TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No: DRTFCC1803-0071

 $\overline{\mathbf{U}}$ Dt&C

- 2. Customer
 - Name : GNET SYSTEM.CO.,LTD
 - Address : 2-603,6F,Lotte IT Castle II,550-1,98, Gasan digital 2-ro,Geumcheon-gu, Seoul,South Korea
- 3. Use of Report : FCC Original Grant
- 4. Product Name / Model Name : Wi-fi Dongle / GN-W77 FCC ID : 2A07Z-GN-W77
- 5. Test Method Used : KDB558074 D01v04
 - Test Specification : FCC Part 15.247
- 6. Date of Test : 2018.01.30 ~ 2018.02.05
- 7. Testing Environment : See appended test report.
- 8. Test Result : Refer to the attached test result.

Affirmation	Tested by	Reviewed by							
	Name : SunGeun Lee	Name : GeunKi Son							
The tes	The test results presented in this test report are limited only to the sample supplied by applicant and								
the use of	this test report is inhibited other than its purpos	e. This test report shall not be reproduced except							
in full, without the written approval of DT&C Co., Ltd.									
2018.03.27.									

DT&C Co., Ltd.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description
DRTFCC1803-0071	Mar. 27, 2018	Initial issue

Table of Contents

1. EUT DESCRIPTION 4
2. INFORMATION ABOUT TESTING
2.1 Test mode
2.2 Auxiliary equipment5
2.3 Tested environment6
2.4 EMI suppression Device(s) / Modifications6
2.5 Measurement Uncertainty6
3. SUMMARY OF TESTS
4. TEST METHODOLOGY
4.1 EUT configuration
4.2 EUT exercise
4.3 General test procedures8
4.4 Description of test modes8
5. INSTRUMENT CALIBRATION
6. FACILITIES AND ACCREDITATIONS
6.1 Facilities9
6.2 Equipment9
7. ANTENNA REQUIREMENTS
8. TEST RESULT 10
8.1 6dB bandwidth10
8.2 Maximum peak conducted output power17
8.3 Maximum power spectral density19
8.4 Out of band emissions at the band edge / conducted spurious emissions
8.5 Radiated spurious emissions51
8.6 Power-line conducted emissions57
9. LIST OF TEST EQUIPMENT 60
APPENDIX I
APPENDIX II
APPENDIX III

1. EUT DESCRIPTION

FCC Equipment Class	Digital Transmission System(DTS)
Product	Wi-fi Dongle
Model Name	GN-W77
Add Model Name	NA
Power Supply	DC 5 V
Frequency Range	• 802.11b/g/n(20MHz) : 2412 MHz ~ 2462 MHz
Max. RF Output Power	2.4GHz Band • 802.11b : 17.62 dBm • 802.11g : 22.57 dBm • 802.11n (HT20) :22.00 dBm
Modulation Type	• 802.11b: CCK, DSSS • 802.11g/n: OFDM
Antenna Specification	Antenna type: Internal Antenna Antenna gain: -0.50dBi

2. INFORMATION ABOUT TESTING

2.1 Test mode

Test mode	Worst case data rate	Tested Frequency(MHz)				
		Lowest	Middle	Highest		
TM 1	802.11b 1 Mbps	2412	2437	2462		
TM 2	802.11g 6 Mbps	2412	2437	2462		
ТМ 3	802.11n(HT20) MCS 0	2412	2437	2462		

Note 1: The worst case data rate is determined as above test mode according to the power measurements. Note 2: The power measurement results for all modes and data rate were reported.

2.2 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note	
-	-	-	-	-	
-	-	-	-	-	

2.3 Tested environment

Temperature	: 20 ~ 24 °C
Relative humidity content	: 41 ~ 45 % R.H
Details of power supply	: DC 5 V

2.4 EMI suppression Device(s) / Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

2.5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C 63.4-2014 and ANSI C 63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Test items	Measurement uncertainty
Transmitter Output Power	0.7 dB (The confidence level is about 95 %, $k = 2$)
Conducted spurious emission	1.1 dB (The confidence level is about 95 %, k = 2)
Radiated spurious emission (1 GHz Below)	5.1 dB (The confidence level is about 95 %, k = 2)
Radiated spurious emission (1 GHz ~ 18 GHz)	5.4 dB (The confidence level is about 95 %, k = 2)
Radiated spurious emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, $k = 2$)

3. SUMMARY OF TESTS

FCC Part Section(s)	Parameter	Limit	Test Condition	Status Note 1
15.247(a)	6 dB Bandwidth	> 500 kHz		С
15.247(b)	Transmitter Output Power	< 1 Watt		С
15.247(d)	Out of Band Emissions / Band Edge	20 dBc in any 100 kHz BW	Conducted	с
15.247(e)	Transmitter Power Spectral Density	< 8 dBm/3 kHz		С
-	RSS-Gen [6.6]	Occupied Bandwidth (99 %)		NA
15.247(d) 15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	FCC 15.209 limits	Radiated	C Note 2, 3
15.207 AC Line Conducted Emissions		FCC 15.207 limits	AC Line Conducted	С
15.203 Antenna Requirements		FCC 15.203	-	С

Note 2: This test item was performed in each axis and the worst case data was reported.

Note 3: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.

4. TEST METHODOLOGY

Generally the tests were performed according to the KDB558074 D01v04. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing

4.1 EUT configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT exercise

The EUT was operated in the test mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

4.3 General test procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB558074 D01v04.

So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector

Radiated Emissions

Basically the radiated tests were performed with KDB558074 D01v04. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10 as stated on section 12.1 of the KDB558074 D01V04.

The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axes.

4.4 Description of test modes

The EUT has been tested with all modes of operating conditions to determine the worst case emission characteristics. A test program is used to control the EUT for staying in continuous transmitting mode.

5. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

6. FACILITIES AND ACCREDITATIONS

6.1 Facilities

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. The test site comply with the requirements of § 2.948 according to ANSI 63.4-2014.

- FCC MRA Accredited Test Firm No. : KR0034

www.dtnc.net		
Telephone	:	+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

6.2 Equipment

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, loop, horn. Spectrum analyzers with pre-selectors and peak, quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

7. ANTENNA REQUIREMENTS

7.1 According to FCC 47 CFR §15.203

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The internal antenna is attached on the main PCB. Therefore this E.U.T Complies with the requirement of §15.203

8. TEST RESULT

8.1 6dB bandwidth

Test Requirements and limit, §15.247(a)

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6 dB bandwidth is 500 kHz.

Test Configuration:

Refer to the APPENDIX I.

Test Procedure:

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of KDB558074

D01V04

- 1. Set resolution bandwidth (RBW) = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- (<u>RBW : 100 kHz / VBW : 300 kHz</u>) 3. Detector = **Peak**.
- 4. Trace mode = **Max hold**.
- 5. Sweep = Auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Results: Comply

Test Mode	Frequency	Test Results[MHz]		
	Lowest	9.600		
TM 1	Middle	10.060		
	Highest	9.585		
	Lowest	16.380		
TM 2	Middle	16.360		
	Highest	16.400		
	Lowest	17.580		
ТМ 3	Middle	17.590		
	Highest	17.350		

RESULT PLOTS

6 dB Bandwidth

6 dB Bandwidth

TM 1 & Middle

6 dB Bandwidth

🛈 Dt&C

TM 1 & Highest

#VBW 300 kHz

x dB

Total Power

OBW Power

6 dB Bandwidth

I0 dB/div

www.www

Occupied Bandwidth

Transmit Freq Error

x dB Bandwidth

16.470 MHz

-102.24 kHz

16.38 MHz

Dt&C

TM 2 & Lowest nt Spectrum Analyzer - Occupied BW 03:41:40 PM Feb 01, 2018 Radio Std: None SENSE:INT Center Freq: 2.412000000 GHz Trig: Free Run Avg|Hol #Atten: 40 dB Frequency Avg|Hold: 200/200 #IFGain:Low Radio Device: BTS Ref 20.00 dBm **Center Freq** 2.412000000 GHz March march and and

