0.69			
802.11b	2437	-1.41			
_	2462	-1.40			
	2412	12.18			
802.11g	2437	11.64	30		
_	2462	12.10			
802.11n (HT20)	2412	12.14			
	2437	11.59			
	2462	12.04			
t	Resu	ult: PASS			


Duty Cycle				
Mode	Channel frequency (MHz)	Test Result		
	2412			
802.11b	2437			
	2462			
	2412			
802.11g	2437	>98%		
	2462			
802.11n (HT20)	2412			
	2437			
	2462			

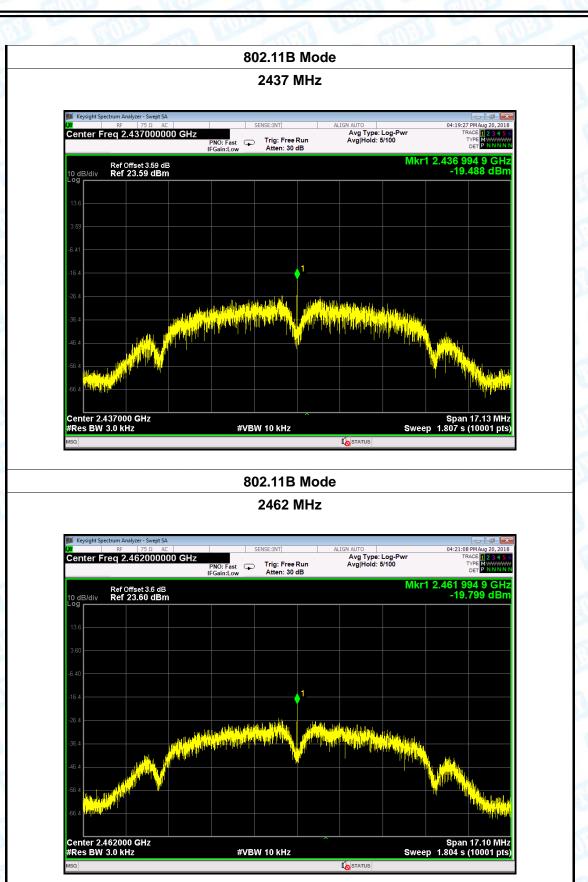






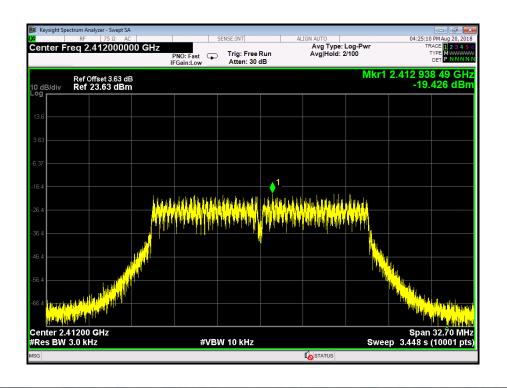




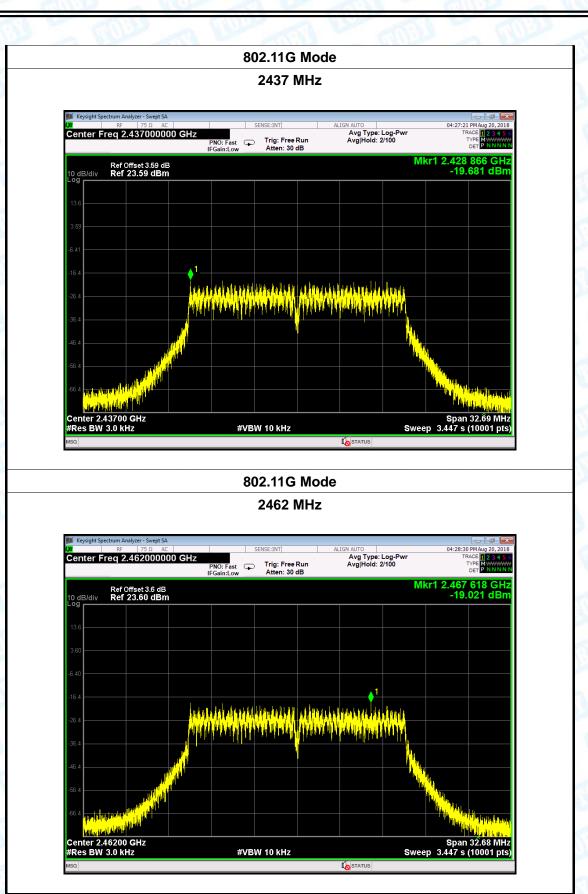


## **Attachment F-- Power Spectral Density Test Data**

TOBY

Temperature:	<b>24</b> °C	Relative Humidity:		56%	
Test Voltage:	AC 120V/	AC 120V/60HZ			
Test Mode:	TX 802.11B Mode				
Channel Freq	Juency Power Density Limit				
(MHz)		(dBm/3	kHz)	(dBm/3kHz)	
2412 -18.666		66			
2437		-19.488		8	
2462		-19.7	99		
