

Page 1 of 104

TEST REPORT

Product Keon by Kiiroo 2 **Trade mark** Kiiroo **KEON** Model/Type reference 10 **Serial Number** N/A **Report Number** EED32M80046003 FCC ID : 2AO5N-KEON Date of Issue Nov. 30, 2020 **Test Standards** 47 CFR Part 15Subpart C 2 **Test result** : PASS Prepared for: Feel Robotics B.V. Amstelplein 62, 30th Floor, Amsterdam, 1096BC, Netherlands Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compi	iled by:	sunlight sun	Reviewed by:	10-	Tom chan
NTER	NATION	Sunlight Sun			Tom Chen
Appro	ved by:	Aavon Ma	Date:	No	ov. 30, 2020
L'ANTRE LE	ort Seal	Aaron Ma			Check No.:3143021120

Page 2 of 104

2 Version

	Version No.		Date		(3)	Description	on	
F	00	No	v. 30, 2020		0	Original	0	
(A)				(S)		Ì		Ì

Report No. : EED32M80046003

3 Test Summary

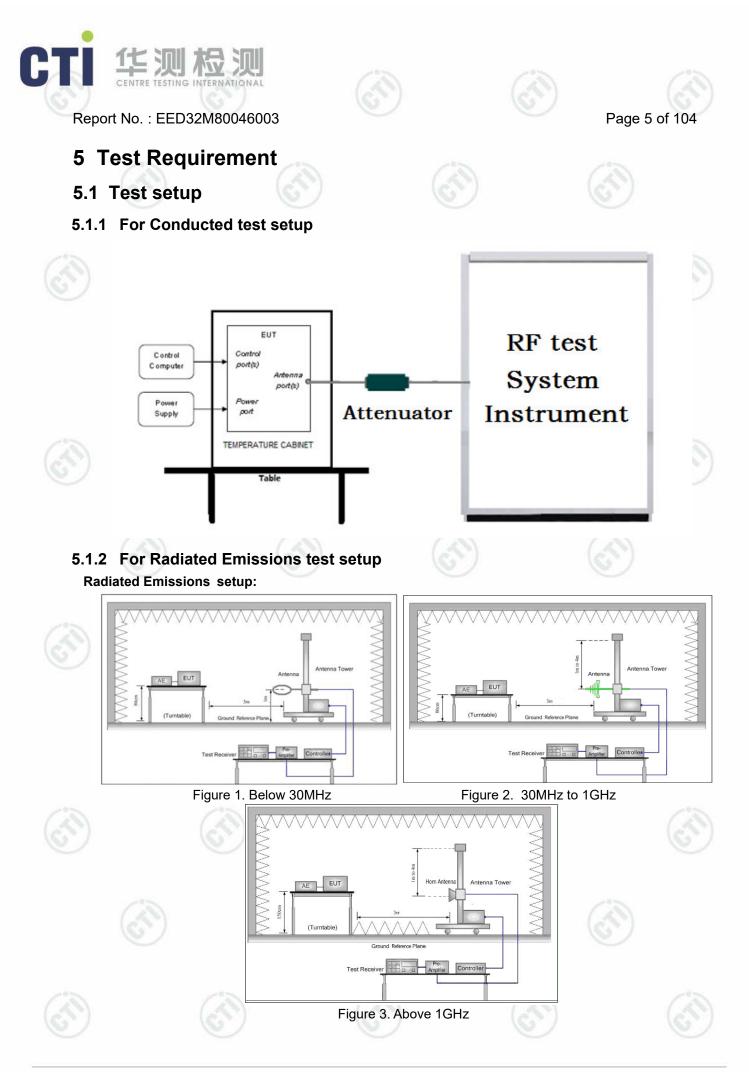
5 Test Summary	20 M	28 m	
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

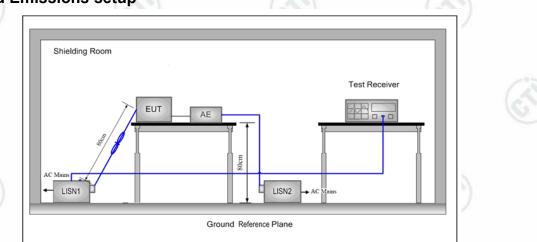
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

The products have two kinds of delivery way: One is with Stroker, The other is without Stroker. In addition, Stroker does not contain any electronic components.



I COVER PAGE		
2 VERSION		
3 TEST SUMMARY		
4 CONTENT		
5 TEST REQUIREMENT		
5.1 TEST SETUP		
5.1.1 For Conducted test setup		
5.1.2 For Radiated Emissions test setup		
5.1.3 For Conducted Emissions test setup		
5.2 TEST ENVIRONMENT 5.3 TEST CONDITION		
GENERAL INFORMATION		
6.1 CLIENT INFORMATION		
6.2 GENERAL DESCRIPTION OF EUT		
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STAN		
6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION		
6.6 DEVIATION FROM STANDARDS		
6.7 ABNORMALITIES FROM STANDARD CONDITIONS		
6.8 OTHER INFORMATION REQUESTED BY THE CUSTOME		
6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LE		
PEQUIPMENT LIST		
3 RADIO TECHNICAL REQUIREMENTS SPECIFICAT	ION	1
Appendix A): Conducted Peak Output Power		1
Appendix A): Conducted Feak Output Fower		
Appendix C): Band-edge for RF Conducted Emissi		
Appendix D): RF Conducted Spurious Emissions		 3
Appendix E): Power Spectral Density		 5
Appendix F): Antenna Requirement		
Appendix G): AC Power Line Conducted Emission		
Appendix H): Restricted bands around fundamenta Appendix I): Radiated Spurious Emissions		
PHOTOGRAPHS OF TEST SETUP		



5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

	- (J		
Operating Environment:	U	e	e
Temperature:	24.0 °C		
Humidity:	54 % RH		1400m
Atmospheric Pressure:	1010mbar		
C.C.	10.00	10.0	S.C.

5.3 Test Condition

Test channel:

TestMade	т./р.		RF Channel	
Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)
000 11h/a/a/UT0		Channel 1	Channel 6	Channel11
802.11b/g/n(HT2	0) 2412MHz ~2462 MHz	2412MHz	2437MHz	2462MHz
002 44 ~ (UT40)		Channel 1	Channel 4	Channel7
802.11n(HT40)	2422MHz ~2452 MHz	2422MHz	2437MHz	2452MHz
Transmitting mod	e: Keep the EUT in transm data rate.	itting mode with all	kind of modulation	and all kind of

Test mode:

Through Pre-scan, 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).

6 General Information

6.1 Client Information

Applicant:	Feel Robotics B.V.
Address of Applicant:	Amstelplein 62, 30th Floor, Amsterdam, 1096BC, Netherlands
Manufacturer:	Assembling Manufacturing & Sourcing Group B.V.
Address of Manufacturer:	Asterweg 20 S3 1031 HN Amsterdam, Netherlands
Factory:	AMS Product Assembly (Foshan) Co. LTD
Address of Factory:	North Chuangye RoadSongxia Industry District - Nanhai Area 528234 Foshan PR China

Page 7 of 104

6.2 General Description of EUT

Product Name:	Keon by Kiiroo	
Model No.(EUT):	KEON	
Trade mark:	Kiiroo	
EUT Supports Radios application:	IEEE 802.11 b/g	y/n(HT20)(HT40): 2412MHz to 2462MHz
e la	DC 5V	
Power Supply:	Li-ion battery	Model:SH553055-4S 14.8V 700mAh/10.36Wh
Sample Received Date:	Nov. 02, 2020	
Sample tested Date:	Nov. 02, 2020 to	o Nov. 14, 2020

6.3 Product Specification subjective to this standard

	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz	
Operation Frequency:	IEEE 802.11n(HT40): 2422MHz to 2452MHz	
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels IEEE 802.11n HT40: 7 Channels	G
Channel Separation:	5MHz	
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM,QPS	SK,BPSK)
Test Power Grade:	Default	
Test Software of EUT:	espRFTool.exe	
Antenna Type and Gain:	Type: Internal antenna Gain: 2dBi	13
Test Voltage:	DC 5V	

Page 8 of 104

Operation	Frequency ea	ch of chanr	nel(802.11b/g/n	НТ20)	1			
Channel	Frequency	Channel	Frequency	Channel	Frequer	псу	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442M	Hz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447M	Hz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452M	Hz		63
Operation	Frequency ea	ch of chanr	nel(802.11n HT4	40)	12			U.
Channe	I Frequ	ency	Channel	Frequence	cy 📃	Chanr	nel F	requency
1	24221	MHz	4	2437MH	z	7	12	2452MHz
2	24271	MHz	5	2442MH	z			
3	24321	MHz	6	2447MH	z		\sim	

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

	ociated nent name	Manufacture	model	S/N serial number	Supplied by	Certification
AE1	Notebook	HP	HP ProBook 430 G3	5CG5192QSM	СТІ	IC&FCC
AE2	Power supply Unit	OPPO	Ak933JH	J51642000007	СТІ	IC&FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

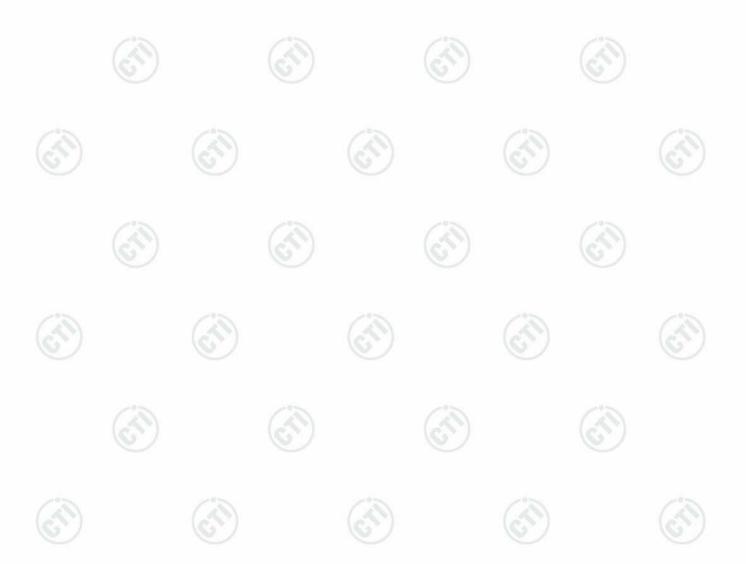
6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2		0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-18GHz)	
	Dedicted Source emission test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	
		(2) (2)	

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002	$\overline{\mathbb{O}}$	(9
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d		67	
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	(c)		<u> </u>

Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021	
Temperature/ Humidity Indicator	Defu	TH128		(- 6	
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021	
Barometer	changchun	DYM3	1188			



Page 11 of 104

	3M S	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	трк	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-16-2020	10-15-2021
Multi device Controller	maturo	NCD/070/107 11112	(2 5)		(2)
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A	1	
Cable line	Fulai(3M)	SF106	5217/6A	(<u></u>)	

Page 12 of 104

		3M full-anechoi			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980597	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		<u> </u>
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		/
Cable line	Times	EMC104-NMNM- 1000	SN160710	(C)	(
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		<u> </u>
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(S)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		\sim

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
est R	esults List:	

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

EUT DUTY CYCLE

Test Mode	Antenna	Channel	Duty Cycle [%]	Limit	Verdict
	Ant1	2412	100		PASS
11B	Ant1	2437	100		PASS
	Ant1	2462	100		PASS
	Ant1	2412	100	G	PASS
11G	Ant1	2437	100	\sim	PASS
	Ant1	2462	100		PASS
	Ant1	2412	100		PASS
11N20SISO	Ant1	2437	100		PASS
	Ant1	2462	100		PASS
11N40SISO	Ant1	2422	100		PASS
	Ant1	2437	100		PASS
	Ant1	2452	100		PASS

Page 15 of 104

Test Graph

Page 16 of 104

Page 17 of 104

Page 18 of 104

Appendix A): Conducted Peak Output Power

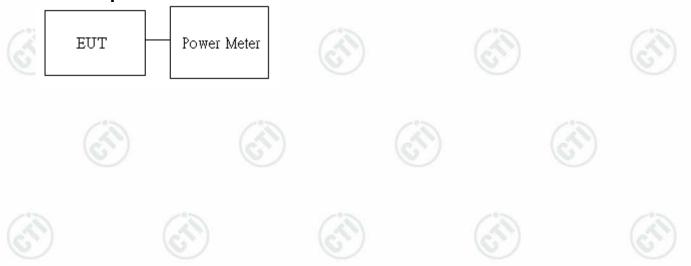
Test Limit

According to §15.247(b)(3),

Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi. If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