Span 40 MHz Sweep 3.867 ms

19.3 dBm

99.00 %

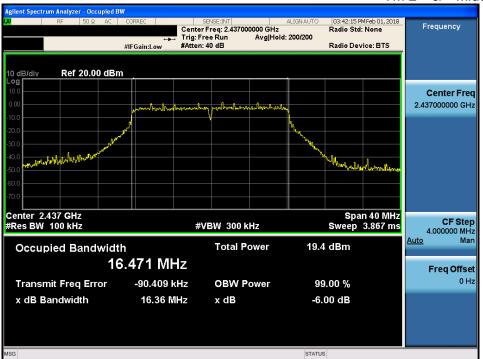
-6.00 dB

STATUS

6 dB Bandwidth

ISG

Center 2.412 GHz #Res BW 100 kHz

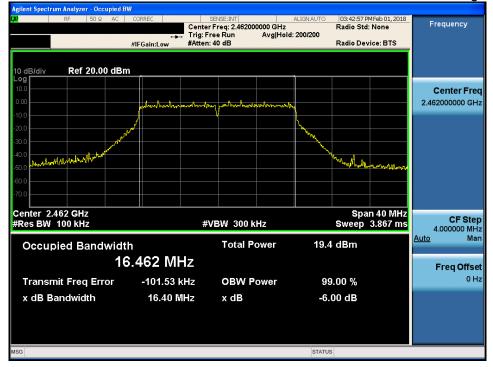

TM 2 & Middle

CF Step 4.000000 MHz

Freq Offset 0 Hz

Man

<u>Auto</u>



FCC ID: 2A07Z-GN-W77

🛈 Dt&C

6 dB Bandwidth

TM 2 & Highest

6 dB Bandwidth

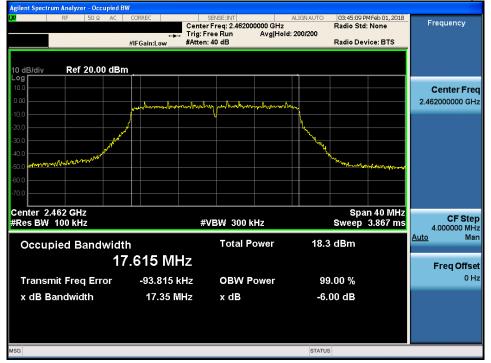
Dt&C

STATUS

6 dB Bandwidth

ISG

TM 3 & Middle



FCC ID: 2A07Z-GN-W77

🛈 Dt&C

6 dB Bandwidth

TM 3 & Highest

8.2 Maximum peak conducted output power

Test Requirements and limit, §15.247(b)

The maximum permissible conducted output power is 1 Watt.

Test Configuration

Test Procedure

1. PKPM1 Peak power meter method of KDB558074 D01V04

The maximum conducted output powers were measured using a broadband peak RF power meter which has greater video bandwidth than DUT's DTS bandwidth and utilize a fast-responding diode detector.

2. Method AVGPM-G (Measurement using a gated RF average power meter) of KDB558074 D01V04

The average conducted output powers were measured using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

Test Results: Comply

From		Maximum Peak Conducted Output Power (dBm) for <u>802.11b</u>								
Freq. (MHz)	Det.		Data Rate [Mbps]							
		1	2	5.5	11	-	-	-	-	
2412	PK	17.62	17.60	17.52	17.36	-	-	-	-	
2412	AV	15.31	15.27	15.21	15.15	-	-	-	-	
2427	PK	17.44	17.23	17.15	17.20	-	-	-	-	
2437	AV	15.04	14.96	14.98	14.92	-	-	-	-	
2462	PK	17.34	17.26	17.02	16.99	-	-	-	-	
	AV	15.15	14.96	14.89	14.79	-	-	-	-	

Freq. (MHz)	Det.	Maximum Peak Conducted Output Power (dBm) for 802.11g										
		Data Rate [Mbps]										
		6	9	12	18	24	36	48	54			
2412	PK	22.53	22.47	22.38	22.17	21.43	21.53	21.27	21.87			
2412	AV	14.74	14.69	14.44	14.25	14.09	14.18	14.11	14.24			
2437	PK	22.52	22.34	22.42	22.29	22.11	21.93	21.49	21.63			
2437	AV	14.82	14.67	14.32	14.26	14.18	14.25	14.30	14.23			
2462	PK	22.57	22.43	22.29	22.24	22.26	22.37	22.48	22.28			
	AV	14.79	14.54	14.33	14.14	13.79	13.68	13.46	13.52			

Freq. (MHz)	Det.	Maximum Peak Conducted Output Power (dBm) for <u>802.11n(HT20)</u>										
		Data Rate [MCS]										
		0	1	2	3	4	5	6	7			
2412	PK	21.46	21.49	21.47	21.27	21.19	21.40	21.28	21.11			
	AV	13.81	13.72	13.66	13.23	12.81	12.97	12.86	12.72			
2437	PK	22.00	21.47	21.34	21.35	21.11	21.16	21.05	21.18			
	AV	13.57	13.37	13.31	13.24	13.25	13.08	12.94	12.86			
2462	PK	21.86	21.74	21.69	21.52	21.42	21.18	20.93	20.99			
	AV	13.67	13.55	13.43	13.37	13.15	13.06	12.88	12.72			

8.3 Maximum power spectral density

Test requirements and limit, §15.247(e)

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Configuration:

Refer to the APPENDIX I.

Test Procedure

Method PKPSD of KDB558074 D01V04 is used.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to : **3 kHz** ≤ RBW ≤ **100 kHz**
- 4. Set the VBW ≥ **3 x RBW**
- 5. Detector = **Peak**
- 6. Sweep time = **Auto couple**
- 7. Trace mode = Max hold.
- 8. Allow trace to fully stabilize.

9. Use the **peak marker function** to determine the maximum amplitude level within the RBW.

10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Results: Comply

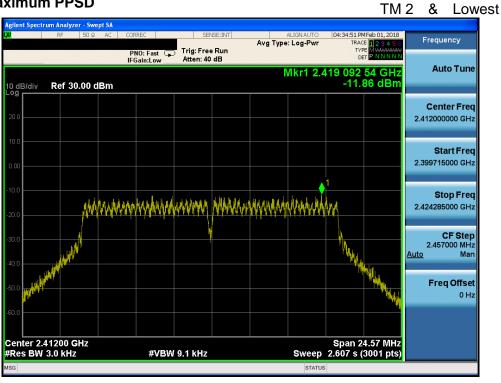
Test Mode	Frequency	RBW	PKPSD [dBm]				
	Lowest	3 kHz	-7.22				
TM 1	Middle	3 kHz	-8.56				
	Highest	3 kHz	-7.74				
	Lowest	3 kHz	-11.86				
TM 2	Middle	3 kHz	-12.40				
	Highest	3 kHz	-11.99				
	Lowest	3 kHz	-12.01				
TM 3	Middle	3 kHz	-13.39				
	Highest	3 kHz	-13.63				

