Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

 Telephone:
 +86-755-26648640

 Fax:
 +86-755-26648637

 Website:
 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

Report No. : Applicant: Address of Applicant:	CQASZ20220600953E GANZHOU DEHUIDA TECHNOLOGY CO., LTD Dehuida Science and Technology Park, Huoyanshan Road, Anyuan District, Ganzhou City, Jiangxi Province. P.R China.		
Equipment Under Test (E	UT):		
Product:	ONN. MEDIUM RUGGED SPEAKER		
Model No.:	AALAV100081916, AAGRY100081916		
Test Model No.:	AAGRY100081916		
Brand Name:	ONN.		
FCC ID:	2AO5X-BM2021		
Standards:	47 CFR Part 15, Subpart C		
Date of Receipt:	2022-06-07		
Date of Test:	2022-06-07 to 2022-06-16		
Date of Issue:	2022-06-21		
Test Result :	PASS*		

*In the configuration tested, the EUT complied with the standards specified above.

Tested By:	lewis zhou	
	(Lewis Zhou)	
Reviewed By:	K. Liao	ICHEN H
	(K Liao)	- III
Approved By:	Janos	_
	(Jack Ai)	

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

PROVE

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20220500738E	Rev.01	Initial report	2022-05-19
CQASZ20220600953E	Rev.02	Update report	2022-06-21

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209 ANSI C63.10 (2013)		PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS

3 Contents

1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
 4.1 CLIENT INFORMATION	
4.11 EQUIPMENT LIST	
5 TEST RESULTS AND MEASUREMENT DATA	
 5.1 ANTENNA REQUIREMENT	
6 PHOTOGRAPHS - EUT TEST SETUP	
6.1 Radiated Emission	
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

4 General Information

4.1 Client Information

Applicant:	GANZHOU DEHUIDA TECHNOLOGY CO., LTD		
Address of Applicant:	Dehuida Science and Technology Park, Huoyanshan Road, Anyuan District, Ganzhou City, Jiangxi Province. P.R China.		
Manufacturer:	GANZHOU DEHUIDA TECHNOLOGY CO., LTD		
Address of Manufacturer:	Dehuida Science and Technology Park, Huoyanshan Road, Anyuan Dist Ganzhou City, Jiangxi Province. P.R China.		
Factory 1:	GANZHOU DEHUIDA TECHNOLOGY CO., LTD		
Address of Factory 1: Dehuida Science and Technology Park, Huoyanshan Road, Anyu Ganzhou City, Jiangxi Province. P.R China.			
Factory 2:	DEHUIDA VIET NAM TECHNOLOGY COMPANY LIMITED		
Address of Factory 2:	Factory No.1, Lot 13 Noi Hoang industrial cluster (Rent factory of Viet Australia Steel Joint Stock Company), Noi Hoang Commune, Yen Dung District, Bac Giang Province, Vietnam		

4.2 General Description of EUT

Product Name:	ONN. MEDIUM RUGGED SPEAKER		
Model No.:	AALAV100081916, AAGRY100081916		
Test Model No.:	AAGRY100081916		
Trade Mark:	ONN.		
Software Version:	V1.3		
Hardware Version:	V2.0		
Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	V5.3		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Modulation Type:	GFSK, π/4DQPSK, 8DPSK		
Transfer Rate:	1Mbps/2Mbps/3Mbps		
Number of Channel:	79		
Hopping Channel Type:	Adaptive Frequency Hopping systems		
Product Type:	□ Mobile □ Portable □ Fix Location		
Test Software of EUT:	FCC_Test_Tools_V2.24		
Antenna Type:	PCB antenna		
Antenna Gain:	0 dBi		
Power Supply:	Li-ion battery: DC 3.7V 2600mAh, Charge by DC 5V for adapter		

Note:

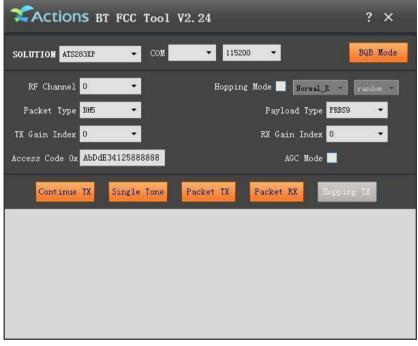
Model No.: AALAV100081916, AAGRY100081916

Only the model AAGRY100081916 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color of appearance and model name.