	Antenna not exceed 6 dBi : 30dBm
Limit	Antenna with DG greater than 6 dBi : [Limit = $30 - (DG - 6)$]
	Point-to-point operation :

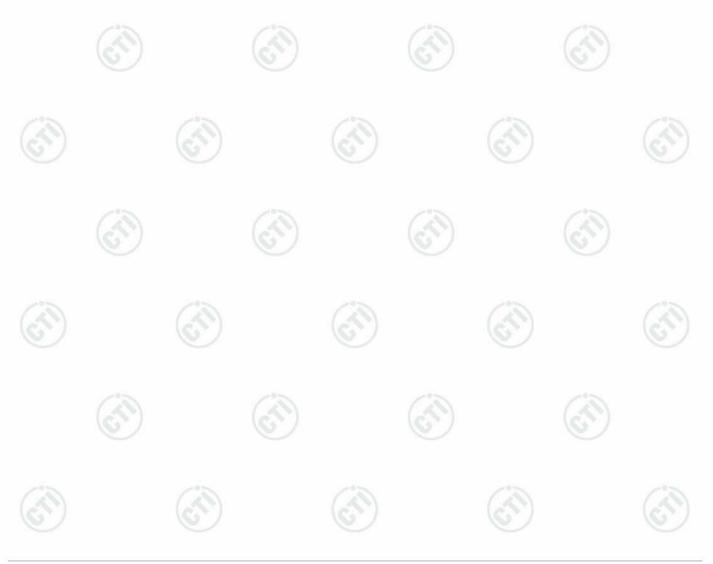

Average output power : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

Test Setup



Page 20 of 104

Test Result			
Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	3.59	PASS
11B	МСН	3.73	PASS
11B	нсн	3.17	PASS
11G	LCH	3.04	PASS
11G	МСН	3.45	PASS
11G	НСН	3.68	PASS
11N20SISO	LCH	3.09	PASS
11N20SISO	МСН	3.28	PASS
11N20SISO	НСН	3.67	PASS
11N40SISO	LCH	3.58	PASS
11N40SISO	МСН	3.57	PASS
11N40SISO	нсн	3.32	PASS

Appendix B): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2),

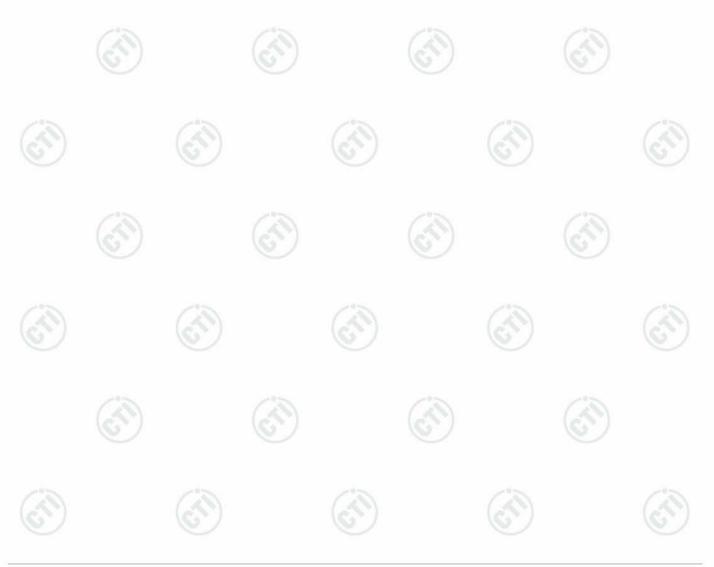
6 dB Bandwidth : Limit Shall be at least 500kHz

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

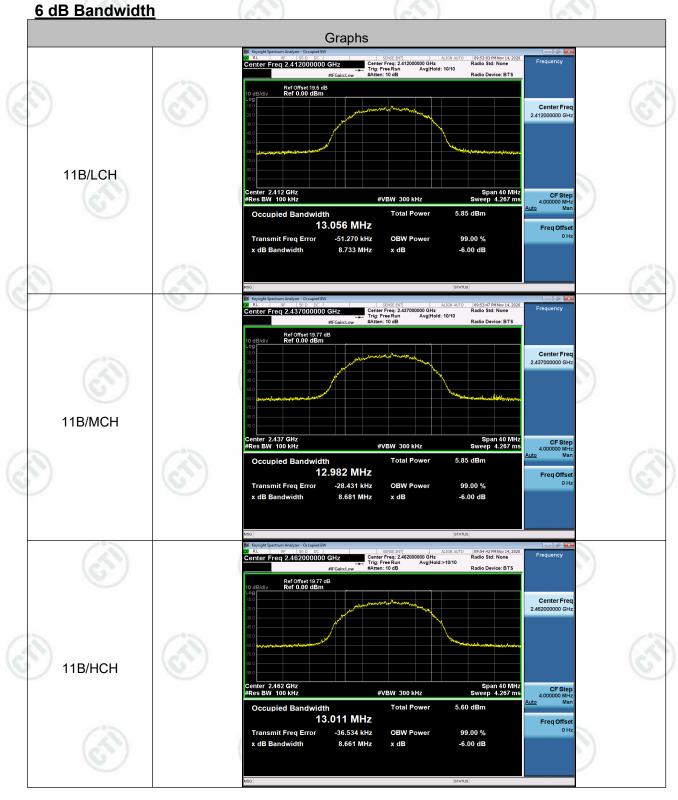
Test method Refer as KDB 558074 D01 and ANSI C63.10: 2013 clause 6.9.2,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =100KHz , VBW = 300KHz and Detector = Peak, to measurement 6dB Bandwidth
- SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.



Page 22 of 104

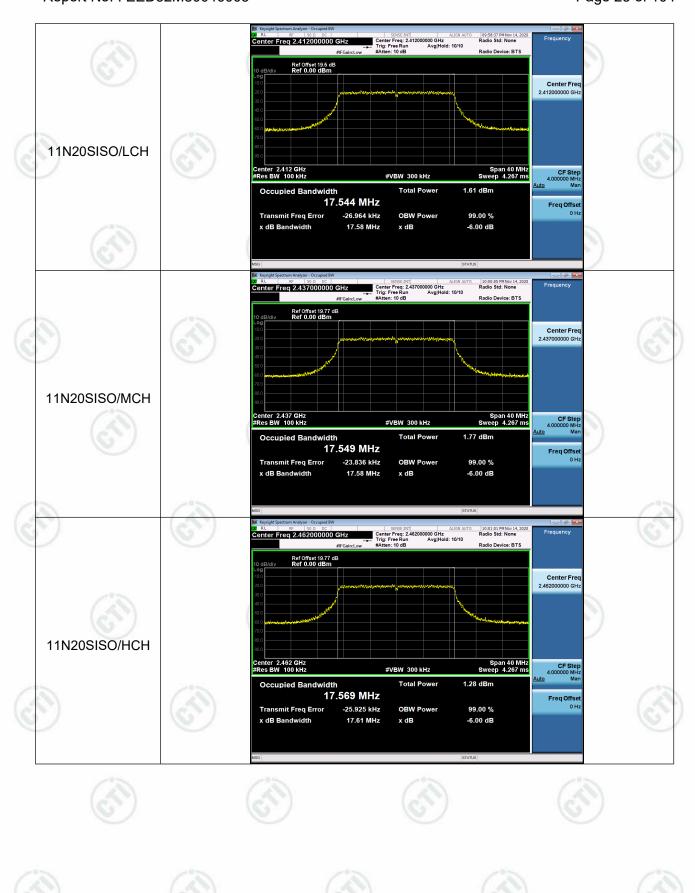
Test Result				
Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
11B	LCH	8.733	13.051	PASS
11B	МСН	8.681	13.022	PASS
11B	НСН	8.661	13.092	PASS
11G	LCH	16.47	16.781	PASS
11G	МСН	16.46	16.790	PASS
11G	НСН	16.48	16.838	PASS
11N20SISO	LCH	17.58	17.572	PASS
11N20SISO	МСН	17.58	17.563	PASS
11N20SISO	НСН	17.61	17.597	PASS
11N40SISO	LCH	36.46	36.524	PASS
11N40SISO	МСН	36.41	36.446	PASS
11N40SISO	НСН	36.38	36.484	PASS



Page 23 of 104

Page

Page 24 of 104



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 25 of 104

Page 26 of 104

Page 27 of 104

Occupied Bandwidth(99%)



E)

Page 28 of 104

(A)

Page 29 of 104

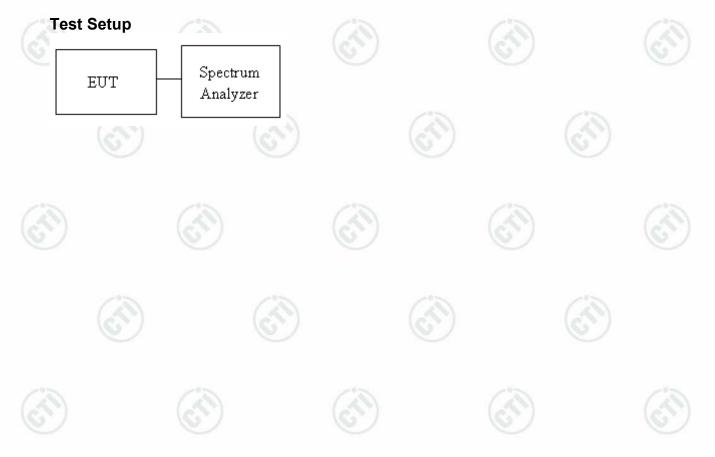
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

S)

Page 30 of 104

Test Limit

According to §15.247(d),


In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

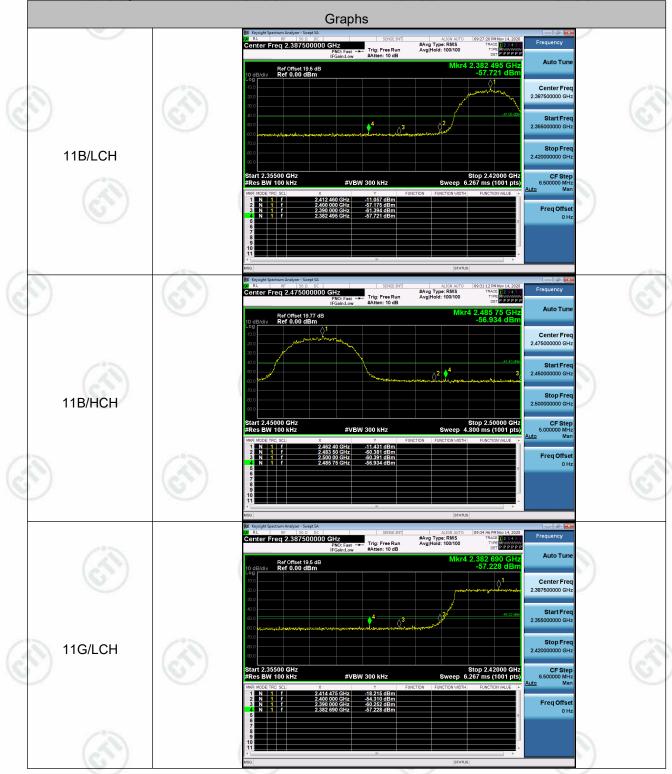
Test method Refer as KDB 558074 D01.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. f the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Page 31 of 104