		802.11B	Mode		



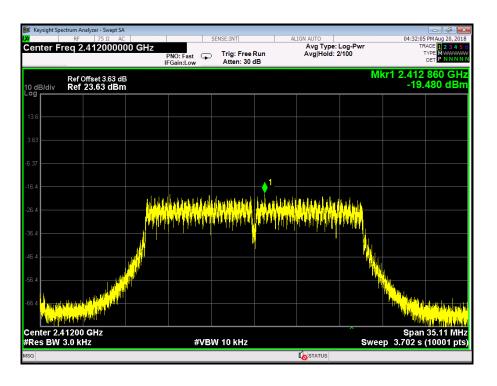




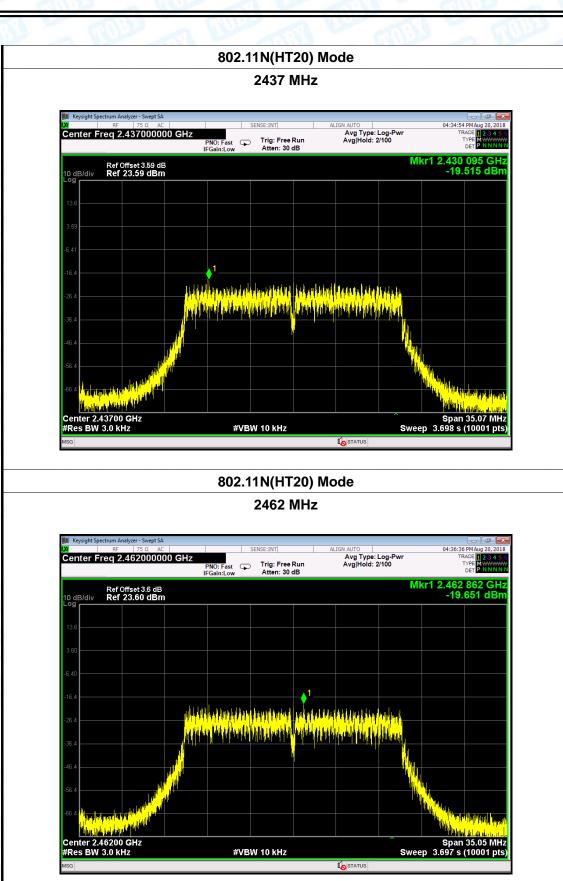

Temperature:	<b>24</b> ℃	Temperature:		ure:	<b>24</b> ℃
Test Voltage:	AC 120V/	//60HZ			
Test Mode:	TX 802.1	TX 802.11G Mode			
Channel Fred	quency	ency Power Density Limit			
(MHz)		(dBm/3 kHz) (dBm/3kH		(dBm/3kHz)	
2412 -19.426		426			
2437		-19.681		8	
2462		-19.021			
- <u></u>		802.110	G Mode		











Temperature:	<b>24</b> ℃		Temperature:	<b>24</b> °C	
			remperature.	24 0	
Test Voltage:	AC 120V/60HZ				
Test Mode:	TX 802.1	K 802.11N(HT20) Mode			
Channel Freq	uency	ency Power Density Limit			
(MHz)		(dBm/3 kHz)		(dBm/3kHz)	
2412		-19.480			
2437 -19		-19.51	5	8	
2462		-19.65	1		

#### 802.11N(HT20) Mode





-----END OF REPORT-----





 Report No.:
 TB-FCC161467

 Page:
 76 of 76