

TEST REPORT

Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue: Test Standards Test result

- : Keon by Kiiroo
- Kiiroo
- : KEON

2

- N/A
- : EED32M80046002
 - 2AO5N-KEON
- : Nov. 30, 2020
- 47 CFR Part 15Subpart C

PASS

Prepared for: Feel Robotics B.V. Amstelplein 62, 30th Floor, Amsterdam, 1096BC, Netherlands

Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Page 2 of 82

2 Version

Γ	Version No.	-	Date		(3)	Descript	ion	
	00	Nc	ov. 30, 2020			Origina		
)			I		Ì		

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified. The products have two kinds of delivery way: One is with Stroker, The other is without Stroker. In addition, Stroker does not contain any electronic components.

Page 4 of 82

4 Content

1 COVER PAGE		1
2 VERSION		2
3 TEST SUMMARY		3
4 CONTENT		4
5 TEST REQUIREMENT		5
5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup.		
5.2 TEST ENVIRONMENT		6
6 GENERAL INFORMATION		7
 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY(95% CONFIDENCE LEVELS, K=2 	2)	
7 EQUIPMENT LIST	~	
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION		
Appendix A): 20dB Occupied Bandwidth Appendix B): Carrier Frequency Separation Appendix C): Dwell Time Appendix D): Hopping Channel Number Appendix E): Conducted Peak Output Power	\odot	
Appendix F): Band-edge for RF Conducted Emissions Appendix G): RF Conducted Spurious Emissions Appendix H) Pseudorandom Erequency Hopping Sequence	<u></u>	
Appendix I) Antenna Requirement Appendix J) AC Power Line Conducted Emission Appendix K) Restricted bands around fundamental frequen	ocy (Radiated)	
Appendix L) Radiated Spurious Emissions		
PHOTOGRAPHS OF TEST SETUP		
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	\sim	

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

Operating Environm	ent:			
Temperature:	24.0 °C			
Humidity:	54 % RH	G	(C)	
Atmospheric Pressure:	1010mbar			

5.3	Test Co	ndition							
P	Test Mo	de	Т	/Rx		RF Char Middlo(High(H)	
G	GFSK/π/4DQPSK/8DPSK (DH1, DH3, DH5)		2402MHz ~2480 MHz		Channel 0 2402MHz	Channel 39 2441MHz		Channel78 2480MHz	
	61		S)		6		3		

6 General Information

6.1 Client Information

Applicant:	Feel Robotics B.V.
Address of Applicant:	Amstelplein 62, 30th Floor, Amsterdam, 1096BC, Netherlands
Manufacturer:	Assembling Manufacturing & Sourcing Group B.V.
Address of Manufacturer:	Asterweg 20 S3 1031 HN Amsterdam, Netherlands
Factory:	AMS Product Assembly (Foshan) Co. LTD
Address of Factory:	North Chuangye RoadSongxia Industry District – Nanhai Area 528234 Foshan PR China

6.2 General Description of EUT

Product Name:	Keon by Kiiroo	U		V	
Model No.(EUT):	KEON				
Tark mark:	Kiiroo	13	12		10
EUT Supports Radios application:	2402MHz to 248	0MHz	S		$\langle \mathcal{S}_{i} \rangle$
	DC 5V				
Power Supply:	Li-ion battery	Model:SH553055-49 14.8V 700mAh/10.3	5 36Wh		
Sample Received Date:	Nov. 02, 2020	V		V	
Sample tested Date:	nple tested Date: Nov. 02, 2020 to Nov. 14, 2020				

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	(\mathcal{C})	6
Bluetooth Version:	4.2		
Modulation Technique:	Frequency Hopping Spread Spect	rum(FHSS)	
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	2	
Number of Channel:	79		(\mathcal{G})
Hopping Channel Type:	Adaptive Frequency Hopping system	ems	\smile
Test Power Grade:	Default		
Test Software of EUT:	espRFTool.exe	63	13
Antenna Type and Gain:	Type: PCB antenna Gain:2dBi	S)	Ś
Test Voltage:	DC 5V		

Operation	Frequency eacl	n of channel	0		(
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
_ 11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		V

6.4 Description of Support Units

The EUT has been tested with associated equipment below

Associated equipment name		Manufacture	model	S/N serial number	Supplied by	Certification
AE1	Notebook	HP	HP ProBook 430 G3	5CG5192QSM	CTI	IC&FCC
AE2	Power supply Unit	OPPO	Ak933JH	J51642000007	СТІ	IC&FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

Hotline: 400-6788-333

6.7 Abnormalities from Standard Conditions

None.