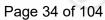
Page 32 of 104

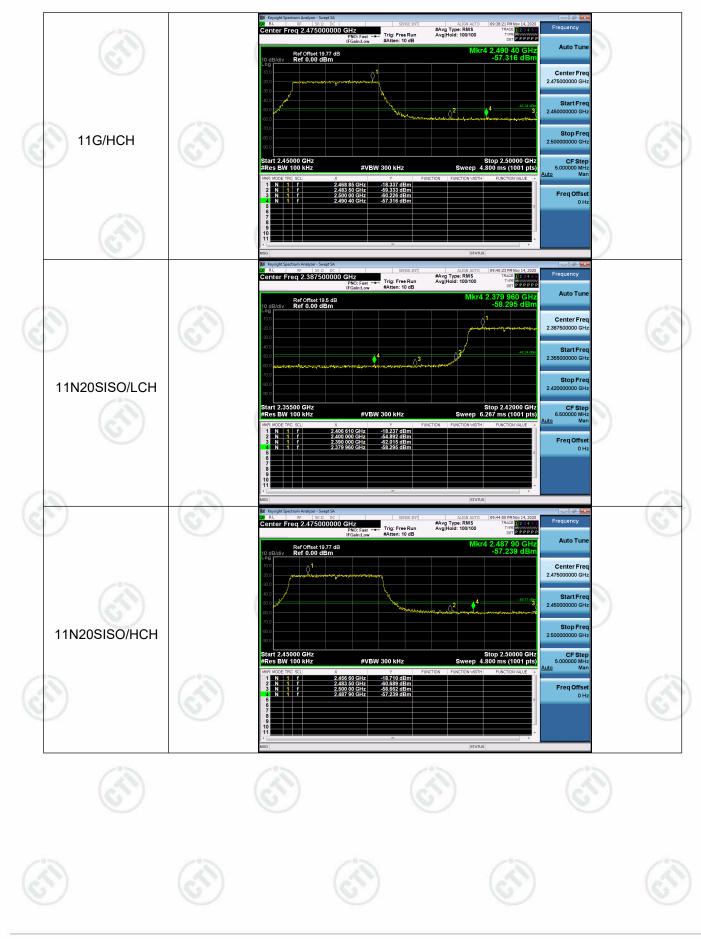
Result Table				(3)	
Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	-11.057	-57.721	-41.06	PASS
11B	НСН	-11.431	-56.934	-41.43	PASS
11G	LCH	-18.215	-57.228	-48.22	PASS
11G	НСН	-18.337	-57.316	-48.34	PASS
11N20SISO	LCH	-18.237	-58.295	-48.24	PASS
11N20SISO	НСН	-18.710	-57.239	-48.71	PASS
11N40SISO	LCH	-17.267	-57.703	-47.27	PASS
11N40SISO	HCH	-21.088	-57.514	-51.09	PASS



Page 33 of 104

Test Graph





3)

Page 35 of 104

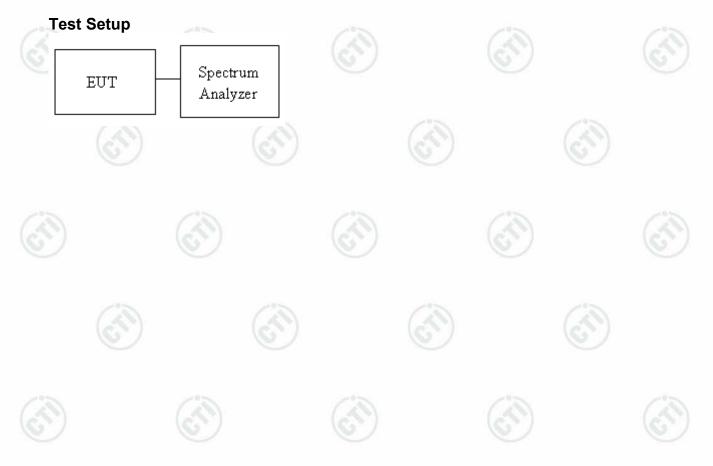
Appendix D): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d),

In any 100 kHz bandwidth outside the authorized frequency band,

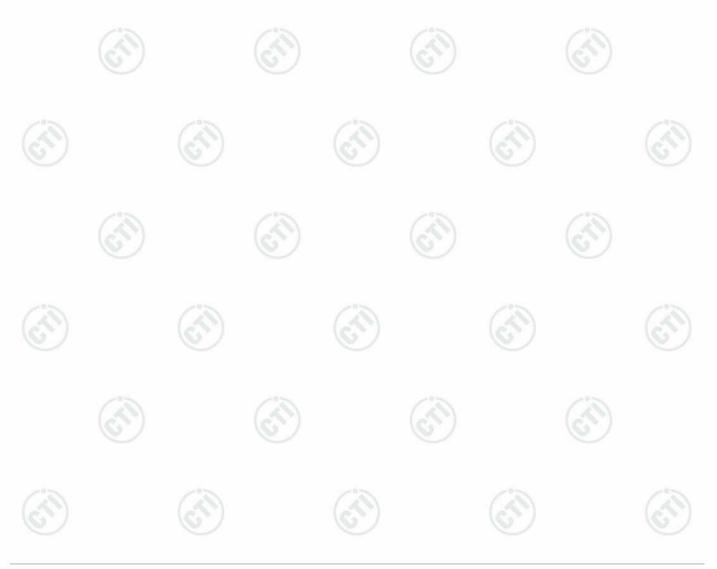
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).


Test Procedure

Test method Refer as KDB 558074 D01.

EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

- SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. f the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.


03

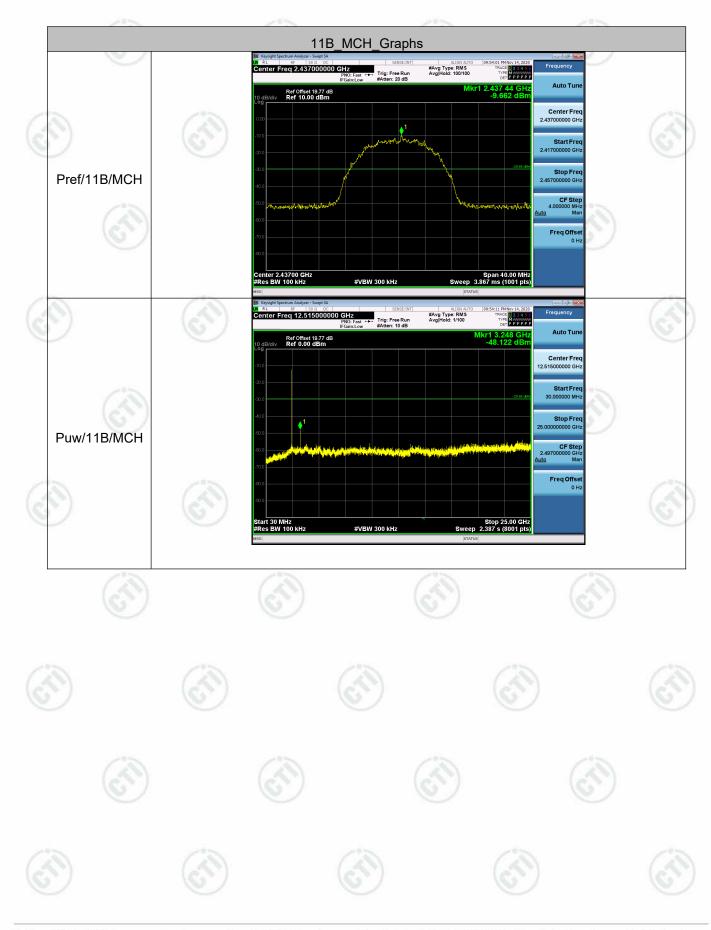
Page 37 of 104

Result Table

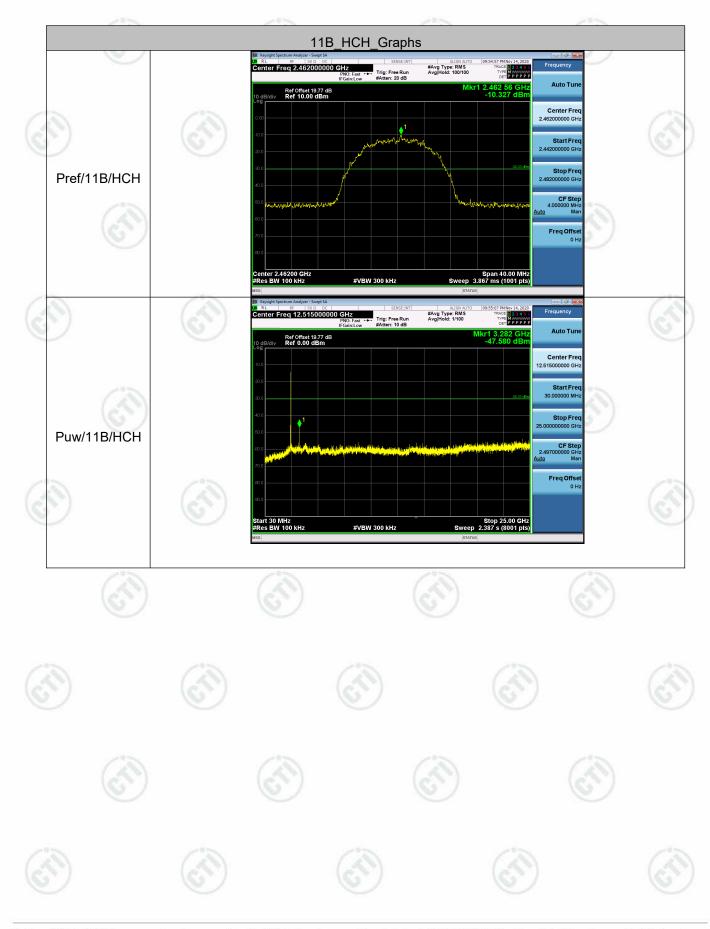
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	-9.414	<limit< td=""><td>PASS</td></limit<>	PASS
11B	МСН	-9.662	<limit< td=""><td>PASS</td></limit<>	PASS
11B	НСН	-10.327	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-17.951	<limit< td=""><td>PASS</td></limit<>	PASS
11G	МСН	-18.038	<limit< td=""><td>PASS</td></limit<>	PASS
11G	НСН	-18.175	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-18.083	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	МСН	-17.68	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-18.64	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	LCH	-21.236	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	МСН	-21.63	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	нсн	-21.138	<limit< td=""><td>PASS</td></limit<>	PASS