Operation F	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:


Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

4.3 Additional Instructions

EUT Test Software Se	ettings:			
Mode:	 Special software is used. Through engineering command into the engineering mode. engineering command: *#*#3646633#*#* 			
EUT Power level:	Class2 (Power level is built-in set parameters and cannot be changed and selected)			
Use test software to set the l transmitting of the EUT.	owest frequency, the middle frequency an	d the highest frequency keep		
Mode	Channel Frequency(MHz)			
	CH0	2402		
DH1/DH3/DH5	CH39	2441		
	CH78	2480		
	СН0	2402		
2DH1/2DH3/2DH5	CH39	2441		
	CH78	2480		
	СН0	2402		
3DH1/3DH3/3DH5	СН39	2441		
	CH78	2480		

Run Software:

4.4 Test Environment

Operating Environment:		
Temperature:	25 °C	
Humidity:	54% RH	
Atmospheric Pressure:	1009mbar	
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.	

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	FCC certification
Adapter	MI	1	1	CQA

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8°C
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Hereafter the best measurement capability for CQA laboratory is reported:

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: **IC Registration No.: 22984-1**

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2021/9/10	2022/9/9
Spectrum analyzer	R&S	FSU26	CQA-038	2021/9/10	2022/9/9
		AFS4-00010300-18-10P-			
Preamplifier	MITEQ	4	CQA-035	2021/9/10	2022/9/9
		AMF-6D-02001800-29-			
Preamplifier	MITEQ	20P	CQA-036	2021/9/10	2022/9/9
Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2021/9/16	2024/9/15
Bilog Antenna	R&S	HL562	CQA-011	2021/9/16	2024/9/15
Horn Antenna	R&S	HF906	CQA-012	2021/9/16	2024/9/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/9/16	2024/9/15
Coaxial Cable					
(Above 1GHz)	CQA	N/A	C019	2021/9/10	2022/9/9
Coaxial Cable					
(Below 1GHz)	CQA	N/A	C020	2021/9/10	2022/9/9
Antenna Connector	CQA	RFC-01	CQA-080	2021/9/10	2022/9/9
RF					
cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2021/9/10	2022/9/9
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2021/9/10	2022/9/9
EMI Test Receiver	R&S	ESPI3	CQA-013	2021/9/10	2022/9/9
LISN	R&S	ENV216	CQA-003	2021/9/10	2022/9/9
Coaxial cable	CQA	N/A	CQA-C009	2021/9/10	2022/9/9

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

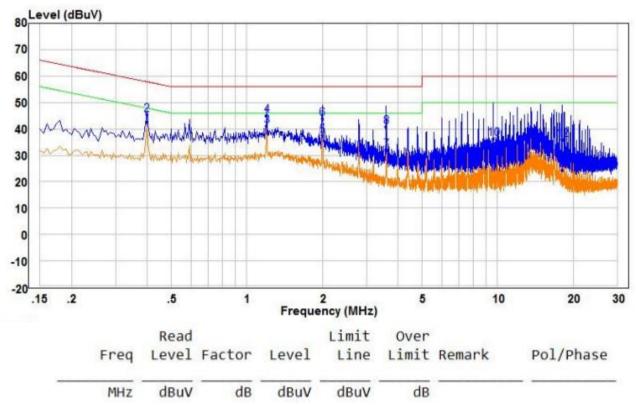
5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
15.203 requirement:	
An intentional radiator shall	be designed to ensure that no antenna other than that furnished by the
responsible party shall be us	sed with the device. The use of a permanently attached antenna or of an
antenna that uses a unique	coupling to the intentional radiator, the manufacturer may design the unit
so that a broken antenna ca	n be replaced by the user, but the use of a standard antenna jack or
electrical connector is prohib	bited.
15.247(b) (4) requirement:	
The conducted output power	r limit specified in paragraph (b) of this section is based on the use of
antennas with directional ga	ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this
section, if transmitting anten	nas of directional gain greater than 6 dBi are used, the conducted output
power from the intentional ra	adiator shall be reduced below the stated values in paragraphs (b)(1),
(b)(2), and (b)(3) of this sect	ion, as appropriate, by the amount in dB that the directional gain of the
antenna exceeds 6 dBi.	
EUT Antenna:	

The antenna is PCB antenna. The best case gain of the antenna is 0 dBi.