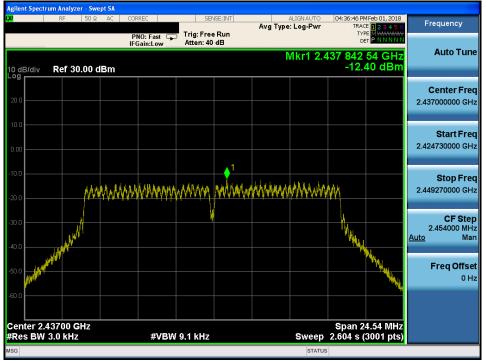
RESULT PLOTS

Maximum PPSD

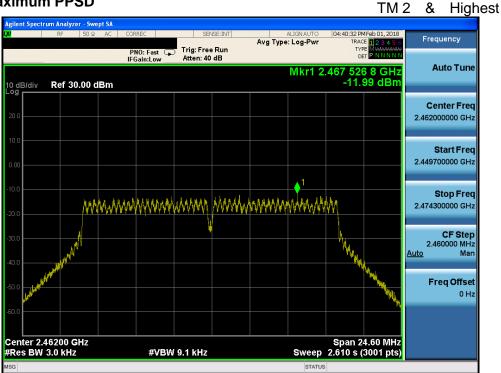
TM 1 & Middle

TDt&C

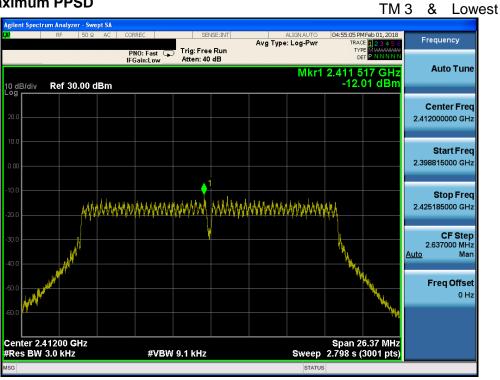

Maximum PPSD


🛈 Dt&C

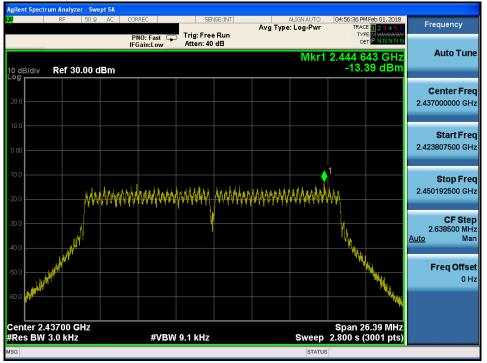
Maximum PPSD


Maximum PPSD

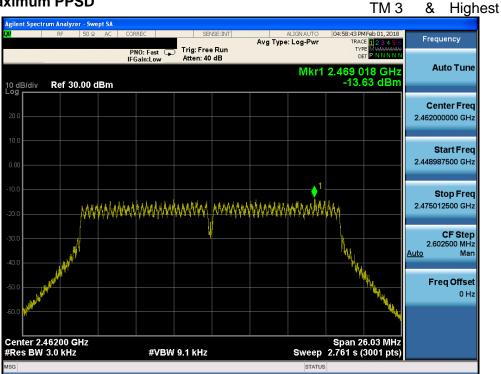
TM2 Middle &


TDt&C

Maximum PPSD


🛈 Dt&C

Maximum PPSD


Maximum PPSD

TM3 Middle &

🛈 Dt&C

Maximum PPSD

8.4 Out of band emissions at the band edge / conducted spurious emissions

Test requirements and limit, §15.247(d)

§15.247(d) specifies that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

If **the peak output power procedure** is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated **by at least 20 dB** relative to the maximum measured in-band peak PSD level.

If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in band average PSD level. In either case, attenuation to levels below the general emission limits specified in §15.209(a) is not required.

Test Configuration:

Refer to the APPENDIX I.

Test Procedure

The transmitter output is connected to a spectrum analyzer.

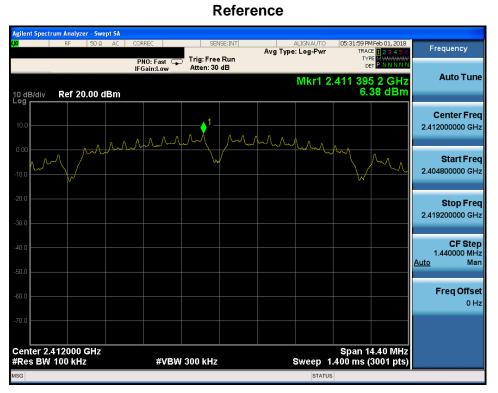
- Measurement Procedure 1 – Reference Level of KDB558074 D01v04

- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set the span to \geq 1.5 times the DTS bandwidth.
- 3. Set the RBW = 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = **Peak.**
- 6. Sweep time = **Auto couple.**
- 7. Trace mode = **Max hold.**
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum PSD level.

- Measurement Procedure 2 - Unwanted Emissions of KDB558074 D01v04

- 1. Set the center frequency and span to encompass frequency range to be measured.
- 2. Set the RBW = 100 kHz. (Actual 1 MHz , See below note)
- 3. Set the VBW ≥ 3 x RBW. (Actual 3 MHz, See below note)
- 4. Detector = **Peak**.
- 5. Ensure that the number of measurement points \geq Span / RBW.
- 6. Sweep time = **Auto couple.**
- 7. Trace mode = **Max hold.**
- 8. Allow the trace to stabilize. (this may take some time, depending on the extent of the span)
- 9. Use the peak marker function to determine the maximum amplitude level.

Note : The conducted spurious emission was tested with below settings. Frequency range: 9 kHz ~ 30 MHz RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

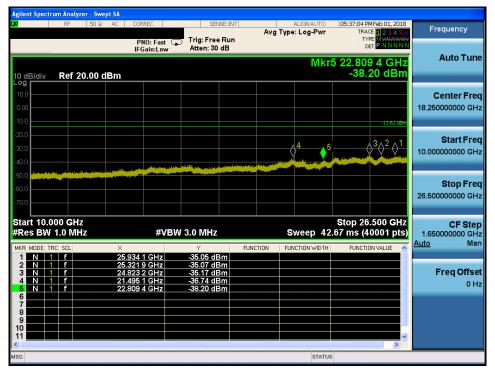

Frequency range: 30 MHz ~ 10 GHz, 10 GHz ~25 GHz RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

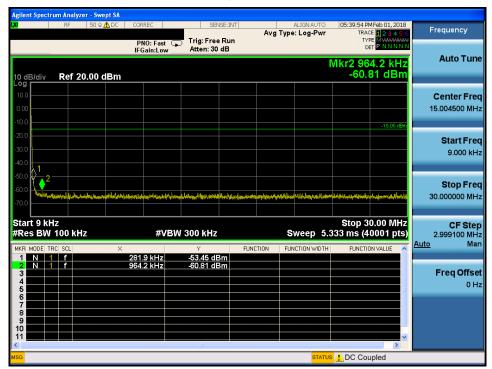
If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2001 to get accurate emission level within 100 kHz BW.

RESULT PLOTS

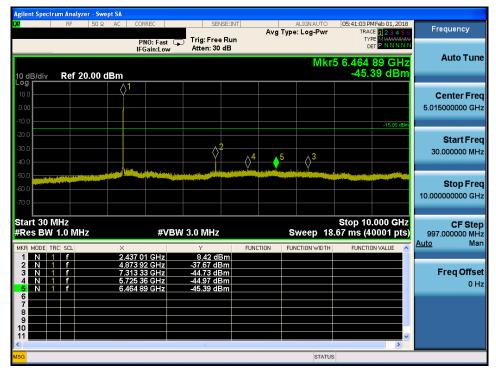
TM 1 & Lowest


Low Band-edge

Agilent Spectrum Analyzer - Swept SA									
LXI	RF 50Ω	🛕 DC 🕴 CORREC 📋	SENSE		ALIGNAUTO	TRACE	IFeb 01, 2018	Frequency	
		PNO: Fast IFGain:Lov		un		TYPI DE	1 MHz	Auto Tune	
10 dB/div Log	10 dB/div Ref 20.00 dBm -61.24 dBm								
10.0 0.00							-i 3.62 dBm	Center Freq 15.004500 MHz	
-20.0 -30.0 -40.0								Start Freq 9.000 kHz	
-50.0 1 -60.0 -70.0	and instrument of the second	2 Mineral animated self-fertile warder	nyullahkuur teknisistense	nerten specific and all georgical bei	nin visional des de la constante	Alathans, Michaenak	ermyenendend	Stop Freq 30.000000 MHz	
Start 9 kH #Res BW		#V	BW 300 kHz		Sweep 5.	Stop 30 333 ms (40).00 MHz)001 pts)	CF Step 2.999100 MHz Auto Man	
MKR MODE TR	C SCL	× 281.9 kHz	۲ -55.43 dBm		FUNCTION WIDTH	FUNCTIO	N VALUE	<u>Auto</u> Man	
2 N 1 3 4 5 6	f	6.253 1 MHz	-61.24 dBm					Freq Offset 0 Hz	
7 8 9 10									
<			Ш				>		
MSG					STATUS	DC Cou	pled		