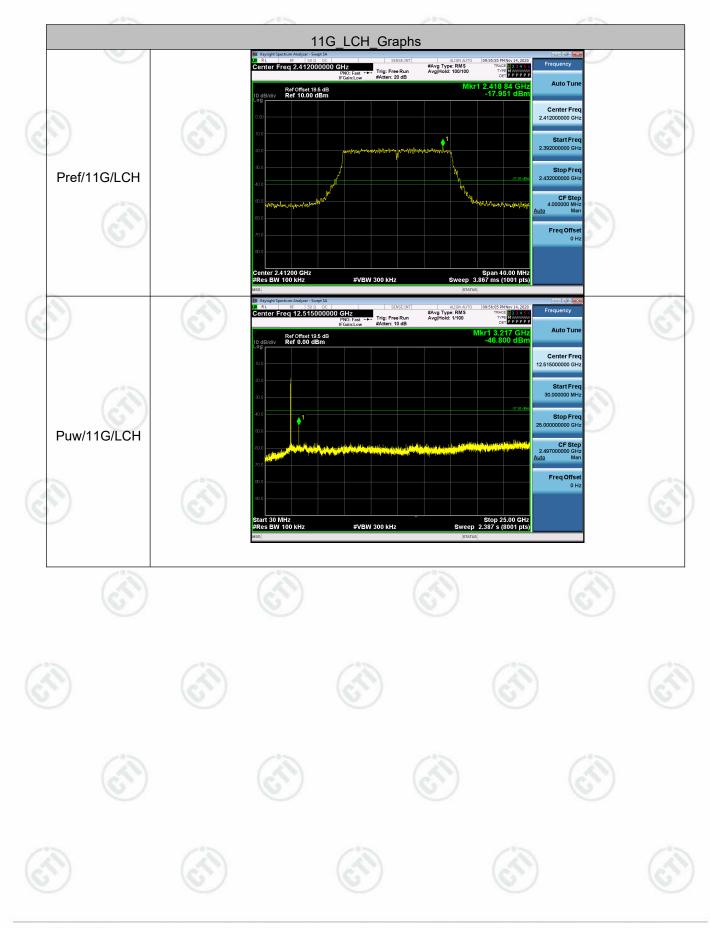
Page 38 of 104



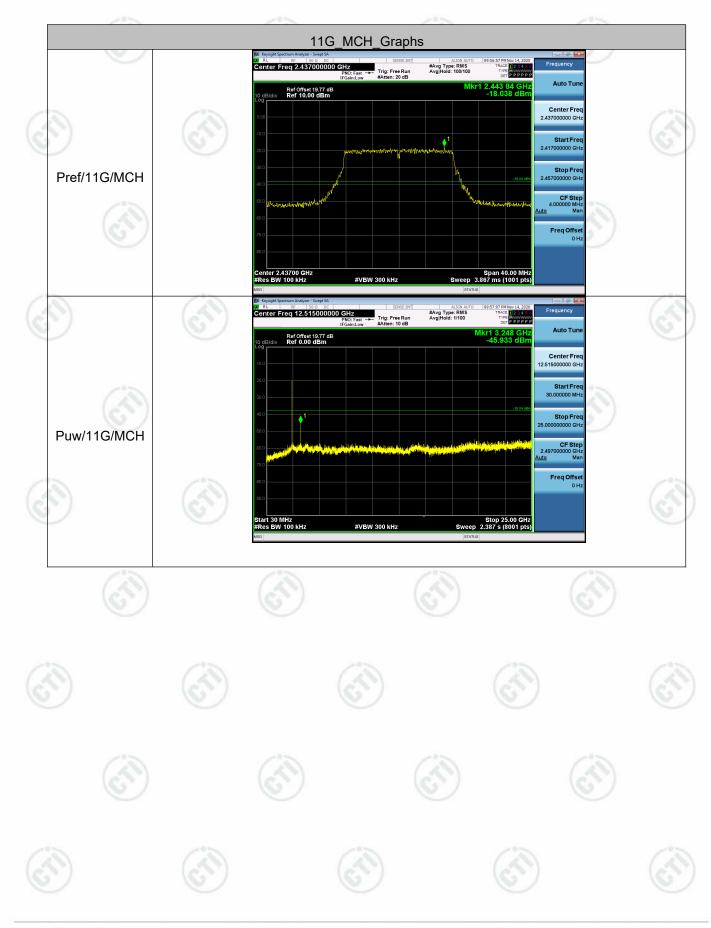
Page 39 of 104



Page 40 of 104


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 41 of 104


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 42 of 104

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 43 of 104

Page 44 of 104

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 45 of 104



Page 46 of 104

Page 47 of 104

Page 48 of 104

Page 49 of 104

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

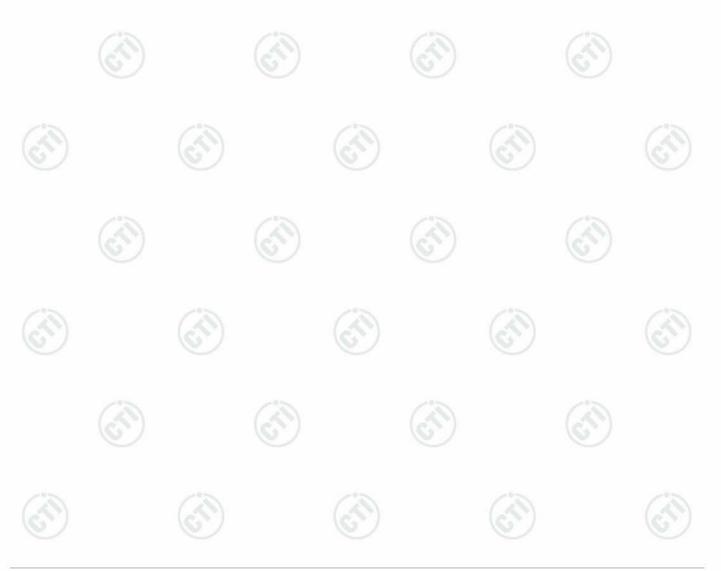
215 215	⊠ Antenna not exceed 6 dBi ∶ 8dBm
Limit 🕥	 Antenna with DG greater than 6 dBi : [Limit = 8 – (DG – 6)] Point-to-point operation :

Test Procedure

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss was compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

Test Setup



Page 51 of 104

Result Table

Mode	Channel	Power Spectral Density [dBm]	Verdict
11B	LCH	-27.299	PASS
11B	МСН	-26.305	PASS
11B	нсн	-28.158	PASS
11G	LCH	-24.715	PASS
11G	МСН	-24.731	PASS
11G	НСН	-25.601	PASS
11N20SISO	LCH	-27.959	PASS
11N20SISO	МСН	-24.073	PASS
11N20SISO	НСН	-26.524	PASS
11N40SISO	LCH	-26.735	PASS
11N40SISO	МСН	-26.002	PASS
11N40SISO	нсн	-23.155	PASS

Page 52 of 104

Ì

Page 53 of 104

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

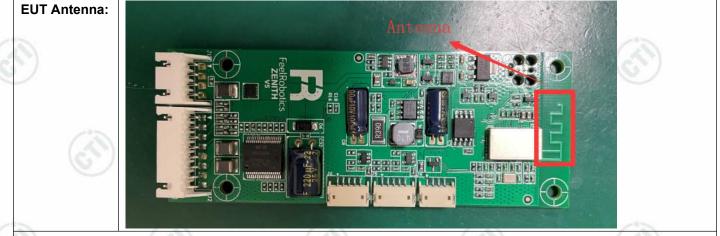
S)

Page 54 of 104



Page 55 of 104

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com


Appendix F): Antenna Requirement

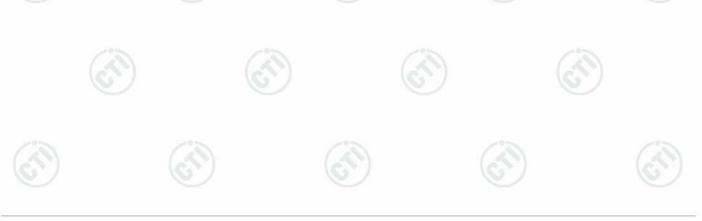
15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

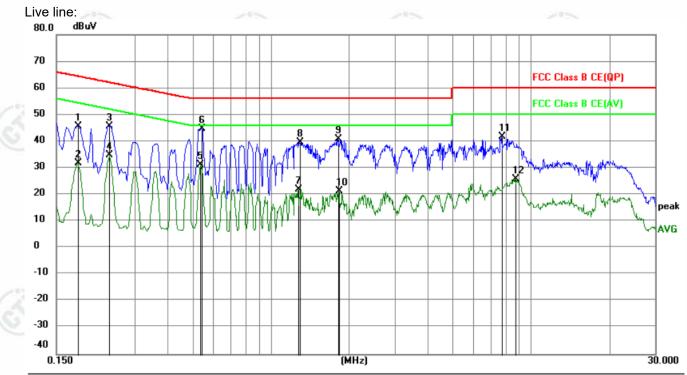
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

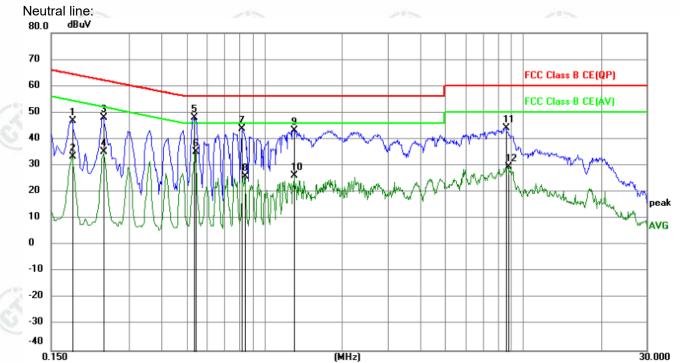

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-30MHz							
	1) The mains terminal disturbar	nce voltage test was o	conducted in a shield	ded room.				
Ð	2) The EUT was connected to Stabilization Network) which power cables of all other under the unit being measured. A power cables to a single LIS	ch provides a 50Ω/5 units of the EUT wer ound reference plane multiple socket outle	0μH + 5Ω linear in re connected to a s e in the same way as t strip was used to c	npedance. The econd LISN the LISN 1 for the LISN 1 for the LISN 1 for the LISN 1 for the				
	3) The tabletop EUT was place reference plane. And for flow horizontal ground reference	oor-standing arrange		•				
	4) The test was performed with a vertical ground reference plane. The rear of the EU shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other unit							
	was placed 0.8 m from the reference plane for LISNs	boundary of the unit mounted on top of closest points of the L	under test and bond the ground referen ISN 1 and the EUT.	led to a groui ce plane. Th . All other un				
	was placed 0.8 m from the reference plane for LISNs distance was between the o	boundary of the unit mounted on top of closest points of the L equipment was at lea n emission, the relativ	under test and bond the ground referen LISN 1 and the EUT st 0.8 m from the LIS ve positions of equip	led to a groun ce plane. Th . All other un SN 2. ment and all				
Limit:	 was placed 0.8 m from the reference plane for LISNs distance was between the of the EUT and associated of the EUT and associated of 10 n order to find the maximum the interface cables must 	boundary of the unit mounted on top of closest points of the L equipment was at lea n emission, the relativ	under test and bond the ground referen LISN 1 and the EUT st 0.8 m from the LIS ve positions of equip	led to a grou ce plane. Th . All other un SN 2. ment and all				
Limit:	 was placed 0.8 m from the reference plane for LISNs distance was between the cof the EUT and associated e 5) In order to find the maximum the interface cables must measurement. 	boundary of the unit mounted on top of closest points of the L equipment was at lea n emission, the relativ	under test and bond the ground referen ISN 1 and the EUT st 0.8 m from the LIS re positions of equip ng to ANSI C63.10	led to a groun ce plane. Th . All other un SN 2. ment and all				
Limit:	 was placed 0.8 m from the reference plane for LISNs distance was between the of the EUT and associated of the EUT and associated of 10 n order to find the maximum the interface cables must 	boundary of the unit mounted on top of closest points of the L equipment was at lea n emission, the relativ be changed accordin	under test and bond the ground referen ISN 1 and the EUT st 0.8 m from the LIS re positions of equip ng to ANSI C63.10	led to a groun ce plane. Th . All other un SN 2. ment and all				
Limit:	 was placed 0.8 m from the reference plane for LISNs distance was between the cof the EUT and associated e 5) In order to find the maximum the interface cables must measurement. 	boundary of the unit mounted on top of closest points of the L equipment was at lea n emission, the relativ be changed accordin Limit (c	under test and bond the ground referen ISN 1 and the EUT st 0.8 m from the LIS re positions of equip ng to ANSI C63.10	led to a grou ce plane. Th . All other un SN 2. ment and all				
Limit:	 was placed 0.8 m from the reference plane for LISNs distance was between the cof the EUT and associated e 5) In order to find the maximum the interface cables must measurement. 	boundary of the unit mounted on top of closest points of the L equipment was at lea n emission, the relativ be changed accordin Limit (o Quasi-peak	under test and bond the ground referen ISN 1 and the EUT st 0.8 m from the LIS re positions of equip ng to ANSI C63.10 (BµV) Average	led to a grou ce plane. Th . All other un SN 2. ment and all				

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.


Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.