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty(95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
		0.46dB (30MHz-1GHz)
2)	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dedicted Sourieus emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
Λ	Conduction omission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%
(\mathbb{N})	(25)	(A) (A)

Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

www.cti-cert.com E-mail: info@cti-cert.com

Equipment List 7

	RF test system								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021				
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021				
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021				
High-pass filter	Sinoscite	FL3CX03WG18NM 12-0398-002	(4)	(31))				
High-pass filter	MICRO- TRONICS	SPA-F-63029-4							
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021				
PC-1	Lenovo	R4960d)	(A)	(25)				
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021				
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021				
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	(A)	- 8)				

Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021			
Temperature/ Humidity Indicator	Defu	TH128		(3				
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021			
Barometer	changchun	DYM3	1188					

Hotline: 400-6788-333

Page 11 of 82

Equipment	Manufacturer	Model No.	Serial	Cal. date	Cal. Due date
SE Automatic			Number	(mm-aa-yyyy)	(mm-aa-yyyy)
test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980597	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		- ,
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	$(\mathbf{\Theta})$	(
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710		~
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		(S)
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		\bigcirc
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	((

3M Semi/full-anechoic C	hamber				
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938-003	10-16-2020	10-15-2021
Multi device Controller	maturo	NCD/070/10711 112	~~~		
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~
Cable line	Fulai(3M)	SF106	5217/6A	(J)	(67)

Doculto Li

8 Radio Technical Requirements Specification Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudo random Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)
100	195		125	

Hotline: 400-6788-333

Appendix A): 20dB Occupied Bandwidth

Test Limit

According to §15.247(a) (1)

20 dB Bandwidth : For reporting purposes only.

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as Section 8.1 and ANSI C63.10: 2013 clause 7.8.7,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =30kHz, VBW = 100kHz and Detector = Peak, to measurement 20dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Page 15 of 82

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	0.9455	0.84237	PASS
GFSK	МСН	0.9441	0.84261	PASS
GFSK	НСН	0.9470	0.84505	PASS
π/4DQPSK	LCH	1.316	1.1764	PASS
π/4DQPSK	МСН	1.319	1.1774	PASS
π/4DQPSK	НСН	1.313	1.1788	PASS
8DPSK	LCH	1.310	1.1824	PASS
8DPSK	МСН	1.311	1.1821	PASS
8DPSK	НСН	1.309	1.1808	PASS

Test Graph

Page 16 of 82

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 17 of 82

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 18 of 82

80	OPSK/HCH	10 dB/dV 2010 10 dB/dV 10 dD/dD/ 10 dD/dD/dD/ 10 dD/dD/dD/ 10 dD/dD/dD/dD/ 10 dD/dD/dD/ 10 dD/dD/dD/dD/dD/ 10 dD/dD/dD/dD/dD/ 10 dD/dD/dD/dD/dD/dD/dD/dD/dD/dD/dD/dD/dD/d	m Analyse - Occupied BV profiles (Constraint) #FGain:Low Ref Offset 19.77 dB Ref 19.77 dB GHz 0 KHz ed Bandwidth 1.1808 Mt Freq Error - 29.132 ndwidth 1.309	Center Freq: 24000000 GHz Trig: Freq: 24000000 GHz August 10 dB	ALION AUTO 1: 10/10 3: 10/10 Radio Stz: None Radio Device: BTS Spain 3 MH Sweep 3.2 m 6.64 dBm 99.00 % -20.00 dB	Center Freq 2.48000000 GHz 300.000 Hz Auto Man FreqOffset 0 Hz	(H)

Appendix B): Carrier Frequency Separation

Test Limit

According to §15.247(a)(1)

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Limit 🚫	> two-thirds of the 20 dB bandwidth

Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- Set the spectrum analyzer as RBW = 100kHz, VBW = 300kHz, Sweep = auto.
 Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

Test Setup

Page 20 of 82

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.002	PASS
GFSK	МСН	1.032	PASS
GFSK	НСН	1.066	PASS
π/4DQPSK	LCH	1.054	PASS
π/4DQPSK	МСН	1.184	PASS
π/4DQPSK	НСН	0.968	PASS
8DPSK	LCH	0.988	PASS
8DPSK	мсн 🕓	1.004	PASS
8DPSK	НСН	1.010	PASS

Page 21 of 82

Page 22 of 82

Page 23 of 82

80	OPSK/HCH	Image: State of the s	Comparison of the second	Sense.MT SArge SArge SAtten: 10 dB Avg A Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg	Αμιθι ΑυτΟ 21:32 7 PMAR 32:32 Τματε 32:32 7 MAR 32:32 Τματε 32:32 7 MAR 32:32 ΔΜΚΓ1 1.010 MH -0.407 cl -0.407 cl Τματε 2:32 -0.407 cl -0.407 cl Σtop 2.4.80 500 CH Stop 2.4.80 500 CH Stop 2.4.80 500 CH Stop 2.4.80 500 CH FUNCTION MULE -0.407 cl FUNCTION MORTH FUNCTION MULE -0.407 cl Stop 2.4.80 500 CH Stop 2.4.80 500 CH -0.407 cl Stop 2.4.80 500 CH -0.407 cl -0.407 cl Stop 2.4.80	Center Freq Auto Tune Center Freq 2.47960000 GHz C47960000 GHz C47960000 GHz C47960000 GHz CFStep 2.48060000 GHz CFStep 200.000 Hz CFStep	C.S.