Dt&C

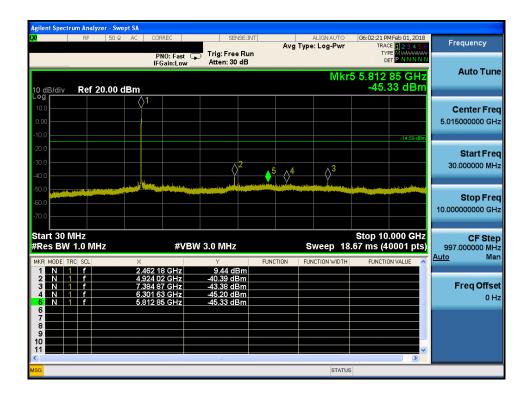

TM 1 & Middle

Reference

Dt&C

TM 1 & Highest

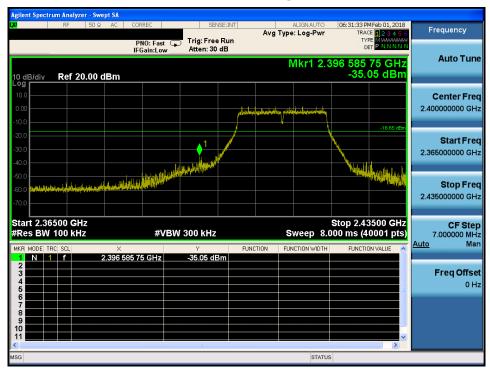
Reference

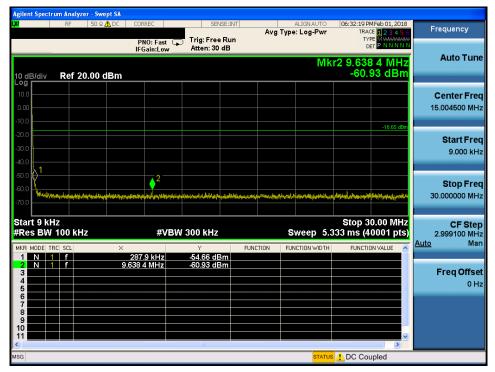


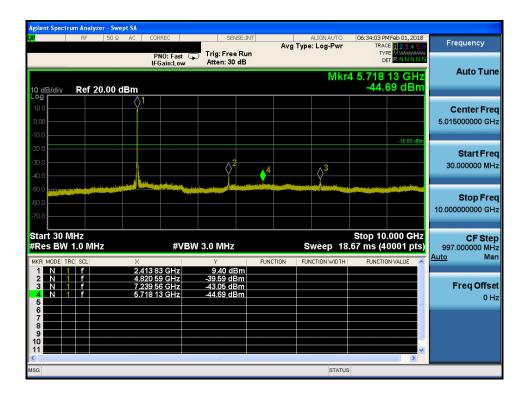
High Band-edge

Agilent Spectrum Analyzer - Swept SA									
🗶 RF 50 Q 🔥 DC	CORREC	SENSE: I		ALIGN AUTO		1Feb 01, 2018 E 1 2 3 4 5 6	Frequency		
	PNO: Fast 🕞 IFGain:Low	Trig: Free Ru Atten: 30 dB		,,,	TYP				
10 dB/div Ref 20.00 dBm	Auto Tune								
10.0 .00 .10.0						-14.59 dBm	Center Freq 15.004500 MHz		
-20.0							Start Freq 9.000 kHz		
-50.0 4 -	Anne-kalessis-sheraringay	pouthallaciatisalisatication	۲۹۶۶۰، مارمور بروی برواند. ماروان بروان میرون بروان میرون بروان میرون بروان میرون میرون میرون میرون میرون میرون مروان میرون می	กรุงไหนสู้เหลี่สุดเหลือรูปป	2 hangasarkinna dang	prochartonipalance	Stop Freq 30.000000 MHz		
Start 9 kHz #Res BW 100 kHz	#VBW	/ 300 kHz		Sweep 5.3	333 ms (4)		CF Step 2.999100 MHz Auto Man		
	297.7 kHz 197 6 MHz	-55.84 dBm -61.39 dBm	FUNCTION	FUNCTION WIDTH	FUNCTIO	N VALUE	Freq Offset 0 Hz		
MSG									