	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1	0.1815	35.81	9.87	45.68	64.42	-18.74	QP	
13	2	0.1815	21.95	9.87	31.82	54.42	-22.60	AVG	
C)	3	0.2400	35.81	9.95	45.76	62.10	-16.34	QP	
	4	0.2400	24.95	9.95	34.90	52.10	-17.20	AVG	
	5	0.5370	21.25	9.99	31.24	46.00	-14.76	AVG	
	6 *	0.5415	34.78	10.00	44.78	56.00	-11.22	QP	
	7	1.2705	12.16	9.82	21.98	46.00	-24.02	AVG	
-	8	1.2930	29.76	9.82	39.58	56.00	-16.42	QP	
27	9	1.8105	31.17	9.80	40.97	56.00	-15.03	QP	
5	10	1.8285	11.57	9.80	21.37	46.00	-24.63	AVG	
2	11	7.6965	32.02	9.79	41.81	60.00	-18.19	QP	
-	12	8.7000	16.20	9.78	25.98	50.00	-24.02	AVG	

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

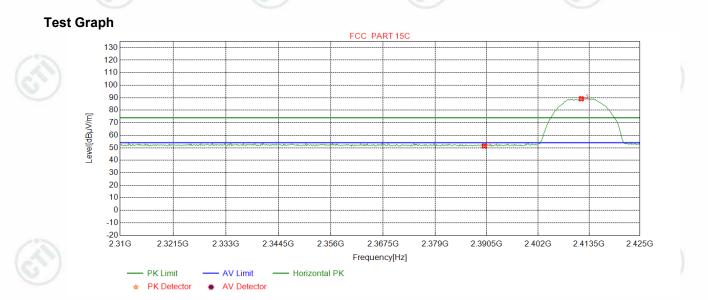
					(·····)				
-	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1	0.1815	37.07	9.87	46.94	64.42	-17.48	QP	
13	2	0.1815	23.50	9.87	33.37	54.42	-21.05	AVG	
6	3	0.2400	38.11	9.95	48.06	62.10	-14.04	QP	
	4	0.2400	25.13	9.95	35.08	52.10	-17.02	AVG	
-	5 *	0.5370	38.11	9.99	48.10	56.00	-7.90	QP	
	6	0.5415	25.20	10.00	35.20	46.00	-10.80	AVG	
	7	0.8205	33.93	9.85	43.78	56.00	-12.22	QP	
-	8	0.8430	16.15	9.85	26.00	46.00	-20.00	AVG	
12	9	1.3065	33.55	9.82	43.37	56.00	-12.63	QP	
6	10	1.3065	16.44	9.82	26.26	46.00	-19.74	AVG	
	11	8.6370	34.39	9.78	44.17	60.00	-15.83	QP	
-	12	8.7585	19.65	9.78	29.43	50.00	-20.57	AVG	
-									

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

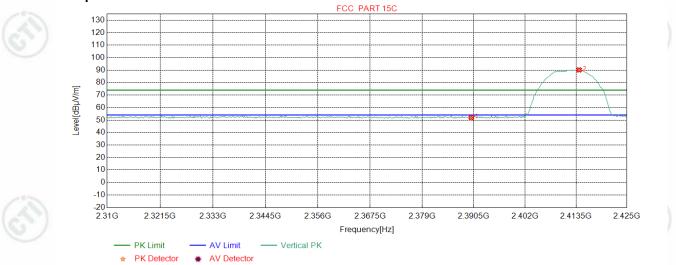
Appendix H): Restricted bands around fundamental frequency (Radiated)

30MHz-1GHz Quasi-peak 120kHz 300kHz Quasi-peak Above 1GHz Peak 1MHz 3MHz Peak Test Procedure: Below 1GHz test procedure as below: Test method Refer as KDB 558074 D01 a. The EUT was placed on the top of a rotating table 0.8 meters above the g at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the gro determine the maximum value of the field strength. Both horizontal and ve polarizations of the antenna are set to make the measurement. 0. For each suspected emission, the EUT was arranged to its worst case an the antenna was tuned to heights from 1 meter to 4 meters and the rotata was turned from Odegrees to 360 degrees to find the maximum reading. 0. For each suspected emission, the EUT was arranged to its worst case an the antenna was tuned to heights from 1 meter to 4 meters and the rotata was turned from Odegrees to 360 degrees to find the maximum reading. 1. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restrict bands. Save the spectrum analyzer plot. Repeat for each power and mod for lowest and highest channel 3. Different between above is the test site, change from Semi- Anechoic Chato fully Anechoic Chamber change form table 0.8 meters to 1.5 meter(Abo 18GHz Anechoic Chamber change form table 0.8 met	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
Above 1GHz Peak 1MHz 10Hz Average Test Procedure: Below 1GHz test procedure as below: Test method Refer as KDB 558074 D01 a. The EUT was placed on the top of a rotating table 0.8 meters above the g at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the gro determine the maximum value of the field strength. Both horizontal and very polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case an the antenna was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restrice bands. Save the spectrum analyzer plot. Repeat for each power and mod for lowest and highest channel Above 1GHz test procedure as below: g. Different between above is the test site, change from Semi- Anechoic Chato fully Anechoic Chamber change from table 0.8 meter 0.1.5 meter(. Abo 186/Hz the distance is 1 meter and table is 1.5 meter). h. Test the EUT in the lowest channel the Highest channel Above 1GHz test procedures until all frequencies measured was complete. Limit (dBµV/m @3m) Remark 30MHz-88MHz		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal	k
Peak 1MHz 10Hz Average Test Procedure: Below 1GHz test procedure as below: Test method Refer as KDB 558074 D01 a. The EUT was placed on the top of a rotating table 0.8 meters above the g at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the group determine the maximum value of the field strength. Both horizontal and very polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case an the antenna was turned to heights from 1 meter to 4 meters and the rotata was turned from 0.0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricte bands. Save the spectrum analyzer plot. Repeat for each power and mod for lowest and highest channel Above 1GHz test procedure as below: g. Different between above is the test site, change from Semi- Anechoic Cha to fully Anechoic Chamber change form table 0.8 meter to 1.5 meter (Abo 18GHz the distance is 1 meter and table is 1.5 meter). h. Test the EUT in the lowest channel, the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning which it is worse cas j. Repeat above procedures until all frequencie			Peak	1MHz	3MHz	Peak	
Below 1GHz test procedure as below: Test method Refer as KDB 558074 D01 a. The EUT was placed on the top of a rotating table 0.8 meters above the g at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the gro determine the maximum value of the field strength. Both horizontal and ve polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case an the antenna was tuned to heights from 1 meter to 4 meters and the rotata was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restric bands. Save the spectrum analyzer plot. Repeat for each power and mod for lowest and highest channel Above 1GHz test procedure as below: g. Different between above is the test site, change from Semi- Anechoic Cha to fully Anechoic Chamber change form table 0.8 meter to 1.5 meter(Abo 18GHz the distance is 1 meter and table is 1.5 meter). h. Test the EUT in the lowest channel in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse cas j. Repeat above procedures until all frequencies measured was complete. Limit:		Above TGHZ	Peak	1MHz	10Hz	Average	
g.Different between above is the test site, change from Semi- Anechoic Chato fully Anechoic Chamber change form table 0.8 meter to 1.5 meter (About 18GHz the distance is 1 meter and table is 1.5 meter).h.Test the EUT in the lowest channel , the Highest channeli.The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse casj.Repeat above procedures until all frequencies measured was complete.Limit:FrequencyLimit (dBµV/m @3m)Remark30MHz-88MHz40.0Quasi-peak Value88MHz-216MHz43.5Quasi-peak Value960MHz-1GHz54.0Quasi-peak ValueAbove 1GHz54.0	Test Procedure:	 Test method Refer as KDI a. The EUT was placed at a 3 meter semi-ane determine the position b. The EUT was set 3 m was mounted on the to the antenna height is determine the maximum polarizations of the and d. For each suspected e the antenna was tuned was turned from 0 deg e. The test-receiver system 	ure as below: B 558074 D01 on the top of a ro choic camber. The of the highest ra eters away from op of a variable-h varied from one um value of the fiel tenna are set to mission, the EUT d to heights from grees to 360 degreen was set to Pe	tating table ne table wa idiation. the interfer neight anter meter to fo eld strengtl make the n was arran 1 meter to rees to find	e 0.8 meter is rotated 3 ence-recei nna tower. our meters n. Both hor neasureme ged to its 4 meters the maxin	rs above the 360 degrees iving antenna above the gr rizontal and v ent. worst case a and the rotat num reading	to a, wl roun verti nd t able
All of the queriesLimit (dBpV/m @3m)Remark30MHz-88MHz40.0Quasi-peak Value88MHz-216MHz43.5Quasi-peak Value216MHz-960MHz46.0Quasi-peak Value960MHz-1GHz54.0Quasi-peak ValueAbove 1GHz54.0Average Value		f. Place a marker at the frequency to show cor bands. Save the spec	end of the restric npliance. Also m trum analyzer plo	easure any	emission	s in the restri	
30MHz-88MHz40.0Quasi-peak Value88MHz-216MHz43.5Quasi-peak Value216MHz-960MHz46.0Quasi-peak Value960MHz-1GHz54.0Quasi-peak ValueAbove 1GHz54.0Average Value		 f. Place a marker at the frequency to show corbands. Save the spector for lowest and highest Above 1GHz test proceding. Different between about to fully Anechoic Chara 18GHz the distance is h. Test the EUT in the lower is the radiation measure transmitting mode, and the spector of the sp	end of the restrict mpliance. Also m trum analyzer plot channel ure as below: we is the test site mber change form a 1 meter and tab owest channel , the ements are perform of found the X ax	easure any at. Repeat f a, change fr n table 0.8 le is 1.5 m ne Highest rmed in X, is positioni	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i	s in the restri ower and mo Anechoic Cl .5 meter(Ab positioning fo t is worse ca	nam pove pr
216MHz-960MHz46.0Quasi-peak Value960MHz-1GHz54.0Quasi-peak ValueAbove 1GHz54.0Average Value	Limit:	 f. Place a marker at the frequency to show corbands. Save the spector for lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Charan 18GHz the distance is h. Test the EUT in the logitation measure Transmitting mode, arguments j. Repeat above proced 	end of the restrict mpliance. Also m trum analyzer plot channel ure as below: we is the test site mber change form a 1 meter and tab owest channel , th ements are perform of found the X ax ures until all freque	easure any ot. Repeat f of n table 0.8 le is 1.5 me ne Highest rmed in X, tis positioni	v emission for each po meter to 1 eter). channel Y, Z axis p ing which i easured wa	s in the restri ower and mo Anechoic Ch .5 meter(Ab positioning fo it is worse ca as complete.	nam pove pr
960MHz-1GHz54.0Quasi-peak ValueAbove 1GHz54.0Average Value	Limit:	 f. Place a marker at the frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proceding. Different between about to fully Anechoic Charan 18GHz the distance is h. Test the EUT in the loci. The radiation measure Transmitting mode, arging. Repeat above proceding. 	end of the restrict mpliance. Also m trum analyzer plot channel ure as below: we is the test site mber change form a 1 meter and tab owest channel , the ements are perform of found the X ax ures until all frequency Limit (dBµV/	easure any t. Repeat f c, change fr n table 0.8 le is 1.5 m ne Highest rmed in X, tis positioni uencies me	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa	s in the restri ower and mo Anechoic Cf .5 meter(Ab oositioning fo t is worse ca as complete.	nam pove pr
Above 1GHz 54.0 Average Value	Limit:	 f. Place a marker at the frequency to show corbands. Save the spector for lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Charan 18GHz the distance is h. Test the EUT in the logitation measure Transmitting mode, arriging in Repeat above proceded Frequency 30MHz-88MHz 	end of the restrict mpliance. Also m trum analyzer plot channel ure as below: we is the test site mber change form a 1 meter and tab bowest channel , the ements are perform a found the X ax ures until all frequents Limit (dBµV/ 40.0	easure any ot. Repeat f c, change fr n table 0.8 le is 1.5 me ne Highest rmed in X, tis positioni uencies me (m @3m)	v emission for each po meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-po	s in the restri ower and mo Anechoic Cl .5 meter(Ab positioning fo t is worse ca as complete. mark eak Value	nam pove pr
Above 1GHz	Limit:	 f. Place a marker at the frequency to show corbands. Save the spector for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chara 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, arging. Repeat above proceding SomHz-88MHz 88MHz-216MHz 	end of the restrict mpliance. Also m trum analyzer plot channel ure as below: we is the test site mber change form a 1 meter and tab owest channel , the ements are perform a found the X ax ures until all frequency Limit (dBµV/ 40.0 43.5	easure any t. Repeat f e, change fr n table 0.8 le is 1.5 me ne Highest rmed in X, tis positioni uencies me (m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-po	s in the restri ower and mo Anechoic Cf .5 meter(Ab oositioning fo it is worse ca as complete. mark eak Value eak Value	nam pove pr
Above 1GHz	Limit:	 f. Place a marker at the frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Charan 18GHz the distance is h. Test the EUT in the logithmetic in the radiation measure Transmitting mode, aring. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 	end of the restrict mpliance. Also m trum analyzer plot channel ure as below: we is the test site mber change form a 1 meter and tab bowest channel , th ements are perford found the X ax ures until all freque Limit (dBµV/ 40.0 43.5	easure any ot. Repeat f of table 0.8 le is 1.5 me ne Highest rmed in X, tis positioni uencies me (m @3m)	v emission for each po rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po	s in the restriction of the second se	nam pove pr
74.0 Peak Value	Limit:	 f. Place a marker at the frequency to show corbands. Save the spector for lowest and highest Above 1GHz test proceding. Different between about to fully Anechoic Charan 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, arging. Repeat above proceding Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz 	end of the restrict mpliance. Also m trum analyzer plot channel ure as below: we is the test site mber change form a 1 meter and tab bowest channel , the ements are perfo- nd found the X ax ures until all freque Limit (dBµV/ 40.0 43.5 46.0	easure any e, change fi n table 0.8 le is 1.5 me ne Highest rmed in X, is positioni uencies me (m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po	s in the restri ower and mo Anechoic Cf .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value eak Value eak Value	nam pove pr