Appendix C): Dwell Time

Test Limit

According to §15.247(a)(1)(iii),

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW, VBW=1MHz, Sweep = 1 ms

Page 25 of 82

Result Table

Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
GFSK	DH1	LCH	0.3762	320	0.12	0.10	PASS
GFSK	DH1	МСН	0.37493	320	0.12	0.12	PASS
GFSK	DH1	нсн	0.3762	320	0.12	0.12	PASS
GFSK	DH3	LCH	1.63147	160	0.261	0.52	PASS
GFSK	DH3	МСН	1.63146	160	0.261	0.52	PASS
GFSK	DH3	нсн	1.63147	160	0.261	0.43	PASS
GFSK	DH5	LCH	2.8612	106.7	0.305	0.76	PASS
GFSK	DH5	МСН	2.8612	106.7	0.305	0.76	PASS
GFSK	DH5	нсн	2.8612	106.7	0.305	0.46	PASS

Page 26 of 82

Test Graph

Page 27 of 82

Page 28 of 82

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix D): Hopping Channel Number

Test Limit

According to §15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 7.8.3

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW =100KHz, VBW = 300KHz.
- 4.Max hold, view and count how many channel in the band.

Page 30 of 82

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS
Test Graph	(S)		(G ^N)
		Graphs	
(A)		Bit Experience Auton Autro Bit Social Statement Conter Freq 2.441750000 GHz Experience Frequent Conter Freq 2.441750000 GHz State Frequent Auton Autro Bit Social Statement Auton Autro Auton Autro	Sy S
GFSK/Hop	(A)	305 305 <td>o GHz Step Man Offset 0 Hz</td>	o GHz Step Man Offset 0 Hz
(A)	é	0 10 11 </td <td></td>	
Ð	Ì	Ref Officet 19.5 dB ΔMkr1 77.989 0 MHz Auto 10 dE/du/ Ref 19.30 dBm 1.605 dB 2.605 dB 2.601 dB 2.605 dB 2.600	Tune (Freq 00 GHz 16 GHz
π/4DQPSK/Hop	C	00 5 70 5 70 5 6 6	9 Freq 0 GHz Step Man Man Offset 0 Hz
	(T)	10 11 m istatus 10 11 m istatus 10 11 m istatus 11 m istatus istatus istatus 11 istatus istatus istatus istatus istatus 11 istatus istatus ist	sy Tune
8DPSK/Hop		0.00 72.44770000 2.44175000 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 <td< td=""><td>00 GHz 17 Freq 10 GHz 10 GHz 10 GHz 10 GHz</td></td<>	00 GHz 17 Freq 10 GHz 10 GHz 10 GHz 10 GHz
Ð	(T)	MMR MORE THE CSUL X Y FUNCTION FUNCTION WIDTH FUNCTION WIDTH	Offset 0 Hz

Hotline: 400-6788-333 www.cti-cert.com

E-mail: info@cti-cert.com

Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 31 of 82

Appendix E): Conducted Peak Output Power

Test Limit

According to §15.247(b)(1).

Peak output power:

FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

	🖂 Antenna not exceed 6 dBi : 21dBm	
Limit	☐ Antenna with DG greater than 6 dBi ∶ 21dBm	
	[Limit = 30 – (DG – 6)]	S.

Average output power : For reporting purposes only.

Test Procedure

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows :
 - a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - b) RBW > 20 dB bandwidth of the emission being measured.
 - c) VBW \geq RBW.
 - d) Sweep: Auto.
 - e) Detector function: Peak.
 - f) Trace: Max hold.
 - g) Allow trace to stabilize.
 - h) Use the marker-to-peak function to set the marker to the peak of the emission
- 4. Measure and record the result in the test report.

Page 32 of 82

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	0.745	PASS
GFSK	МСН	0.983	PASS
GFSK	НСН	0.721	PASS
π/4DQPSK	LCH	0.833	PASS
π/4DQPSK	МСН	1.414	PASS
π/4DQPSK	НСН	1.461	PASS
8DPSK	LCH 🧷	1.353	PASS
8DPSK	мсн	1.862	PASS
8DPSK	НСН	1.986	PASS

Page 33 of 82

Test Graph

Page 34 of 82

Page 36 of 82

Appendix F): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d),

Limit		-20 dBc		
Ì	S	G	G	G

Test Procedure

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.