5.2 Conducted Emissions

 Conducted Emissio	115						
Test Requirement:	47 CFR Part 15C Section 15.2	207					
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
Limit:		Limit (c	lBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithn	n of the frequency.					
Test Procedure:	 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shielder room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 						
Test Setup:	Shielding Room	AE <u>B</u> <u>B</u> <u>B</u> <u>B</u> <u>B</u> <u>B</u> <u>B</u> <u>B</u>	Test Receiver				



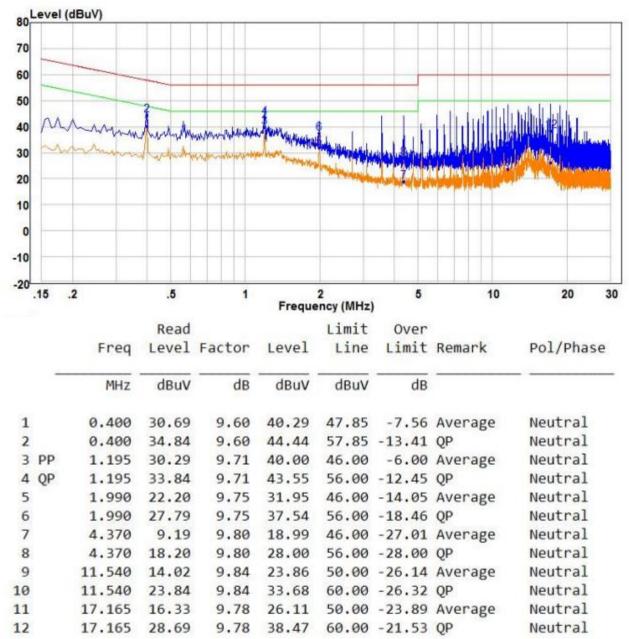
Eveloratory Test Made	Non-honning transmitting mode with all kind of modulation and all kind of
Exploratory rest mode:	Non-hopping transmitting mode with all kind of modulation and all kind of
	data type at the lowest, middle, high channel.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case.
	Only the worst case is recorded in the report.
Test Voltage:	AC 120V/60Hz
Test Results:	Pass

Measurement Data

Live line:

1	0.400	33.01	9.61	42.62	47.85	-5.23	Average	Line
2	0.400	35.90	9.61	45.51	57.85	-12.34	QP	Line
3 PP	1.200	30.95	10.21	41.16	46.00	-4.84	Average	Line
4 QP	1.200	34.95	10.21	45.16	56.00	-10.84	QP	Line
5	2.000	25.66	11.65	37.31	46.00	-8.69	Average	Line
6	2.000	32.14	11.65	43.79	56.00	-12.21	QP	Line
7	3.600	21.55	10.41	31.96	46.00	-14.04	Average	Line
8	3.600	30.47	10.41	40.88	56.00	-15.12	QP	Line
9	9.600	19.12	9.89	29.01	50.00	-20.99	Average	Line
10	9.600	26.41	9.89	36.30	60.00	-23.70	QP	Line
11	18.065	14.53	9.80	24.33	50.00	-25.67	Average	Line
12	18.065	26.26	9.80	36.06	60.00	-23.94	QP	Line

Remark:


1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

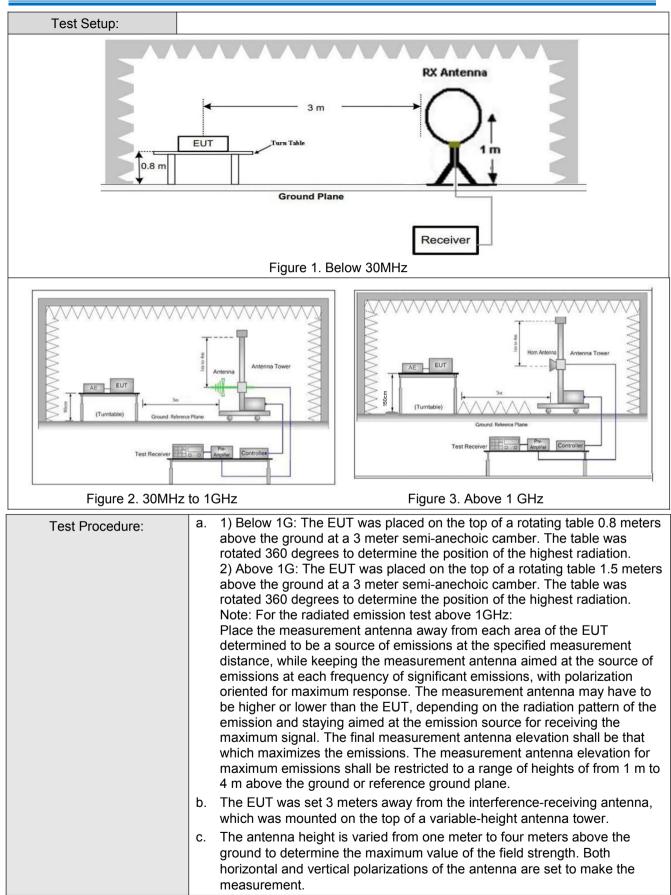
. : E 2 044 **c**... 4 0 ---. . .

ວ.ວ	Other requirements Fr	equency Hopping Spread Spectrum System					
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:					
	The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.						
	Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.						
	the system to recognize othe independently chooses and The coordination of frequence	nce within a frequency hopping spread spectrum system that permits or users within the spectrum band so that it individually and adapts its hopsets to avoid hopping on occupied channels is permitted. by hopping systems in any other manner for the express purpose of occupancy of individual hopping frequencies by multiple transmitters is					
	Compliance for section 15.	247(a)(1)					
	stage shift register whose 5th outputs are added in a modu	lo-two addition stage. And the result is fed back to the input of the first with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ges: 9 sequence: $2^9 - 1 = 511$ bits					
	Linear Feedback S	hift Register for Generation of the PRBS sequence					
		m Frequency Hopping Sequence as follow:					
	20 62 46 77	7 64 8 73 16 75 1					
	According to Bluetooth Core bandwidths that match the	on the average by each transmitter. Specification, Bluetooth receivers are designed to have input and IF hopping channel bandwidths of any Bluetooth transmitters and shift on with the transmitted signals.					
	Compliance for section 15.						
	According to Bluetooth Con pseudorandom hopping freq	e Specification, the Bluetooth system transmits the packet with the uency with a continuous data and the short burst transmission from the nsmitted under the frequency hopping system with the pseudorandom					

Compliance for section 15.247(h)

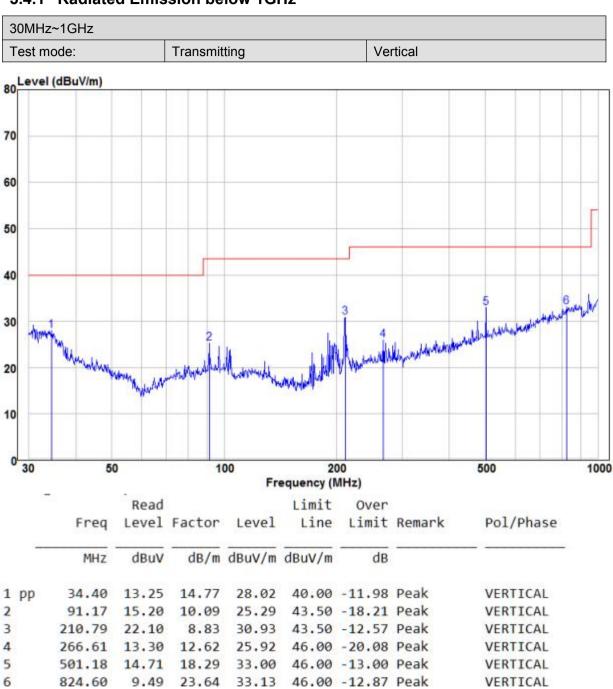
According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.