Test plot as follows:

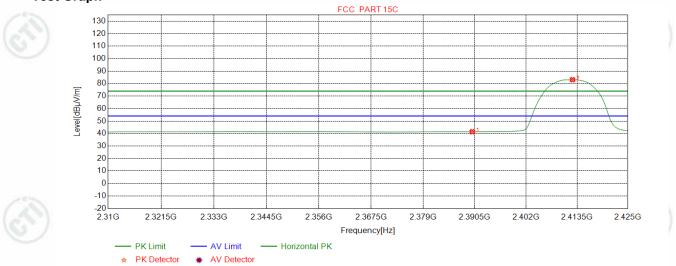
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.88	51.38	74.00	22.62	Pass	Horizontal
2	2411.7584	32.28	13.35	-43.12	86.63	89.14	74.00	-15.14	Pass	Horizontal



Mode:802.11 b TransmittingChannel:2412Remark:PK

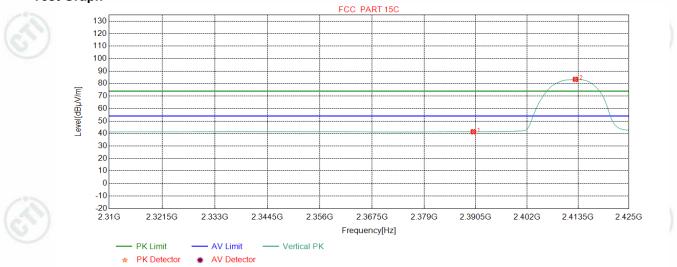
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.51	52.01	74.00	21.99	Pass	Vertical
2	2414.2053	32.28	13.37	-43.12	87.60	90.13	74.00	-16.13	Pass	Vertical


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Mode:	802.11 b Transmitting	Channel:	2412
Remark:	AV	U	

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.92	41.42	54.00	12.58	Pass	Horizontal
2	2412.4781	32.28	13.36	-43.12	80.59	83.11	54.00	-29.11	Pass	Horizontal

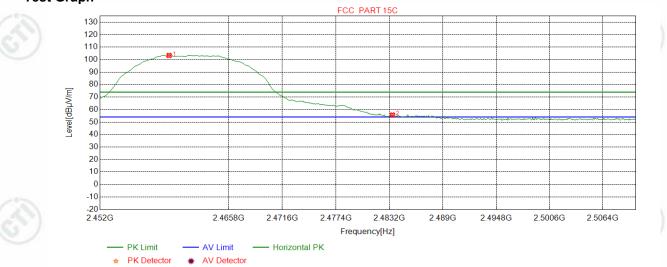


Mode:	802.11 b Transmitting	Channel:	2412
Remark:	AV	U I	\bigcirc

Test Graph

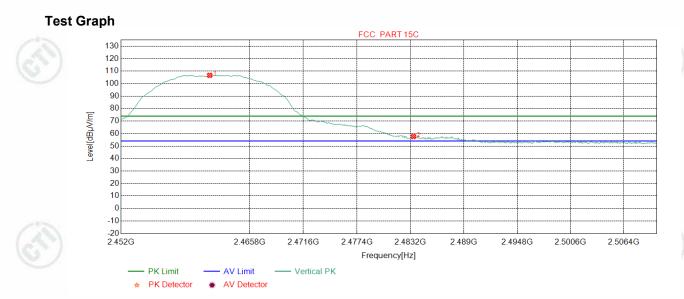
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.93	41.43	54.00	12.57	Pass	Vertical
2	2412.9099	32.28	13.36	-43.12	80.85	83.37	54.00	-29.37	Pass	Vertical

Hotline: 400-6788-333



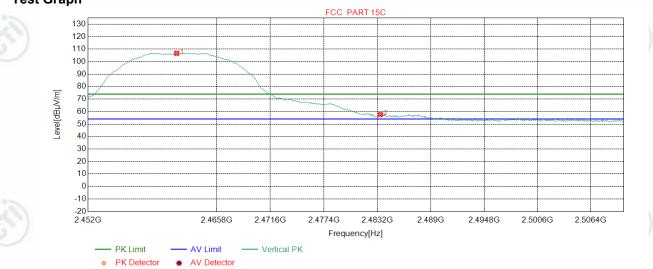
Mode:	802.11 b Transmitting	Channel:	2462
Remark:	PK	U	U

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2459.4043	32.34	13.49	-43.11	100.60	103.32	74.00	-29.32	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	52.98	55.63	74.00	18.37	Pass	Horizontal



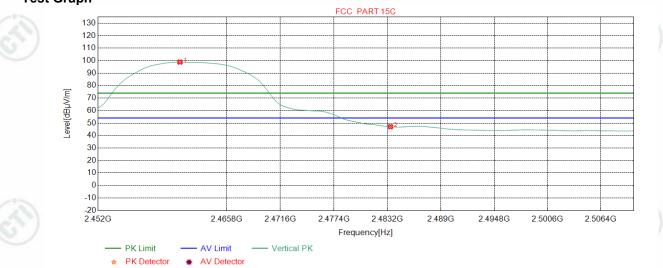
1	Mode:	802.11 b Transmitting	Channel:	2462
	Remark:	РК	V	U

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.5094	32.35	13.48	-43.11	103.90	106.62	74.00	-32.62	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	54.99	57.64	74.00	16.36	Pass	Vertical



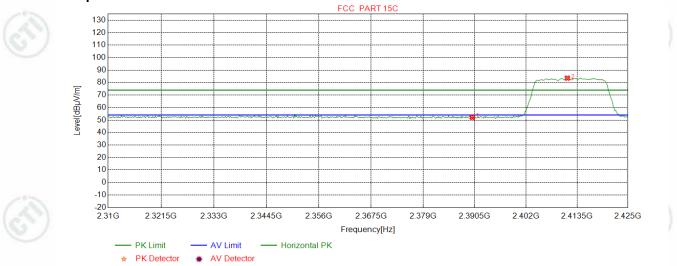
Mode:	802.11 b Transmitting	Channel:	2462
Remark:	AV	U	U

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.5094	32.35	13.48	-43.11	103.90	106.62	74.00	-32.62	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	54.99	57.64	74.00	16.36	Pass	Horizontal



Mode:	802.11 b Transmitting	Channel:	2462
Remark:	AV	V	U

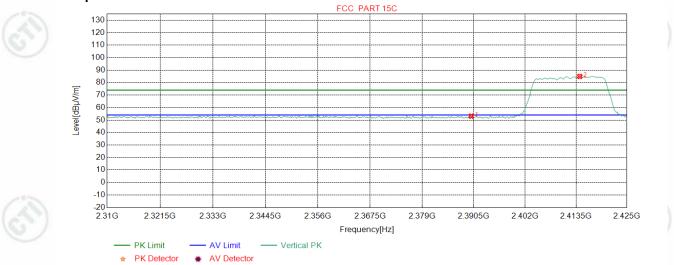
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.7835	32.35	13.48	-43.11	96.14	98.86	54.00	-44.86	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	44.41	47.06	54.00	6.94	Pass	Vertical



Mode:	802.11 g Transmitting	Channel:	2412
Remark:	PK	U I	U

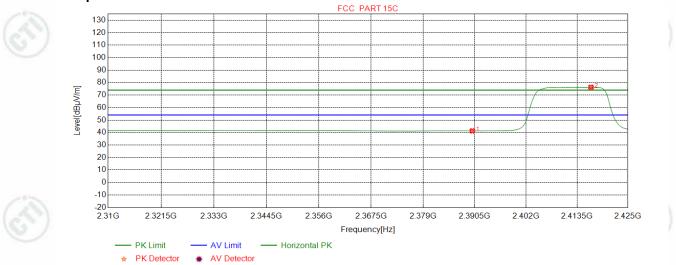
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.67	52.17	74.00	21.83	Pass	Horizontal
2	2411.3267	32.28	13.35	-43.12	81.03	83.54	74.00	-9.54	Pass	Horizontal


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

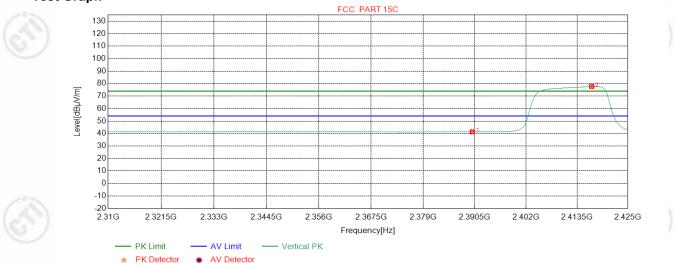
Mode:802.11 g TransmittingChannel:2412Remark:PK

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	50.57	53.07	74.00	20.93	Pass	Vertical
2	2414.3492	32.28	13.37	-43.12	82.38	84.91	74.00	-10.91	Pass	Vertical



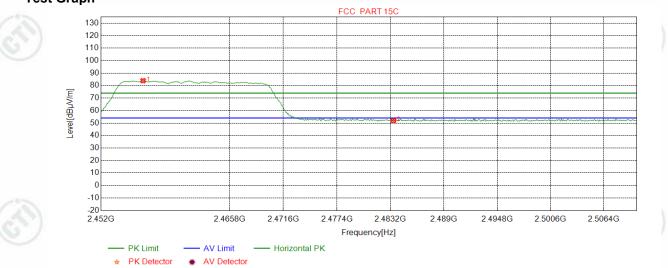
Mode:802.11 g TransmittingChannel:2412Remark:AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.80	41.30	54.00	12.70	Pass	Horizontal
2	2416.6521	32.28	13.38	-43.12	73.70	76.24	54.00	-22.24	Pass	Horizontal



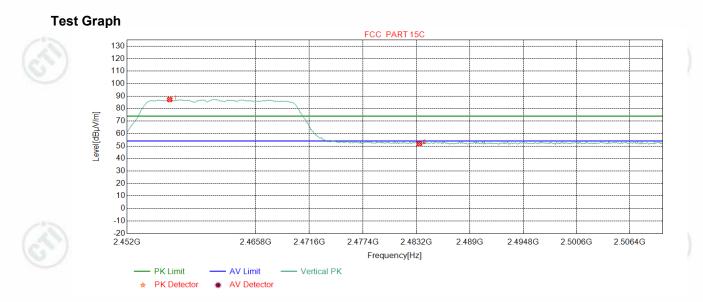
Mode:802.11 g TransmittingChannel:2412Remark:AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.87	41.37	54.00	12.63	Pass	Vertical
2	2416.7960	32.28	13.38	-43.12	75.12	77.66	54.00	-23.66	Pass	Vertical



Mode:	802.11 g Transmitting	Channel:	2462
Remark:	РК	V	V

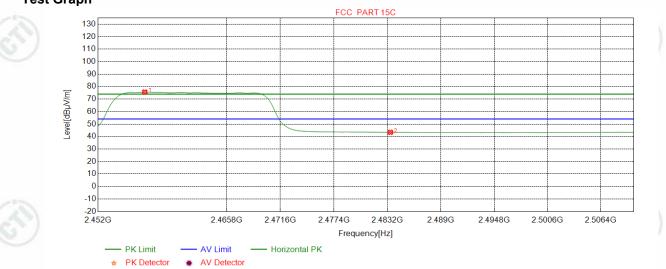
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2456.5006	32.34	13.50	-43.11	81.17	83.90	74.00	-9.90	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.31	51.96	74.00	22.04	Pass	Horizontal