Test Setup

Page 37 of 82

Result Table

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
CESK		2402	0.186	Off	-58.916	-19.81	PASS
GFSK	LCH	2402	3.671	On	-58.939	-16.33	PASS
OFEK	ЦСЦ	2490	0.929	Off	-51.009	-19.07	PASS
GFSK	псп	2400	4.315	On	-49.977	-15.69	PASS
		2402	-1.889	Off	-59.789	-21.89	PASS
II/4DQP3K	LCH	2402	4.001	On	-58.223	-16	PASS
	ЦСЦ	2490	-1.301	Off	-54.086	-21.3	PASS
II/4DQP5K	псп	2400	4.809	On	-48.522	-15.19	PASS
00001		2402	-1.833	Off	-59.832	-21.83	PASS
ODPSK	LCH	2402	3.939	On	-57.777	-16.06	PASS
00001	ЦСЦ	2490	-0.993	Off	-54.571	-20.99	PASS
ODPSK		2480	4.913	On	-48.310	-15.09	PASS

Page 38 of 82

Page 39 of 82

Page 40 of 82

Page 41 of 82

	Keycigit Spectrum Analyzer - Swept SA Zenter Freq 2.485000000 CHiz Freq 2.485000000 CHiz From Av IFGaint.ew IFGaint.ew	ALIGN AUTO 01:37:47 PM Nov 05, 2020 Avg Type: RMS TRACE 123:43 5 vg[Hold: 100/100 Tryte Der DPPPP	zy ■
	Ref 0ffset 19.77 dB 10 dB/dtv Ref 19.77 dBm 9.77	Mkr4 2.498 42 GHz -48.310 dBm Cente 2.48500000	Freq 0 GHz
	102 002 002 402 602 403 602	Store 2.4700000	Freq 0 GHz Freq
8DPSK/HCH/Hop	602 702 Start 2.47000 CHz #Res BW 100 kHz #VBW 300 kHz we work the first start	2.50000000 Stop 2.50000 GHz Sweep 2.933 ms (1001 pts) Electrometrial Electrometrial Auto	0 GHz Step 0 MHz Man
	1 N 1 1 2470 99 GHz 4 913 dBm 2 N 1 f 2483 59 GHz 500 f4 dBm 3 N 1 f 2483 59 GHz 500 f4 dBm 4 N 1 f 2488 40 GHz 58 253 dBm 4 N 1 f 2488 42 GHz 48 310 dBm 6 7 7 7 7 8 8 8 8 8	Freq	Offset 0 Hz
	9 10 11 Msg	STATUS	

Appendix G): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d),

Limi	t 🔿	-20 dBc		
9	S	G	S	(C)

Test Procedure

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

Test Setup

Hotline: 400-6788-333

Page 43 of 82

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	0.423	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	МСН	0.643	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	0.784	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	-2.02	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	МСН	-1.133	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	НСН	-1.19	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	-1.837	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	мсн	-1.119	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	НСН	-1.236	<limit< td=""><td>PASS</td></limit<>	PASS

Page 44 of 82

Page 45 of 82

Page 46 of 82

Page 47 of 82

Page 48 of 82

Page 49 of 82

Page 50 of 82

Page 51 of 82

Page 52 of 82

Appendix H) Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom orderec list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

Number of shift register stages: 9

• Length of pseudo-random sequence: 2⁹ -1 = 511 bits

· Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 8 73 16 75 1

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Appendix I) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

Appendix J) AC Power Line Conducted Emission

	Test Procedure:	Test frequency range :150KHz	-30MHz	(\mathbf{G}^{*})	
		1) The mains terminal disturba	nce voltage test was o	conducted in a shie	elded room.
Ì		 The EUT was connected to Stabilization Network) whic power cables of all other u which was bonded to the gu for the unit being measured multiple power cables to a s exceeded. 	AC power source thro h provides a 50Ω/50µ hits of the EUT were ound reference plane d. A multiple socket o ingle LISN provided th	ough a LISN 1 (Lir μH + 5Ω linear imp connected to a se in the same way a putlet strip was use he rating of the LIS	the Impedance bedance. The cond LISN 2, as the LISN 1 ed to connect SN was not
		 The tabletop EUT was place reference plane. And for flo horizontal ground reference 	ed upon a non-metall or-standing arrangem plane,	ic table 0.8m abovent, the EUT was	ve the ground placed on the
		 The test was performed wir EUT shall be 0.4 m from the reference plane was bonde 	h a vertical ground re e vertical ground refer d to the horizontal gro	eference plane. Th ence plane. The v ound reference pla	e rear of the ertical ground ne. The LISN
Ì		1 was placed 0.8 m from t ground reference plane fo plane. This distance was be All other units of the EUT a LISN 2.	he boundary of the u r LISNs mounted o etween the closest po nd associated equipm	nit under test and n top of the grou ints of the LISN 1 nent was at least 0	bonded to a ind reference and the EUT. .8 m from the
	(it)	5) In order to find the maximu all of the interface cables conducted measurement.	m emission, the relati must be changed a	ve positions of enactorial enactoring to ANS	quipment and SI C63.10 on
	Limit:		Limit (d	BuV)	
			Quasi-peak	Average	
12		0.15-0.5	66 to 56*	56 to 46*	1
(\mathbf{G})		0.5-5	56	46	(3)
		5-30	60	50	
		* The limit decreases linearly MHz to 0.50 MHz. NOTE : The lower limit is applie	with the logarithm of t cable at the transition	the frequency in th	ne range 0.15