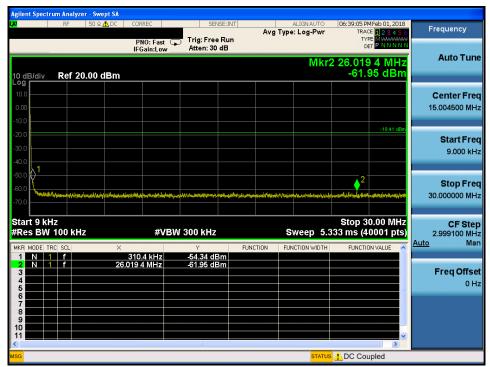



Dt&C

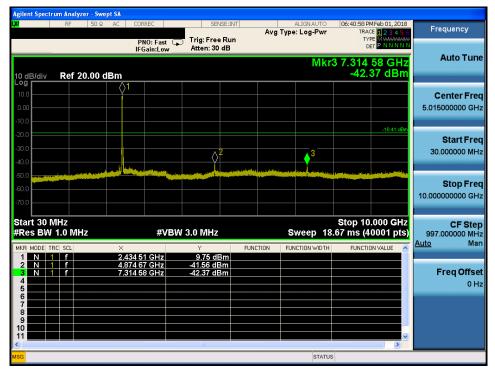

TM 2 & Lowest

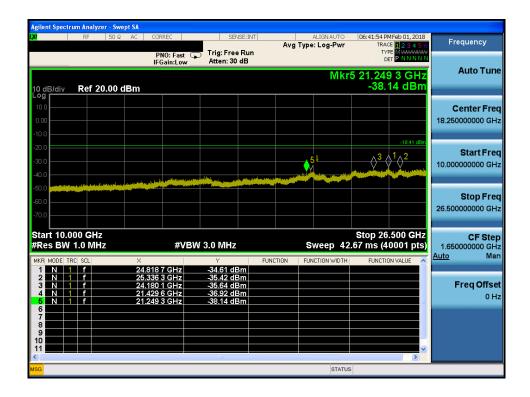

Reference


Low Band-edge



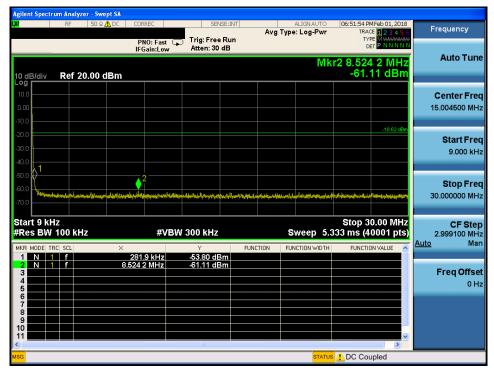
TDt&C

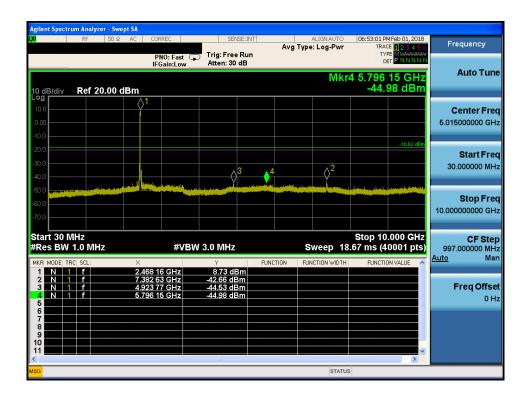

TM 2 & Middle


Reference

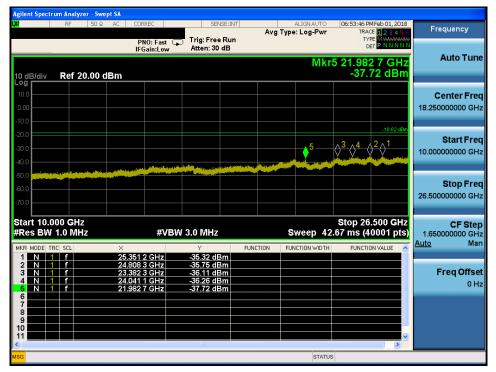

Dt&C

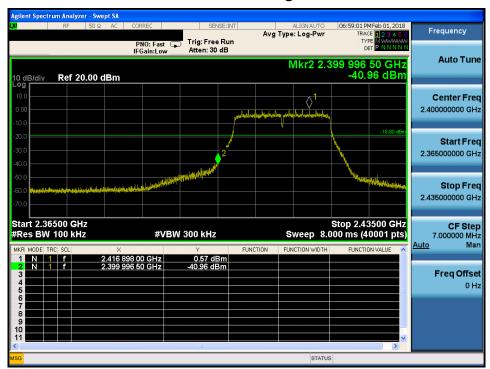
TM 2 & Highest


Reference

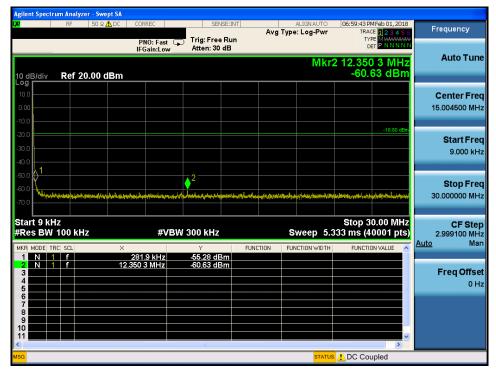


High Band-edge

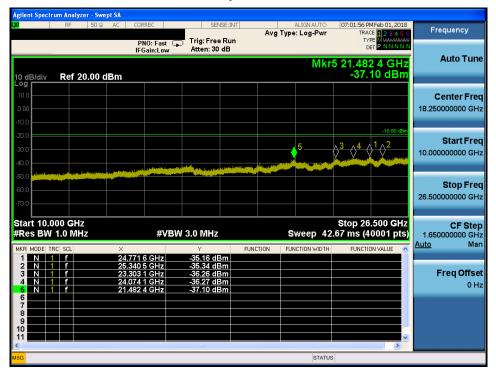


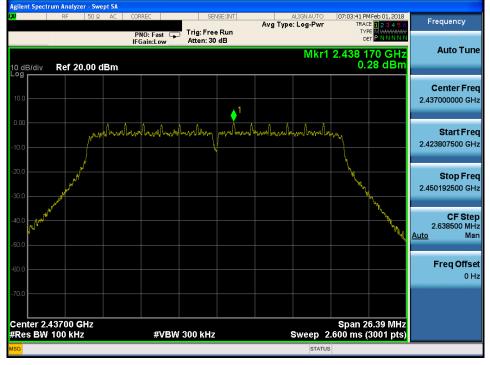

🛈 Dt&C

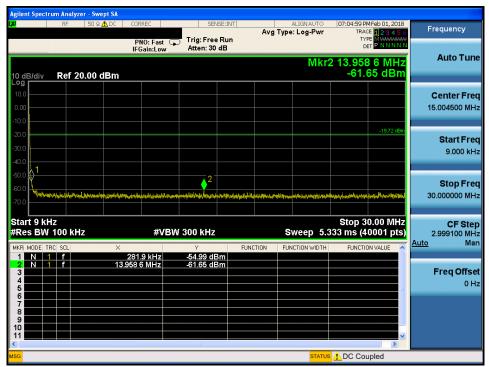
TM 3 & Lowest

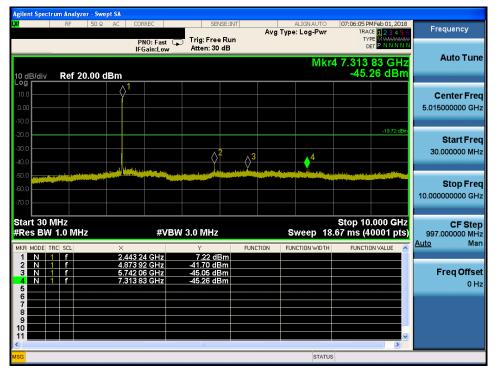

Reference

Low Band-edge



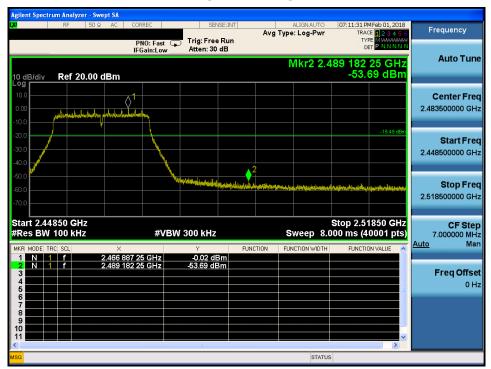


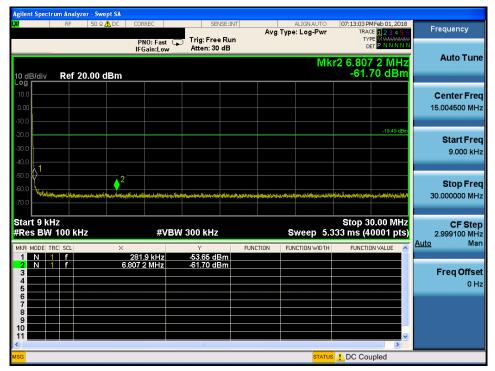


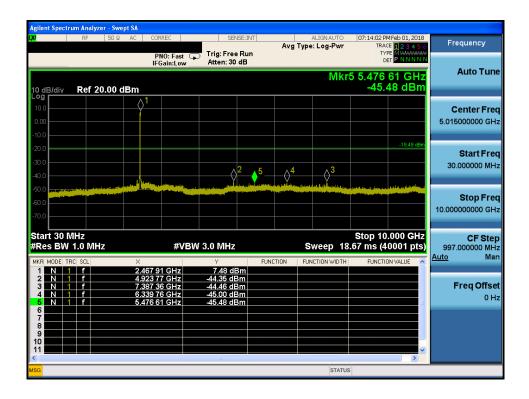

TDt&C

TM 3 & Middle

Reference


Dt&C


TM 3 & Highest


Reference

High Band-edge

8.5 Radiated spurious emissions

Test Requirements and limit, §15.247(d), §15.205, §15.209

In any 100 kHz bandwidth outside the operating frequency band, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed.

• FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 - 0.490	2400/F (kHz)	300
0.490 – 1.705	24000/F (kHz)	30
1.705 – 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.52525	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	156.7 ~ 156.9	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	162.0125 ~ 167.17	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	167.72 ~ 173.2	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	240 ~ 285	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	608 ~ 614	3345.8 ~ 3358		
		960 ~ 1240	3600 ~ 4400		

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

Test Configuration

Refer to the APPENDIX I.

Test Procedure

- 1. The EUT is placed on a non-conductive table, emission measurements at below 1 GHz, the table height is 80 cm and above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 1 or 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Measurement Instrument Setting for Radiated Emission Measurements.