5.4 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark		
	0.009MHz-0.090MHz		Peak	10kHz	z 30kHz	Peak		
	0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average		
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	z 30kHz	Quasi-peak		
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak		
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak		
	30MHz-1GHz		Peak	100 kH	z 300kHz	Peak		
	Above 1GHz		Peak	1MHz	3MHz	Peak		
			Peak	1MHz	10Hz	Average		
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (n		
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300		
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30		
	1.705MHz-30MHz		30	-	-	30		
	30MHz-88MHz		100	40.0	Quasi-peak	3		
	88MHz-216MHz		150	43.5	Quasi-peak	3		
	216MHz-960MHz		200	46.0	Quasi-peak	3		
	960MHz-1GHz		500	54.0	Quasi-peak	3		
	Above 1GHz		500	54.0	Average	3		
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio free emissions is 20dB above the maximum permitted average emiss applicable to the equipment under test. This peak limit applies to peak emission level radiated by the device.							

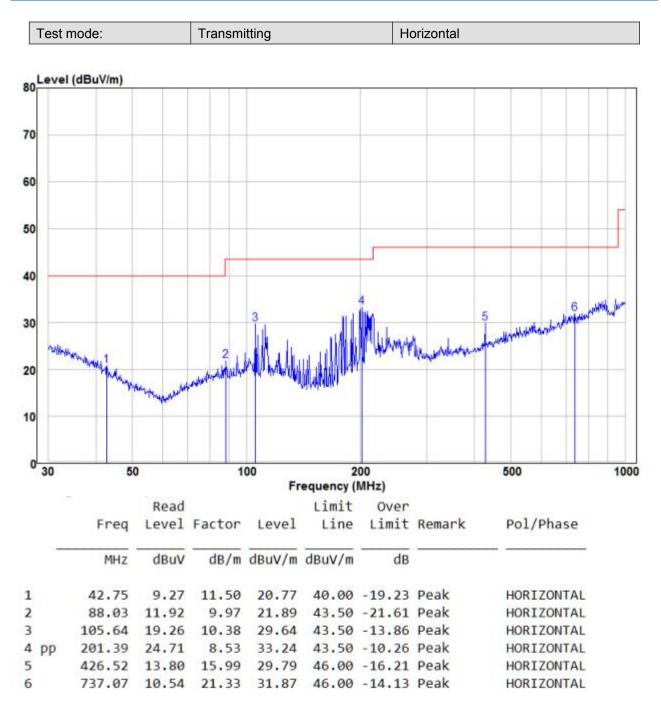


	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or
	average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
	Pretest the EUT at Transmitting mode and Charge + Transmitting mode, found the Charge + Transmitting mode which it is worse case
	For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report.
Test Results:	Pass
	1 435

5.4.1 Radiated Emission below 1GHz

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

5.4.2 Transmitter Emission above 1GHz

Worse case mode:		GFSK(DH	GFSK(DH5)		Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V	
2390	54.16	-9.2	45.55	74	-28.45	Peak	н	
2400	56.27	-9.39	46.20	74	-27.80	Peak	Н	
4804	52.02	-4.33	48.00	74	-26.00	Peak	Н	
7206	50.49	1.01	52.09	74	-21.91	Peak	Н	
2390	55.10	-9.2	44.94	74	-29.06	Peak	V	
2400	54.36	-9.39	47.43	74	-26.57	Peak	V	
4804	53.66	-4.33	49.48	74	-24.52	Peak	V	
7206	49.83	1.01	50.09	74	-23.91	Peak	V	

Worse case mode:		GFSK(DH	GFSK(DH5)		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V	
4882	50.53	-4.11	46.90	74	-27.10	peak	Н	
7323	51.21	1.51	51.18	74	-22.82	peak	Н	
4882	54.17	-4.11	49.82	74	-24.18	peak	V	
7323	48.56	1.51	50.64	74	-23.36	peak	V	

Worse case mode:		GFSK(DH	5)	Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	57.09	-9.29	45.70	74	-28.30	Peak	н
4960	53.03	-4.04	47.41	74	-26.59	Peak	Н
7440	49.51	1.57	51.53	74	-22.47	Peak	Н
2483.5	53.44	-9.29	45.69	74	-28.31	Peak	v
4960	50.11	-4.04	45.22	74	-28.78	Peak	V
7440	50.07	1.57	52.74	74	-21.26	Peak	V