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2130	38.48	9.90	48.38	63.09	-14.71	QP	
2	0.2130	24.15	9.90	34.05	53.09	-19.04	AVG	
3	0.2850	38.17	10.04	48.21	60.67	-12.46	QP	
4	0.2850	25.47	10.04	35.51	50.67	-15.16	AVG	
5	0.4290	35.14	9.96	45.10	57.27	-12.17	QP	
6	0.4290	21.59	9.96	31.55	47.27	-15.72	AVG	
7	0.5550	22.34	10.02	32.36	46.00	-13.64	AVG	
8 *	0.5730	36.78	10.04	46.82	56.00	-9.18	QP	
9	0.9015	34.20	9.85	44.05	56.00	-11.95	QP	
10	0.9105	15.97	9.85	25.82	46.00	-20.18	AVG	
11	1.3560	14.29	9.82	24.11	46.00	-21.89	AVG	
12	1.3965	34.04	9.81	43.85	56.00	-12.15	QP	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Page 57 of 82

Appendix K) Restricted bands around fundamental frequency (Radiated)

	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark]		
		30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak			
12			Peak	1MHz	3MHz	Peak			
6		Above IGHZ	Peak	1MHz	10Hz	Average	5)		
	Test Procedure:	Below 1GHz test procedu	re as below:						
		 a. The EUT was placed of at a 3 meter semi-anec determine the position of b. The EUT was set 3 me was mounted on the top c. The antenna height is v determine the maximur polarizations of the anter 	n the top of a ro hoic camber. Th of the highest ra ters away from p of a variable-h varied from one n value of the fi enna are set to	tating table ne table wa adiation. the interferencight anter meter to fo eld strength make the n	 0.8 meters s rotated 3 ence-receinna tower. ur meters Both horoneasureme 	rs above the g 360 degrees to ving antenna, above the gro rizontal and ve ent.	which which und to ertical		
		 d. For each suspected em the antenna was tuned table was turned from 0 e. The test-receiver system Bandwidth with Maximut f. Place a marker at the end frequency to show com bands. Save the spectra for lowest and highest of 	to heights from to heights from degrees to 360 m was set to Pe um Hold Mode. pliance. Also m um analyzer plo channel	was arran 1 meter to 0 degrees t eak Detect I eak Detect I easure any ot. Repeat f	ged to its v 4 meters a o find the r Function a losest to th emissions or each po	worst case and and the rotatal maximum reac nd Specified ne transmit s in the restrict ower and mode	d then ble ling. ted ulation		
C		 Above 1GHz test procedure g. Different between above to fully Anechoic Chammetre(Above 18GHz the h. b. Test the EUT in the I i. The radiation measures Transmitting mode, and j. Repeat above procedure 	re as below: ber and change ne distance is 1 owest channel ments are perfo d found the X av res until all freq	e, change fr e form table meter and , the Highes rmed in X, kis positioni uencies me	om Semi- 0.8 metre table is 1.9 st channel Y, Z axis p ng which i asured wa	Anechoic Cha to 1.5 5 metre). oositioning for t is worse case as complete.	e.		
	Limit:	Frequency	Limit (dBuV	/m @3m)	Rer	mark			
		30MHz-88MHz	40.0)	Quasi-pe	eak Value			
		88MHz-216MHz	43.	5	Quasi-pe	eak Value			
6		216MHz-960MHz	46.0) (А	Quasi-pe	eak Value			
6		960MHz-1GHz	54.0) (0	Quasi-pe	eak Value			
		Above 1GHz	54.0)	Averag	je Value			
			74.0)	Peak	Value			
L)	- 6	(h)			

Test plot as follows:

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.05	50.55	74.00	23.45	Pass	Horizontal
2	2402.0168	32.26	13.31	-43.12	93.23	95.68	74.00	-21.68	Pass	Horizontal
1							123			