Mode:	802.11 g Transmitting	Channel:	2462
Remark:	РК	V	V

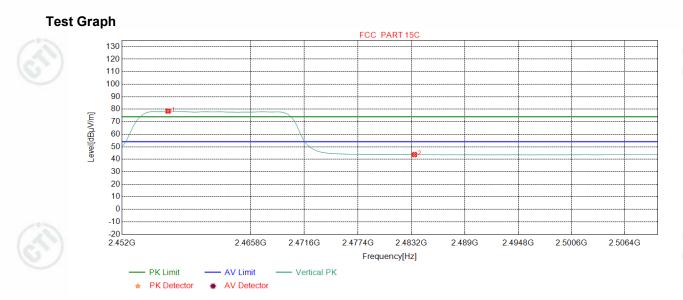
NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2456.5732	32.34	13.50	-43.11	84.49	87.22	74.00	-13.22	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.28	51.93	74.00	22.07	Pass	Vertical

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



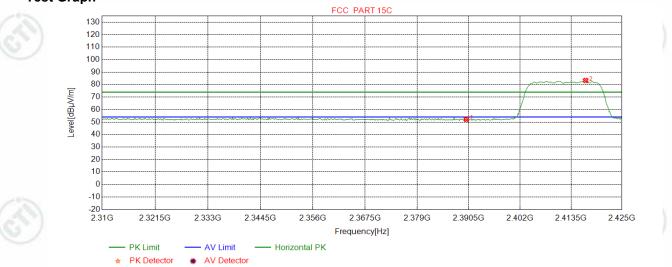
Mode:	802.11 g Transmitting	Channel:	2462
Remark:	AV	V	V

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2457.0088	32.34	13.50	-43.11	72.86	75.59	54.00	-21.59	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.73	43.38	54.00	10.62	Pass	Horizontal



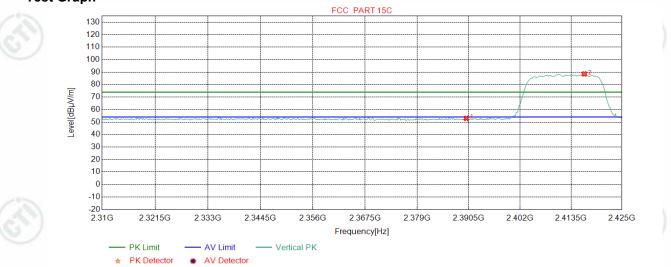
Mode:	802.11 g Transmitting	Channel:	2462
Remark:	AV	U	V

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2456.9362	32.34	13.50	-43.11	75.74	78.47	54.00	-24.47	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	41.07	43.72	54.00	10.28	Pass	Vertical



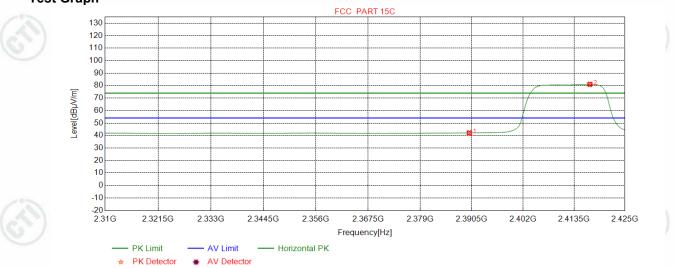
Mode:802.11 n(HT20) TransmittingChannel:2412Remark:PK

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.63	52.13	74.00	21.87	Pass	Horizontal
2	2416.7960	32.28	13.38	-43.12	80.73	83.27	74.00	-9.27	Pass	Horizontal



802.11 n(HT20) Transmitting Channel: 2412 Mode: Remark: ΡK

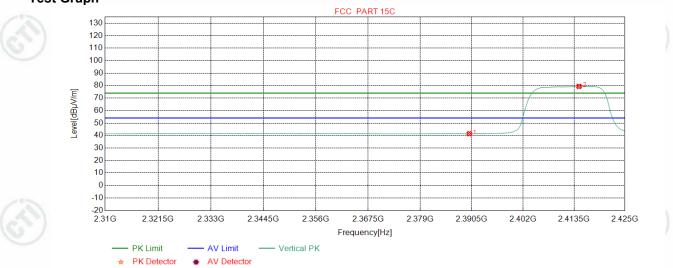
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	50.48	52.98	74.00	21.02	Pass	Vertical
2	2416.5081	32.28	13.38	-43.12	86.00	88.54	74.00	-14.54	Pass	Vertical



Mode:802.11 n(HT20) TransmittingChannel:2412Remark:AV

Test Graph

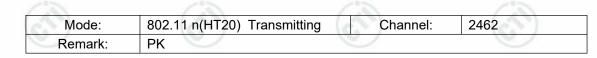
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	39.59	42.09	54.00	11.91	Pass	Horizontal
2	2417.0839	32.28	13.38	-43.11	78.44	80.99	54.00	-26.99	Pass	Horizontal

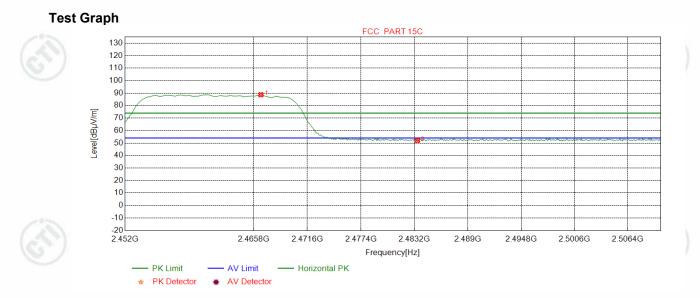


Mode:802.11 n(HT20) TransmittingChannel:2412Remark:AV

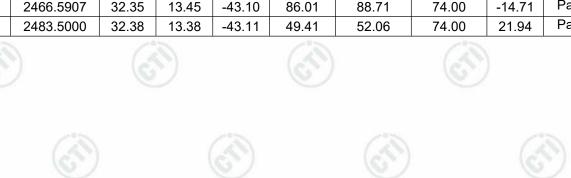
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.97	41.47	54.00	12.53	Pass	Vertical
2	2414.6370	32.28	13.37	-43.12	76.79	79.32	54.00	-25.32	Pass	Vertical

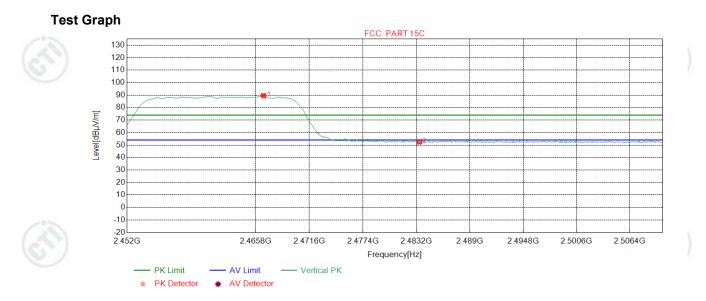



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2466.5907	32.35	13.45	-43.10	86.01	88.71	74.00	-14.71	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.41	52.06	74.00	21.94	Pass	Horizontal

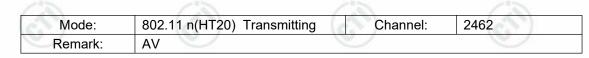


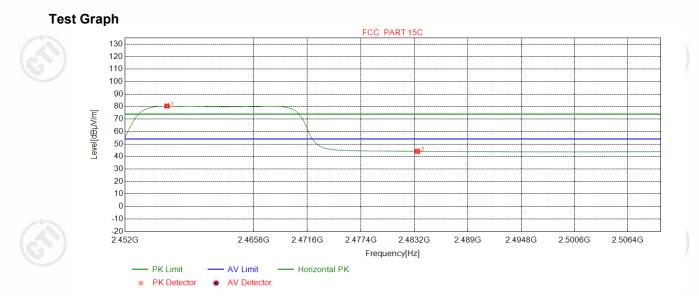
Hotline: 400-6788-333



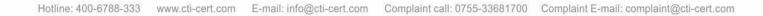
Mode:	802.11 n(HT20) Transmitting	Channel:	2462
Remark:	РК	J	S

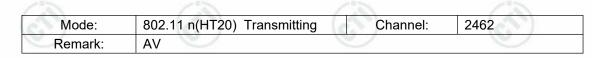
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2466.6633	32.35	13.45	-43.10	86.80	89.50	74.00	-15.50	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.76	52.41	74.00	21.59	Pass	Vertical

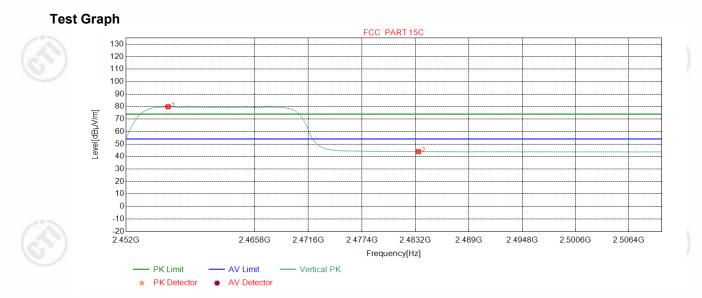




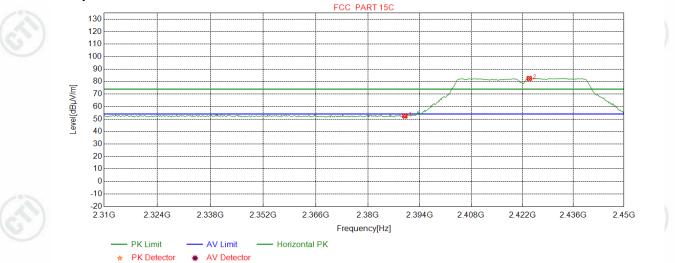
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2456.5006	32.34	13.50	-43.11	77.72	80.45	54.00	-26.45	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	41.49	44.14	54.00	9.86	Pass	Horizontal





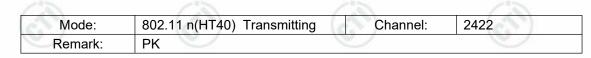


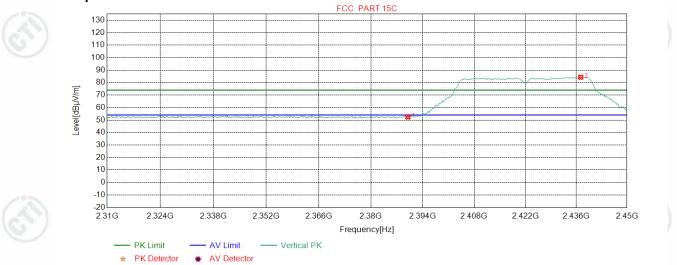
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2456.5006	32.34	13.50	-43.11	77.15	79.88	54.00	-25.88	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	41.29	43.94	54.00	10.06	Pass	Vertical



802.11 n(HT40) Transmitting Channel: 2422 Mode: Remark: ΡK

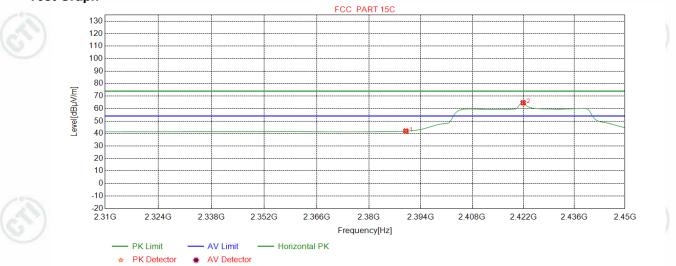
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.94	52.44	74.00	21.56	Pass	Horizontal
2	2423.8924	32.29	13.41	-43.11	79.86	82.45	74.00	-8.45	Pass	Horizontal





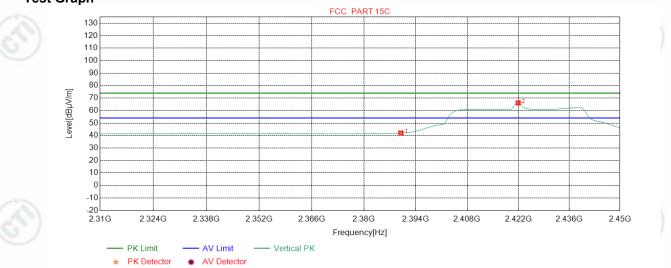
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.94	52.44	74.00	21.31	Pass	Vertical
2	2437.2090	32.31	13.47	-43.11	81.60	84.27	74.00	-12.69	Pass	Vertical