Worse case mode:		π /4DQPS	K (2DH5)	Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	55.12	-9.2	45.59	74	-28.41	Peak	н
2400	54.54	-9.39	45.49	74	-28.51	Peak	Н
4804	53.28	-4.33	48.99	74	-25.01	Peak	Н
7206	51.09	1.01	49.49	74	-24.51	Peak	Н
2390	53.85	-9.2	45.56	74	-28.44	Peak	V
2400	54.50	-9.39	47.18	74	-26.82	Peak	V
4804	54.34	-4.33	50.59	74	-23.41	Peak	V
7206	48.35	1.01	51.71	74	-22.29	Peak	V

Worse case mode:		π /4DQPS	K (2DH5)	Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4882	53.18	-4.11	47.07	74	-26.93	peak	Н
7323	50.91	1.51	51.61	74	-22.39	peak	Н
4882	52.27	-4.11	48.29	74	-25.71	peak	V
7323	51.08	1.51	51.74	74	-22.26	peak	V

Worse case mode:		π /4DQPS	K (2DH5)	Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	54.87	-9.29	47.78	74	-26.22	Peak	н
4960	52.71	-4.04	48.86	74	-25.14	Peak	Н
7440	48.90	1.57	51.95	74	-22.05	Peak	Н
2483.5	53.45	-9.29	46.75	74	-27.25	Peak	v
4960	50.14	-4.04	46.93	74	-27.07	Peak	V
7440	48.68	1.57	52.46	74	-21.54	Peak	V

Worse case mode:		8DPSK (3D	DH5)	Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	54.51	-9.2	45.80	74	-28.20	Peak	Н
2400	54.90	-9.39	47.22	74	-26.78	Peak	Н
4804	53.66	-4.33	49.40	74	-24.60	Peak	Н
7206	50.89	1.01	49.69	74	-24.31	Peak	Н
2390	53.25	-9.2	44.92	74	-29.08	Peak	V
2400	55.75	-9.39	47.50	74	-26.50	Peak	V
4804	52.68	-4.33	48.73	74	-25.27	Peak	V
7206	49.81	1.01	49.47	74	-24.53	Peak	V

Worse case mode:		8DPSK (3D	DH5)	Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4882	51.81	-4.11	48.93	74	-25.07	peak	Н
7323	50.05	1.51	50.24	74	-23.76	peak	Н
4882	54.08	-4.11	49.08	74	-24.92	peak	V
7323	49.64	1.51	50.85	74	-23.15	peak	V

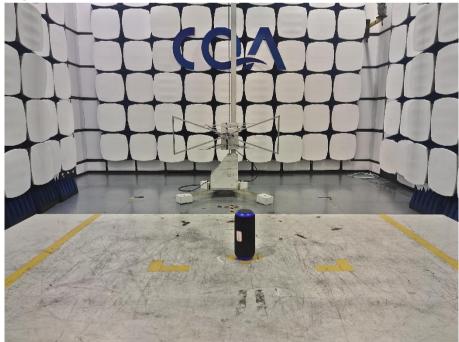
Worse case mode:		8DPSK (3D	DH5)	Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	56.37	-9.29	46.12	74	-27.88	Peak	н
4960	52.14	-4.04	47.91	74	-26.09	Peak	Н
7440	48.65	1.57	51.45	74	-22.55	Peak	Н
2483.5	55.03	-9.29	45.88	74	-28.12	Peak	V
4960	49.26	-4.04	46.68	74	-27.32	Peak	V
7440	50.33	1.57	50.75	74	-23.25	Peak	V

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

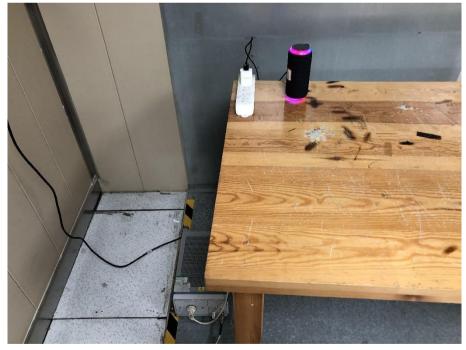
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