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.49	49.99	74.00	24.01	Pass	Vertical
2	2402.0738	32.26	13.31	-43.12	94.99	97.44	74.00	-23.44	Pass	Vertical
1.							123			1.0

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.31	38.81	54.00	15.19	Pass	Horizontal
2	2401.9598	32.26	13.31	-43.12	71.62	74.07	54.00	-20.07	Pass	Horizontal
1. 1							123			

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.46	38.96	54.00	15.04	Pass	Vertical
2	2401.9408	32.26	13.31	-43.12	71.62	74.07	54.00	-20.07	Pass	Vertical
1							123			1.6

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	92.45	95.11	74.00	-21.11	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	50.83	53.48	74.00	20.52	Pass	Horizontal
1.0		1			1.00					1.5

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7872	32.37	13.39	-43.10	93.66	96.32	74.00	-22.32	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	50.31	52.96	74.00	21.04	Pass	Vertical
1.0				•	1.00					1.5

(3)

 Mode:
 GFSK Transmitting
 Channel:
 2480

 Remark:
 AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	71.31	73.97	54.00	-19.97	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	37.89	40.54	54.00	13.46	Pass	Horizontal
1. 1.		1		•		•			•	1.0

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	71.76	74.42	54.00	-20.42	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	37.94	40.59	54.00	13.41	Pass	Vertical
1.0		1			1.00		1.3			1.5

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.76	50.26	74.00	23.74	Pass	Horizontal
2	2401.8331	32.26	13.31	-43.12	88.96	91.41	74.00	-17.41	Pass	Horizontal
1. 1							123			

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.50	50.00	74.00	24.00	Pass	Vertical
2	2402.1308	32.26	13.31	-43.12	89.89	92.34	74.00	-18.34	Pass	Vertical
1							12			1.0

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.09	38.59	54.00	15.41	Pass	Horizontal
2	2402.0421	32.26	13.31	-43.12	67.81	70.26	54.00	-16.26	Pass	Horizontal
1.00										

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.16	38.66	54.00	15.34	Pass	Vertical
2	2402.0231	32.26	13.31	-43.12	67.44	69.89	54.00	-15.89	Pass	Vertical
1.1										1

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	88.69	91.35	74.00	-17.35	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	48.65	51.30	74.00	22.70	Pass	Horizontal
1.0		1		•	1.00					1.5

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9149	32.37	13.39	-43.10	91.85	94.51	74.00	-20.51	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.69	52.34	74.00	21.66	Pass	Vertical
1.1		1				•	123			1.0

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	66.80	69.46	54.00	-15.46	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.75	39.40	54.00	14.60	Pass	Horizontal
1.0		1.		•	1.00		1.3			1.5

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	68.86	71.52	54.00	-17.52	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	37.44	40.09	54.00	13.91	Pass	Vertical

Note:

1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK and 8DPSK modulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Appendix L) Radiated Spurious Emissions

Receiver Setup:	(GT)	6	F.).		G
	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
2	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
6		Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variableheight antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

. .

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:										
	Frequency	Field strength	Limit	Remark	Measurement					
	0.009MHz-0.490MHz	Hz 2400/F(kHz) -		S'	300					
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30					
	1.705MHz-30MHz	30 -		-	30					
	30MHz-88MHz	100	40.0	Quasi-peak	3					
	88MHz-216MHz	150	43.5	Quasi-peak	3					
	216MHz-960MHz	200	46.0	Quasi-peak	3					
	960MHz-1GHz	500	54.0	Quasi-peak	3					
	Above 1GHz	500	54.0	Average	3					
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.									

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode:			GFSK Tr	ansmitting				Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/ m]	Margin [dB]	Result	Polarity	Remark
1	36.5967	11.21	0.67	-31.38	45.07	25.57	40.00	14.43	Pass	Н	PK
2	47.9468	13.20	0.78	-31.95	44.35	26.38	40.00	13.62	Pass	н	PK
3	120.0250	9.20	1.30	-32.07	56.47	34.90	43.50	8.60	Pass	н	PK
4	159.9930	7.90	1.47	-31.98	58.72	36.11	43.50	7.39	Pass	Н	PK
5	319.9620	13.64	2.12	-31.83	57.22	41.15	46.00	4.85	Pass	н	PK
6	639.9970	19.32	3.07	-32.11	45.88	36.16	46.00	9.84	Pass	Н	PK
7	36.5967	11.21	0.67	-31.38	44.84	25.34	40.00	14.66	Pass	V	PK
8	53.5734	12.63	0.83	-32.01	38.19	19.64	40.00	20.36	Pass	V	PK
9	120.0250	9.20	1.30	-32.07	45.11	23.54	43.50	19.96	Pass	V	PK
10	159.9930	7.90	1.47	-31.98	49.21	26.60	43.50	16.90	Pass	V	PK
11	319.9620	13.64	2.12	-31.83	51.74	35.67	46.00	10.33	Pass	V	PK
12	600.0290	19.00	2.96	-31.50	40.49	30.95	46.00	15.05	Pass	V	PK