The radiated emission was tested according to the section 6.3, 6.4, 6.5 and 6.6 of the ANSI C63.10-2013 with following settings.

Peak Measurement

RBW = As specified in below table, VBW \geq 3 x RBW, Sweep = Auto, Detector = Peak, Trace mode = Max Hold until the trace stabilizes.

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

Average Measurement:

1. RBW = 1 MHz

- 2. VBW ≥ 1/T
- 3. Video bandwidth mode or display mode
 - 1) The instrument shall be set to ensure that video filtering is applied in the power domain. Typically, this requires setting the detector mode to RMS and setting the Average-VBW Type to Power (RMS).
 - 2) As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode.
- 3. Detector = Peak (Number of points $\ge 2 \times \text{Span} / \text{RBW}$)

4. Sweep time = auto.

- 5. Trace mode = Max Hold
- 6. Allow max hold to run for at least 50 x (1/duty cycle) traces.

Note: Duty cycle is not constant. Refer to the APPENDIX II.

Test Results: Comply

Please refer to next page for data table and the appendix III for worst data plots.

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2387.80	Н	Х	PK	47.82	0.69	N/A	N/A	48.51	74.00	25.49
	2387.23	Н	Х	AV	39.39	0.69	N/A	N/A	40.08	54.00	13.92
1	4824.09	V	Z	PK	48.91	4.86	N/A	N/A	53.77	74.00	20.23
Lowest	4824.10	V	Z	AV	43.68	4.86	N/A	N/A	48.54	54.00	5.46
	7236.26	Н	Х	PK	50.31	7.68	N/A	N/A	57.99	74.00	16.01
	7237.49	Н	Х	AV	45.19	7.69	N/A	N/A	52.88	54.00	1.12
	4874.07	V	Z	PK	48.36	5.07	N/A	N/A	53.43	74.00	20.57
Middle	4874.17	V	Z	AV	41.88	5.07	N/A	N/A	46.95	54.00	7.05
widdle	7311.37	Н	Х	PK	50.55	7.61	N/A	N/A	58.16	74.00	15.84
	7312.60	Н	Х	AV	45.27	7.61	N/A	N/A	52.88	54.00	1.12
	2487.66	Н	Х	PK	48.22	0.97	N/A	N/A	49.19	74.00	24.81
	2487.60	Н	Х	AV	40.35	0.97	N/A	N/A	41.32	54.00	12.68
Llinkent	4924.11	V	Z	PK	46.36	5.23	N/A	N/A	51.59	74.00	22.41
Highest	4924.05	V	Z	AV	38.62	5.23	N/A	N/A	43.85	54.00	10.15
	7387.31	Н	Х	PK	51.44	7.58	N/A	N/A	59.02	74.00	14.98
	7387.31	Н	Х	AV	45.35	7.58	N/A	N/A	52.93	54.00	1.07

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 1(TM 1)

Note.

- 1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2389.15	Н	Х	PK	66.62	0.70	N/A	N/A	67.32	74.00	6.68
	2389.79	Н	Х	AV	52.05	0.70	N/A	N/A	52.75	54.00	1.25
1	4823.16	V	Z	PK	49.71	4.86	N/A	N/A	54.57	74.00	19.43
Lowest	4824.09	V	Z	AV	36.69	4.86	N/A	N/A	41.55	54.00	12.45
	7231.30	Н	Х	PK	57.35	7.69	N/A	N/A	65.04	74.00	8.96
	7238.91	Н	Х	AV	41.62	7.68	N/A	N/A	49.30	54.00	4.70
	4875.07	V	Z	PK	51.94	5.07	N/A	N/A	57.01	74.00	16.99
Middle	4874.21	V	Z	AV	36.38	5.07	N/A	N/A	41.45	54.00	12.55
Middle	7309.53	Н	Х	PK	57.19	7.61	N/A	N/A	64.80	74.00	9.20
	7313.55	Н	Х	AV	42.93	7.61	N/A	N/A	50.54	54.00	3.46
	2484.54	Н	Х	PK	65.60	0.94	N/A	N/A	66.54	74.00	7.46
	2483.58	Н	Х	AV	50.34	0.94	N/A	N/A	51.28	54.00	2.72
Llichaat	4923.39	V	Z	PK	48.54	5.23	N/A	N/A	53.77	74.00	20.23
Highest	4923.92	V	Z	AV	35.29	5.23	N/A	N/A	40.52	54.00	13.48
	7378.22	Н	Х	PK	58.94	7.58	N/A	N/A	66.52	74.00	7.48
-	7387.02	Н	Х	AV	42.42	7.58	N/A	N/A	50.00	54.00	4.00

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 2(TM 2)

Note.

- 1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2389.26	Н	Z	PK	64.69	0.70	N/A	N/A	65.39	74.00	8.61
	2389.78	Н	Z	AV	50.63	0.70	N/A	N/A	51.33	54.00	2.67
	4824.30	Н	Х	PK	48.79	4.86	N/A	N/A	53.65	74.00	20.35
Lowest	4824.03	Н	Х	AV	36.42	4.86	N/A	N/A	41.28	54.00	12.72
	7237.46	Н	Z	PK	53.95	7.68	N/A	N/A	61.63	74.00	12.37
	7241.01	Н	Z	AV	41.03	7.68	N/A	N/A	48.71	54.00	5.29
	4873.83	Н	Х	PK	46.54	5.07	N/A	N/A	51.61	74.00	22.39
Middle	4874.20	Н	Х	AV	36.53	5.07	N/A	N/A	41.60	54.00	12.40
Middle	7317.26	Н	Z	PK	53.27	7.61	N/A	N/A	60.88	74.00	13.12
	7315.23	Н	Z	AV	40.14	7.61	N/A	N/A	47.75	54.00	6.25
	2484.31	Н	Z	PK	65.75	0.94	N/A	N/A	66.69	74.00	7.31
	2483.64	Н	Z	AV	50.39	0.94	N/A	N/A	51.33	54.00	2.67
Highest	4924.14	Н	Х	PK	46.27	5.23	N/A	N/A	51.50	74.00	22.50
	4924.17	Н	Х	AV	37.29	5.23	N/A	N/A	42.52	54.00	11.48
	7391.03	Н	Z	PK	53.44	7.58	N/A	N/A	61.02	74.00	12.98
	7387.34	Н	Z	AV	41.85	7.58	N/A	N/A	49.43	54.00	4.57

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 3(TM 3)

Note.

- 1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

8.6 Power-line conducted emissions

Test Requirements and limit, §15.207

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

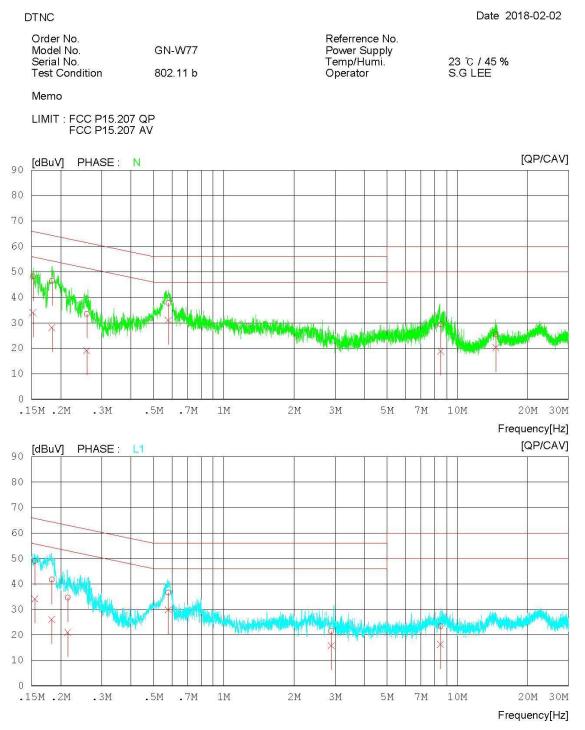
* Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to the test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

Test Results: Comply(Refer to next page.)