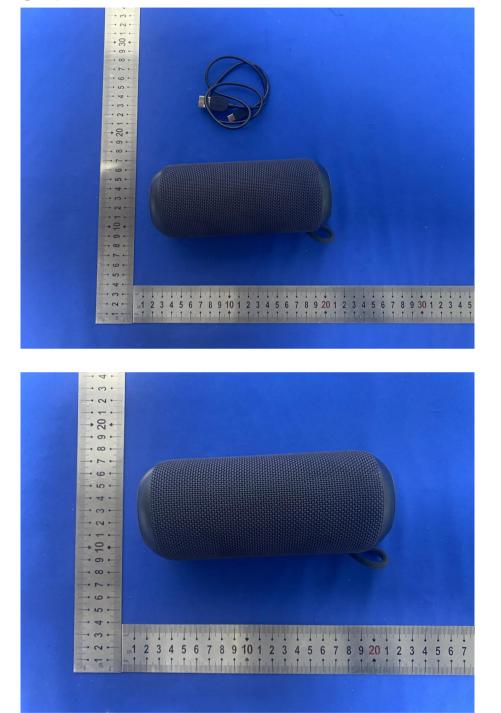
2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.


6 Photographs - EUT Test Setup

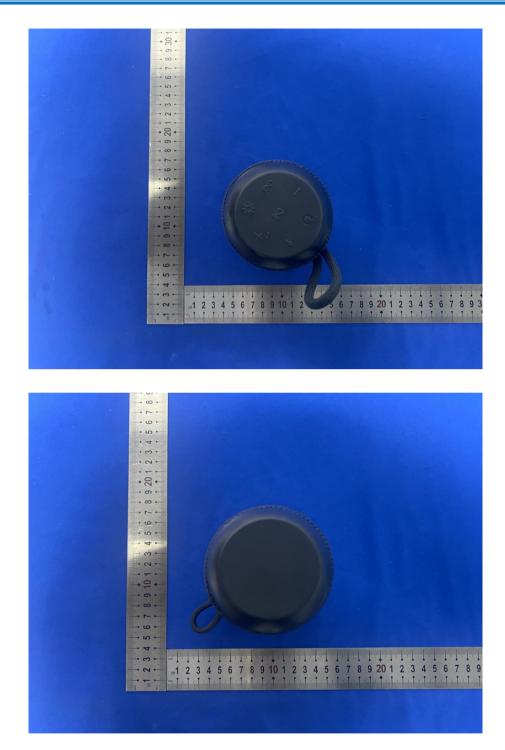
6.1 Radiated Emission

9KHz~30MHz:


30MHz~1GHz:

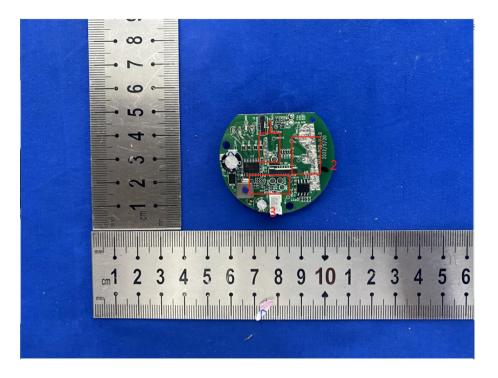

Above 1GHz:

6.2 Conducted Emission



7 Photographs - EUT Constructional Details

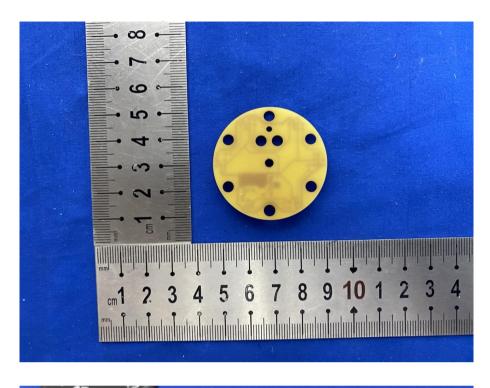




Note:

The position of the red box component is changed

Note:


Location 1 and location 2 have changed wiring, and location 3 has added components

Note:

The position of the cable tie in the red box is changed

*** END OF REPORT ***