Page 76 of 82

Radiated Emission Above 1GHz

Mode:			GFSK Tr	ansmitting				Channe	l:	2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/ m]	Margin [dB]	Result	Polarity	Remark
1	1447.2447	28.35	2.95	-42.88	51.10	39.52	74.00	34.48	Pass	Н	PK
2	1960.8961	31.44	3.43	-43.10	50.36	42.13	74.00	31.87	Pass	Н	PK
3	3203.0135	33.28	4.64	-43.10	52.67	47.49	74.00	26.51	Pass	Н	PK
4	4804.1203	34.50	4.55	-42.80	50.62	46.87	74.00	27.13	Pass	Н	AV
5	7413.2942	36.51	5.85	-42.11	48.84	49.09	74.00	24.91	Pass	Н	PK
6	9291.4194	37.64	6.63	-42.05	49.42	51.64	74.00	22.36	Pass	Н	PK
7	1990.6991	31.64	3.46	-43.18	56.07	47.99	74.00	26.01	Pass	V	PK
8	3191.0127	33.28	4.64	-43.11	51.87	46.68	74.00	27.32	Pass	V	PK
9	4804.1203	34.50	4.55	-42.80	52.68	48.93	74.00	25.07	Pass	V	PK
10	6879.2586	36.05	5.72	-42.27	49.51	49.01	74.00	24.99	Pass	V	PK
11	9252.4168	37.65	6.60	-42.05	48.84	51.04	74.00	22.96	Pass	V	AV
12	10417.4945	38.38	7.14	-42.01	48.97	52.48	74.00	21.52	Pass	V	PK
		1.00	1.00							1.00	- 11-

Mode:			GFSK Tr	ansmitting		Channel:		2441			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2045.7046	31.76	3.55	-43.18	50.34	42.47	74.00	31.53	Pass	Н	PK
2	3255.0170	33.30	4.46	-43.09	50.69	45.36	74.00	28.64	Pass	Н	PK
3	4997.1331	34.50	4.82	-42.80	50.51	47.03	74.00	26.97	Pass	Н	PK
4	6739.2493	36.00	5.65	-42.36	49.17	48.46	74.00	25.54	Pass	Н	AV
5	7346.2898	36.45	5.85	-42.13	49.10	49.27	74.00	24.73	Pass	Н	PK
6	1992.4993	31.65	3.46	-43.18	57.41	49.34	74.00	24.66	Pass	Н	PK
7	3255.0170	33.30	4.46	-43.09	52.63	47.30	74.00	26.70	Pass	V	PK
8	5596.1731	35.15	5.10	-42.60	49.39	47.04	74.00	26.96	Pass	V	AV
9	6987.2658	36.09	5.71	-42.20	49.56	49.16	74.00	24.84	Pass	V	PK
10	9322.4215	37.64	6.63	-42.07	48.79	50.99	74.00	23.01	Pass	V	PK
11	10578.5052	38.52	6.95	-42.00	48.79	52.26	74.00	21.74	Pass	V	PK
12	1992.4993	31.65	3.46	-43.18	57.41	49.34	74.00	24.66	Pass	V	AV
10.7		1 C .	1 C		1621		1.03	91 J		0.00	

Hotline: 400-6788-333

Page 77 of 82

Mode:			GFSK Tr	ansmitting				Channel		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1820.8821	30.52	3.35	-42.77	51.42	42.52	74.00	31.48	Pass	Н	PK
2	3307.0205	33.32	4.57	-43.10	51.32	46.11	74.00	27.89	Pass	Н	PK
3	4959.1306	34.50	4.82	-42.80	51.67	48.19	74.00	25.81	Pass	н	PK
4	7787.3192	36.49	6.14	-42.17	48.88	49.34	74.00	24.66	Pass	н	AV
5	9302.4202	37.64	6.64	-42.06	49.15	51.37	74.00	22.63	Pass	н	PK
6	10648.5099	38.53	7.01	-42.00	49.63	53.17	74.00	20.83	Pass	н	PK
7	1994.2994	31.66	3.46	-43.18	56.94	48.88	74.00	25.12	Pass	V	PK
8	3306.0204	33.32	4.57	-43.09	52.99	47.79	74.00	26.21	Pass	V	AV
9	4960.1307	34.50	4.82	-42.80	51.35	47.87	74.00	26.13	Pass	V	PK
10	6335.2223	35.87	5.46	-42.54	49.14	47.93	74.00	26.07	Pass	V	PK
11	7872.3248	36.45	5.99	-42.17	49.06	49.33	74.00	24.67	Pass	V	PK
12	10431.4954	38.40	7.09	-42.01	48.79	52.27	74.00	21.73	Pass	V	AV