The worst data was reported.

RESULT PLOTS

AC Line Conducted Emissions (Graph)

Results of Conducted Emission

AC Line Conducted Emissions (List)

Results of Conducted Emission

Date 2018-02-02

23 ℃ / 45 % S.G LEE

Order No.		Referrence No.
Model No.	GN-W77	Power Supply
Serial No.		Temp/Humi.
Test Condition	802.11 b	Operator

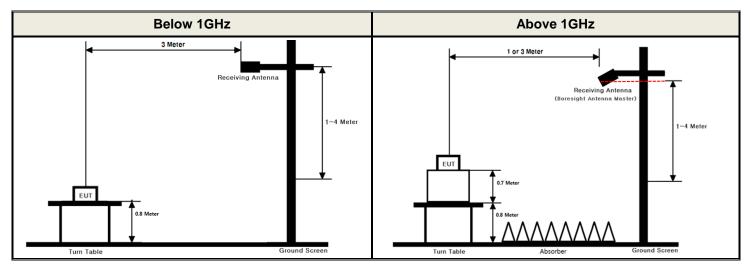
Memo

DTNC

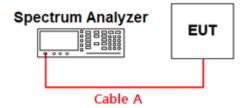
LIMIT : FCC P15.207 QP FCC P15.207 AV

NC) FREQ	READING QP CAV	C.FACTOR	RESULT OP CAV	LIMIT QP CAV	MARGIN QP CAV	PHASE
	[MHz]	[dBuV] [dBuV]] [dB]	[dBuV] [dBuV]	[dBuV] [dBuV	/] [dBuV][dBuV	7]
1	0.15195	38.27 24.15	9.89	48.1634.04	65.89 55.89	17.73 21.85	Ν
2	0.18364	36.5618.22	9.90	46.4628.12	64.32 54.32	17.8626.20	Ν
3	0.25868	23.65 9.20	9.90	33.55 19.10	61.47 51.47	27.9232.37	Ν
4	0.57829	27.93 21.11	9.91	37.84 31.02	56.00 46.00	18.1614.98	N
5	8.49940	19.31 8.82	10.10	29.41 18.92	60.00 50.00	30.5931.08	Ν
6	14.62660	15.27 10.04	10.23	25.50 20.27	60.00 50.00	34.50 29.73	Ν
7	0.15522	39.02 24.25	9.89	48.91 34.14	65.72 55.72	16.81 21.58	L1
8	0.18299	31.74 16.13	9.90	41.64 26.03	64.35 54.35	22.71 28.32	L1
9	0.21440	24.77 11.05	9.90	34.67 20.95	63.03 53.03	28.3632.08	L1
10	0.57764	26.58 19.93	9.91	36.49 29.84	56.00 46.00	19.5116.16	L1
11	2.88800	11.50 5.77	9.98	21.48 15.75	56.00 46.00	34.52 30.25	L1
12	8.48220	13.26 6.17	10.10	23.3616.27	60.00 50.00	36.64 33.73	L1

9. LIST OF TEST EQUIPMENT


Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	17/07/12	18/07/12	MY46471601
Spectrum Analyzer	Agilent Technologies	N9020A	17/09/05	18/09/05	MY46471251
Multimeter	FLUKE	17B	17/04/12	18/04/12	26030065WS
DC Power Supply	Agilent	66332A	17/09/05	18/09/05	MY43000719
Signal Generator	Rohde Schwarz	SMBV100A	17/12/27	18/12/27	255571
Signal Generator	Rohde Schwarz	SMF100A	17/12/27	18/12/27	102341
Thermohygrometer	BODYCOM	BJ5478	18/01/03	19/01/03	120612-2
50W 10dB ATT	SMAJK	SMAJK-50-10	17/09/06	18/09/06	2-50-10
Loop Antenna	Schwarzbeck	FMZB1513	16/04/22	18/04/22	1513-128
BILOG ANTENNA	Schwarzbeck	VULB 9160	16/08/05	18/08/05	9160-3362
Horn Antenna	ETS-LINDGREN	3117	16/05/03	18/05/03	00140394
Horn Antenna	A.H.Systems Inc.	SAS-574	17/07/31	19/07/31	155
PreAmplifier	Agilent	8449B	17/09/05	18/09/05	3008A02108
PreAmplifier	TSJ	MLA-010K01- B01-27	17/03/06	18/03/06	1844539
EMI Test Receiver	Rohde Schwarz	ESR7	17/02/16	18/02/16	101061
EMI TEST RECEIVER	Rohde Schwarz	ESCI7	17/02/16	18/02/16	100910
PULSE LIMITER	Rohde Schwarz	ESH3-Z2	17/09/29	18/09/29	101333
LISN	SCHWARZBECK	NNLK 8121	17/04/03	18/04/03	06183
High-pass filter	Wainwright	WHKX12-2580- 3000-18000- 80SS	17/09/05	18/09/05	3
High-pass filter	Wainwright	WHNX6-6320- 8000-26500- 40CC	17/09/05	18/09/05	1
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2496A MA2411B	17/12/27	18/12/27	1338004 1306053

Note: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.


APPENDIX I

Test set up diagrams

Radiated Measurement

Conducted Measurement

Path loss information

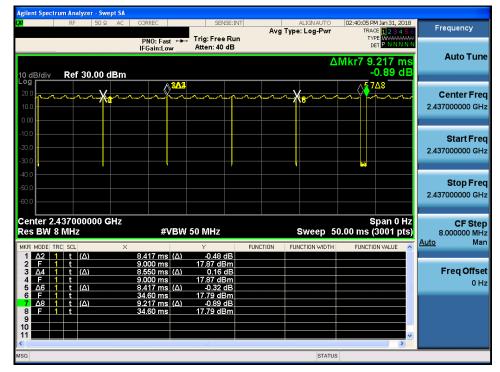
Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	0.14	15	0.93
1	0.32	20	1.38
2.412 & 2.437 & 2.462	0.42	25	1.52
5	0.58	-	-
10	0.70	-	-

Note 1: The path loss from EUT to Spectrum analyzer was measured and used for test. Path loss (S/A's correction factor) = Cable A (Attenuator, Applied only when it was used externally)

APPENDIX II

Duty cycle plots

Test Procedure


Duty Cycle was measured using section 6.0 b) of KDB558074 D01V04 :

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average.

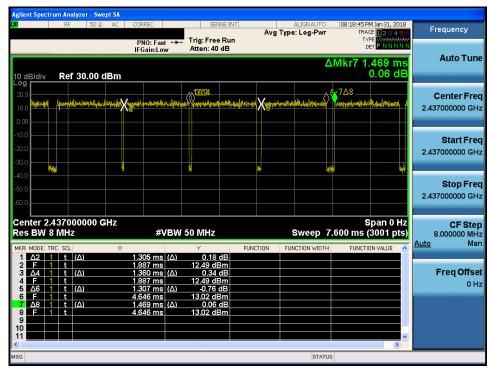
The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Duty Cycle