Mode:			8DPSK		Channel:		2402				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1908.6909	31.10	3.42	-42.98	50.78	42.32	74.00	31.68	Pass	Н	PK
2	3202.0135	33.28	4.64	-43.10	51.38	46.20	74.00	27.80	Pass	Н	PK
3	5004.1336	34.50	4.82	-42.79	50.49	47.02	74.00	26.98	Pass	Н	PK
4	6413.2275	35.88	5.37	-42.52	49.28	48.01	74.00	25.99	Pass	Н	AV
5	7932.3288	36.43	6.10	-42.19	50.13	50.47	74.00	23.53	Pass	Н	PK
6	10360.4907	38.30	6.98	-42.02	50.09	53.35	74.00	20.65	Pass	Н	PK
7	1792.8793	30.33	3.31	-42.71	54.37	45.30	74.00	28.70	Pass	V	PK
8	2402.1402	32.26	3.92	-43.12	55.72	48.78	74.00	25.22	Pass	V	PK
9	3203.0135	33.28	4.64	-43.10	51.82	46.64	74.00	27.36	Pass	V	PK
10	5060.1373	34.56	4.86	-42.78	50.99	47.63	74.00	26.37	Pass	V	PK
11	7682.3122	36.53	6.22	-42.14	48.91	49.52	74.00	24.48	Pass	V	AV
12	10370.4914	38.32	7.03	-42.02	49.78	53.11	74.00	20.89	Pass	V	PK
0	/		1			•	0			6	J.

Ì

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 78 of 82

Mode:			8DPSK	Transmit	ting			Channel	:	2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµ V/m]	Margin [dB]	Result	Polarity	Remark
1	1804.4804	30.41	3.33	-42.73	51.25	42.26	74.00	31.74	Pass	Н	PK
2	3254.0169	33.30	4.46	-43.10	51.75	46.41	74.00	27.59	Pass	Н	PK
3	5006.1337	34.51	4.83	-42.80	50.85	47.39	74.00	26.61	Pass	Н	PK
4	6882.2588	36.05	5.74	-42.27	49.56	49.08	74.00	24.92	Pass	Н	AV
5	8433.3622	36.57	6.38	-42.03	49.07	49.99	74.00	24.01	Pass	Н	PK
6	10350.4900	38.29	6.92	-42.03	49.41	52.59	74.00	21.41	Pass	Н	PK
7	1993.2993	31.66	3.46	-43.18	57.44	49.38	74.00	24.62	Pass	V	PK
8	3269.0179	33.31	4.50	-43.10	52.13	46.84	74.00	27.16	Pass	V	AV
9	5028.1352	34.53	4.85	-42.79	51.27	47.86	74.00	26.14	Pass	V	PK
10	6459.2306	35.89	5.51	-42.51	49.30	48.19	74.00	25.81	Pass	V	PK
11	7702.3135	36.52	6.26	-42.14	49.32	49.96	74.00	24.04	Pass	V	PK
12	10242.4828	38.14	6.83	-42.06	49.76	52.67	74.00	21.33	Pass	V	AV

Mode:			8DPSK Transmitting							2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1960.4961	31.44	3.43	-43.10	51.10	42.87	74.00	31.13	Pass	Н	PK
2	3307.0205	33.32	4.57	-43.10	51.62	46.41	74.00	27.59	Pass	Н	PK
3	5004.1336	34.50	4.82	-42.79	50.44	46.97	74.00	27.03	Pass	Н	PK
4	6937.2625	36.07	5.83	-42.23	49.76	49.43	74.00	24.57	Pass	Н	AV
5	9157.4105	37.67	6.45	-42.03	48.93	51.02	74.00	22.98	Pass	Н	PK
6	11130.5420	38.68	7.23	-42.00	49.37	53.28	74.00	20.72	Pass	Н	PK
7	1793.8794	30.34	3.31	-42.71	53.20	44.14	74.00	29.86	Pass	V	PK
8	3307.0205	33.32	4.57	-43.10	51.38	46.17	74.00	27.83	Pass	V	AV
9	4588.1059	34.50	4.98	-42.80	48.99	45.67	74.00	28.33	Pass	V	PK
10	5069.1379	34.57	4.84	-42.77	50.99	47.63	74.00	26.37	Pass	V	PK
11	6903.2602	36.06	5.88	-42.26	49.50	49.18	74.00	24.82	Pass	V	PK
12	10258.4839	38.16	6.83	-42.05	50.07	53.01	74.00	20.99	Pass	V	AV
0.2		100	S. 1.		10.3	10	100			0.3	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.