TM 1 & Middle

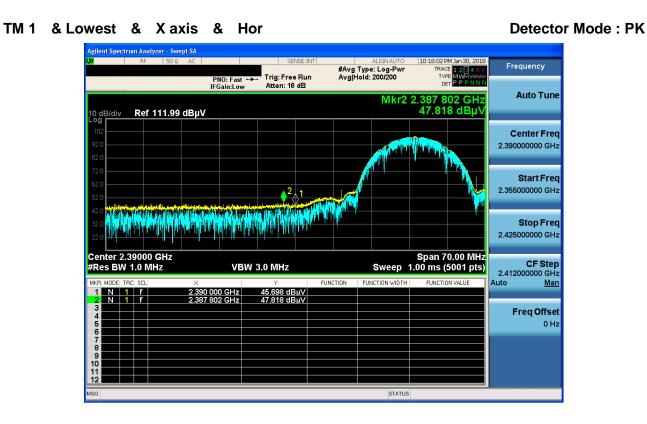
TDt&C

TM 2 & M


Middle

Duty Cycle

ilent Spectrum Analyzer - Swept SA				
RF 50 Ω AC	CORREC SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	08:15:10 PM Jan 31, 2018 TRACE 1 2 3 4 5 6 TYPE WIAWAWAW	Frequency
0 dB/div Ref 30.00 dBm	PNO: Fast →→ Trig: Free Run IFGain:Low Atten: 40 dB	Δ	Mkr7 1.477 ms -0.02 dB	Auto Tun
•9 20.0 10.0 0.00	1,22,4 1,92,4,41,946 1,92,4,41,946 1,92,4,41,946 1,92,44 1,94,444 1,94,4441,94,444 1,94,444 1,94,444 1,94,4441,94,444 1,94,444 1,94,4441,94,444 1,94,444 1,94,4441,94,444 1,94,4441,94,444 1,94,4441,94,444 1,94,4441,94,444 1,94,4441,94,444 1,94,4441,94,444 1,94,4441,94,444 1,94,4441,94,444 1,94,4441,94,444 1,94,4441,94,444 1,94,4441,94,444 1,94,4441,94,444 1,94,4441,94,444 1,94,4441,94,444 1,94,4441,94,444 1,94,4441,94,4441,94,4441,94,4441,94,4441,94,4441,9	57∆ 8 8 8	18 hilanindintanpanghatikiliya panan	Center Free 2.437000000 GH
10.0 20.0 30.0				Start Fred 2.437000000 GH
40.0				Stop Fre 2.437000000 GH
Center 2.437000000 GHz Res BW 8 MHz		Sweep 7	Span 0 Hz .600 ms (3001 pts) FUNCTION VALUE	CF Step 8.000000 MH <u>Auto</u> Mar
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.396 ms (Δ) 1.33 dB 1.231 ms 14.46 dBm 1.599 ms (Δ) 0.01 dB 1.231 ms 14.46 dBm 1.231 ms 14.46 dBm 1.231 ms 14.26 dBm 1.396 ms (Δ) 1.20 dB			Freq Offse 0 H
6 F 1 t 7 Δ8 1 t (Δ) 8 F 1 t 9 10	4.324 ms 14.46 dBm 1.477 ms (Δ) -0.02 dB 4.324 ms 14.46 dBm			
< SG		STATUS		


Duty Cycle

TM 3 & Middle

APPENDIX III

Unwanted Emissions (Radiated) Test Plot

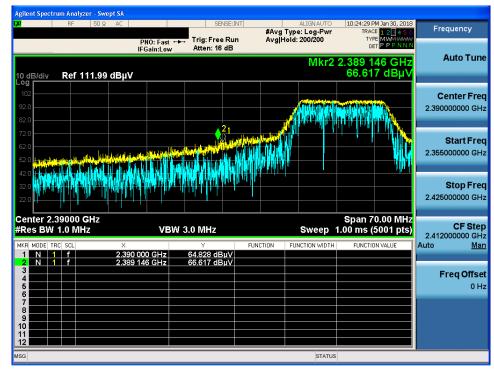
TM 1 & Lowest & X axis & Hor


Detector Mode : AV

		RF	50 Ω .		0: Fast ↔ ain:Low				ALIGN AUTO ype: Pwr(RMS) Id: 200/200	TRAC	PM Jan 30, 2018 CE 1 2 3 4 5 6 PE MWMWWW ET P P P N N N	Frequen	су
0 dB/di	v R	lef 11 [.]	1.99 d		ain:Low	Atten: 10	dD		Mkr2	2.387 2	28 GHz 6 dBµV	Auto	Tu
og 102 32.0										~~~		Cente 2.39000000	
72.0 — 52.0 — 52.0 —						2	1					Star 2.35500000	
42.0 32.0 22.0												Stor 2.42500000	
enter 2.39000 GHz Span 70.00 MH Res BW 1.0 MHz #VBW 1.0 kHz Sweep 54.7 ms (5001 pts										0.00 MHz 5001 pts)	CF S 2.412000000		
KR MODE	1	SCL		× 2.390 000 2.387 228		Y 39.051 dE 39.386 dE	μV	NCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	Auto	M
				2.007 220		00.000 02						Freq	Offs 0
3 4 5 6													
4													

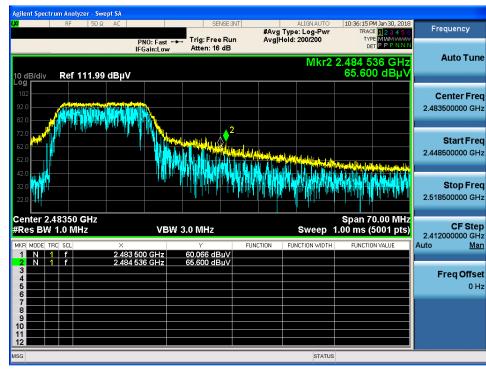
TM 1 & Highest & X axis & Hor

Detector Mode : PK

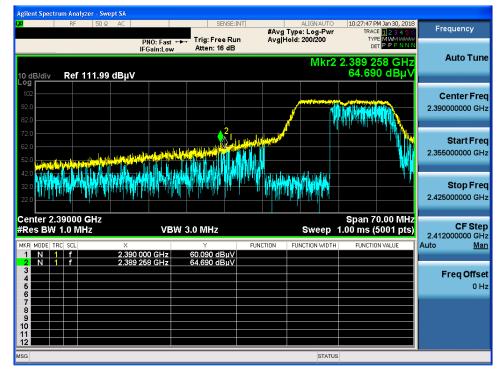

TM 1 & Highest & X axis & Hor

TM 2 & Lowest & X axis & Hor

Detector Mode : PK

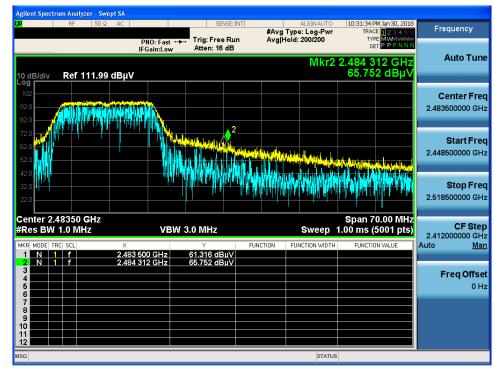

TM 2 & Lowest & X axis & Hor

TM 2 & Highest & X axis & Hor


TM 2 & Highest & X axis & Hor

TM 3 & Lowest & Zaxis & Hor

Detector Mode : PK


TM 3 & Lowest & Zaxis & Hor

TM 3 & Highest & Zaxis & Hor

Detector Mode : PK

TM 3 & Highest & Zaxis & Hor

& Highest & X axis & Hor TM 1

TM 2 & Middle & X axis & Hor

Detector Mode : AV

ctrum Analyzer - Swept SA 10:12:23 PM Jan 30, 20 SENSE:INT Frequency #Avg Type: Pwr(RMS) Avg|Hold: 200/200 2 3 1 WH PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 6 dB TYPE DE1 Auto Tune Mkr1 7.313 548 GHz 42.927 dBµV 5 dB/div Log Ref 71.99 dBµV **Center Freq** 7.311000000 GHz Start Freq 7.276000000 GHz Stop Freq 7.346000000 GHz **∮**¹ and a hand a CF Step 2.412000000 GHz and Marin Auto Man Freq Offset 0 Hz Center 7.31100 GHz #Res BW 1.0 MHz Span 70.00 MHz Sweep 54.7 ms (5001 pts) #VBW 1.0 kHz

TM 3 & Highest & Zaxis & Hor