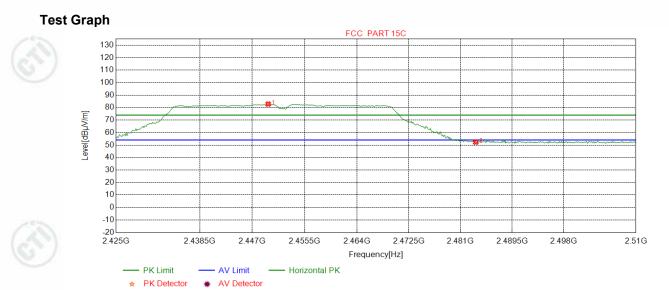
Mode:802.11 n(HT40) TransmittingChannel:2422Remark:AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	39.43	41.93	54.00	12.07	Pass	Horizontal
2	2421.9650	32.29	13.40	-43.11	62.02	64.60	54.00	-10.60	Pass	Horizontal



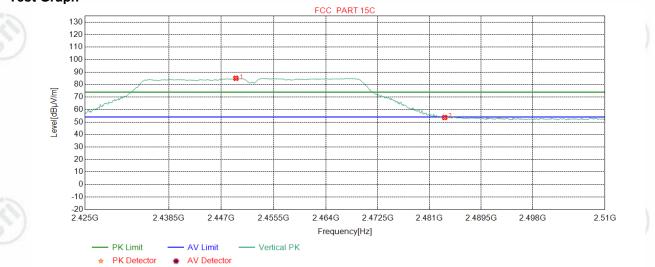
Mode:802.11 n(HT40) TransmittingChannel:2422Remark:AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	39.52	42.02	54.00	11.98	Pass	Vertical
2	2421.9650	32.29	13.40	-43.11	63.55	66.13	54.00	-12.13	Pass	Vertical



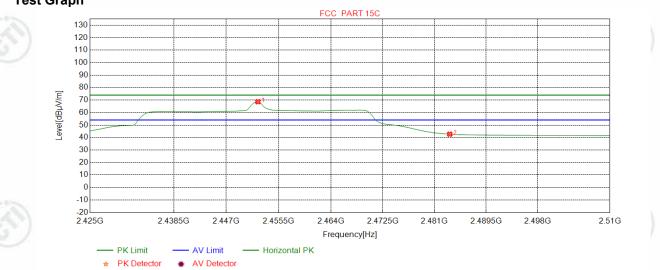
802.11 n(HT40) Transmitting Channel: 2452 Mode: Remark: ΡK

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2449.5745	32.33	13.53	-43.11	80.04	82.79	74.00	-8.79	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.66	52.31	74.00	21.69	Pass	Horizontal



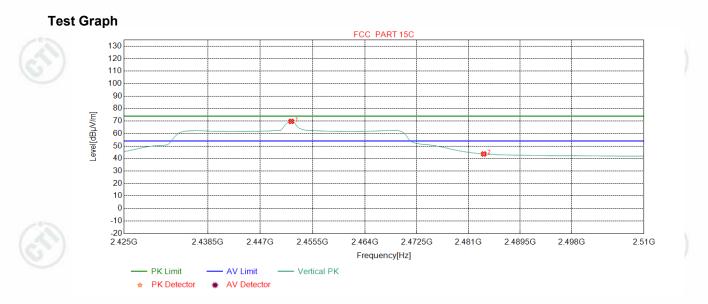
Mode:	802.11 n(HT40) Transmitting	Channel:	2452
Remark:	PK	U	V

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2449.3617	32.33	13.53	-43.11	82.29	85.04	74.00	-11.04	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	51.00	53.65	74.00	20.35	Pass	Vertical



Mode:	802.11 n(HT40) Transmitting	Channel:	2452
Remark:	AV		S

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2452.1277	32.33	13.52	-43.11	65.94	68.68	54.00	-14.68	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.03	42.68	54.00	11.32	Pass	Horizontal



Mode:802.11 n(HT40) TransmittingChannel:2452Remark:AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2452.0213	32.33	13.52	-43.11	66.99	69.73	54.00	-15.73	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.98	43.63	54.00	10.37	Pass	Vertical

Note:

1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Page 93 of 104

Appendix I): Radiated Spurious Emissions

Receiver Setup:						
C)	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
6	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
)	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
100	Above 1GHz	Peak	1MHz	3MHz	Peak	
		Peak	1MHz	10Hz	Average	
		16			18.9 -	

Test Procedure:

Limit:

Below 1GHz test procedure as below:

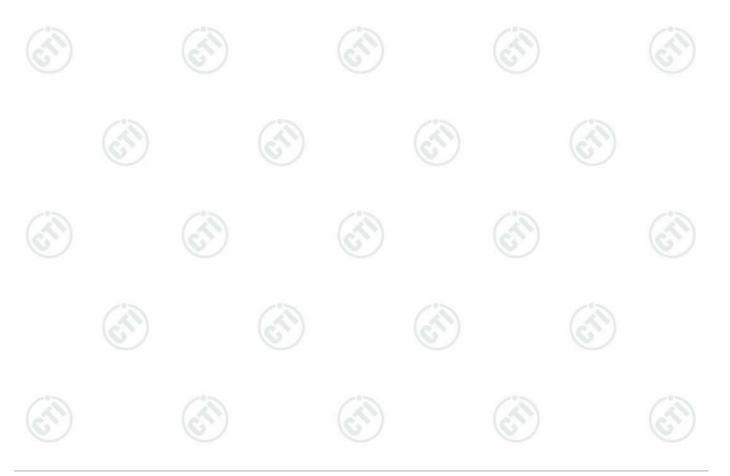
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
 h. Test the EUT in the lowest channel, the middle channel the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	· · · · · · · · · · · · · · · · · · ·	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	25	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.


Report No. : EED32M80046003

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 11b, Channel 2437MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

2		13								
Mode	:	802.11	b Transn	nitting		Channel:		2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	36.5967	11.21	0.67	-31.38	45.24	25.74	40.00	14.26	Pass	Н
2	44.3574	13.08	0.75	-31.66	46.36	28.53	40.00	11.47	Pass	Н
3	109.4509	10.91	1.24	-32.07	51.57	31.65	43.50	11.85	Pass	Н
4	173.7684	8.66	1.55	-31.98	59.77	38.00	43.50	5.50	Pass	Н
5	319.9620	13.64	2.12	-31.83	55.54	39.47	46.00	6.53	Pass	Н
6	639.9970	19.32	3.07	-32.11	46.07	36.35	46.00	9.65	Pass	Н
7	36.5967	11.21	0.67	-31.38	45.01	25.51	40.00	14.49	Pass	V
8	173.6714	8.65	1.55	-31.97	52.31	30.54	43.50	12.96	Pass	V
9	319.9620	13.64	2.12	-31.83	51.23	35.16	46.00	10.84	Pass	V
10	480.0280	16.68	2.61	-31.90	40.42	27.81	46.00	18.19	Pass	V
11	639.9970	19.32	3.07	-32.11	42.67	32.95	46.00	13.05	Pass	V
12	836.0536	21.33	3.49	-31.92	47.69	40.59	46.00	5.41	Pass	V

Page 95 of 104

Transmitter Emission above 1GHz

	(A)			100		(10)	ð				
Mode:		802.11 b	Transmit	ting		Channel:		2412			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1761.4761	30.13	3.25	-42.69	50.76	41.45	74.00	32.55	Pass	Н	Peak
2	3216.0144	33.29	4.59	-43.11	51.86	46.63	74.00	27.37	Pass	Н	Peak
3	5002.1335	34.50	4.82	-42.79	49.89	46.42	74.00	27.58	Pass	Н	Peak
4	5550.1700	35.08	5.16	-42.60	49.15	46.79	74.00	27.21	Pass	Н	Peak
5	8252.3502	36.50	6.21	-42.10	49.09	49.70	74.00	24.30	Pass	Н	Peak
6	9622.4415	37.65	6.66	-42.10	49.37	51.58	74.00	22.42	Pass	Н	Peak
7	1990.6991	31.64	3.46	-43.18	55.79	47.71	74.00	26.29	Pass	V	Peak
8	3216.0144	33.29	4.59	-43.11	52.29	47.06	74.00	26.94	Pass	V	Peak
9	5063.1375	34.56	4.85	-42.77	50.11	46.75	74.00	27.25	Pass	V	Peak
10	6984.2656	36.09	5.72	-42.20	49.37	48.98	74.00	25.02	Pass	V	Peak
11	8842.3895	37.35	6.41	-41.99	49.09	50.86	74.00	23.14	Pass	V	Peak
12	10311.4874	38.24	6.87	-42.04	49.76	52.83	74.00	21.17	Pass	V	Peak

Mode:		802.11 b	Transmit	ting		Channel:		2437			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2084.1084	31.82	3.57	-43.18	50.95	43.16	74.00	30.84	Pass	н	Peak
2	3249.0166	33.30	4.45	-43.10	53.25	47.90	74.00	26.10	Pass	н	Peak
3	5015.1343	34.52	4.84	-42.80	50.33	46.89	74.00	27.11	Pass	Н	Peak
4	6923.2616	36.07	5.85	-42.25	49.20	48.87	74.00	25.13	Pass	Н	Peak
5	9151.4101	37.67	6.45	-42.03	49.05	51.14	74.00	22.86	Pass	Н	Peak
6	10663.5109	38.53	7.01	-41.99	48.96	52.51	74.00	21.49	Pass	Н	Peak
7	1990.8991	31.64	3.46	-43.18	55.22	47.14	74.00	26.86	Pass	V	Peak
8	3249.0166	33.30	4.45	-43.10	51.87	46.52	74.00	27.48	Pass	V	Peak
9	5006.1337	34.51	4.83	-42.80	50.10	46.64	74.00	27.36	Pass	V	Peak
10	6491.2327	35.90	5.48	-42.50	49.81	48.69	74.00	25.31	Pass	V	Peak
11	7681.3121	36.53	6.22	-42.14	49.23	49.84	74.00	24.16	Pass	V	Peak
12	9226.4151	37.65	6.52	-42.04	49.22	51.35	74.00	22.65	Pass	V	Peak

Page 96 of 104

Mode:		802.11 b	Transmi	tting		Channel:		2462			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1945.0945	31.34	3.42	-43.07	51.22	42.91	74.00	31.09	Pass	Н	Peak
2	3282.0188	33.31	4.53	-43.09	52.11	46.86	74.00	27.14	Pass	Н	Peak
3	5005.1337	34.51	4.83	-42.81	50.54	47.07	74.00	26.93	Pass	Н	Peak
4	7657.3105	36.54	6.17	-42.14	48.84	49.41	74.00	24.59	Pass	Н	Peak
5	9230.4154	37.65	6.54	-42.04	49.46	51.61	74.00	22.39	Pass	Н	Peak
6	10317.4878	38.24	6.88	-42.03	49.77	52.86	74.00	21.14	Pass	Н	Peak
7	1797.6798	30.36	3.32	-42.71	55.57	46.54	74.00	27.46	Pass	V	Peak
8	3283.0189	33.31	4.54	-43.10	54.41	49.16	74.00	24.84	Pass	V	Peak
9	5026.1351	34.53	4.85	-42.79	51.21	47.80	74.00	26.20	Pass	V	Peak
10	6477.2318	35.90	5.49	-42.51	49.15	48.03	74.00	25.97	Pass	V	Peak
11	7599.3066	36.56	6.10	-42.12	49.45	49.99	74.00	24.01	Pass	V	Peak
12	9230.4154	37.65	6.54	-42.04	49.21	51.36	74.00	22.64	Pass	V	Peak
N 1						•		1	•		1

Mode:		802.11 g	Transmi	tting		Channel:		2412			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak
1	1977.8978	31.55	3.45	-43.14	50.98	42.84	74.00	31.16	Pass	н	Peak
2	3216.0144	33.29	4.59	-43.11	54.36	49.13	74.00	24.87	Pass	Н	Peak
3	5027.1351	34.53	4.85	-42.79	51.22	47.81	74.00	26.19	Pass	н	Peak
4	5994.1996	35.79	5.34	-42.60	49.19	47.72	74.00	26.28	Pass	н	Peak
5	7529.3020	36.59	5.90	-42.11	49.29	49.67	74.00	24.33	Pass	Н	Peak
6	9102.4068	37.68	6.44	-42.02	48.94	51.04	74.00	22.96	Pass	н	Peak
7	1796.0796	30.35	3.31	-42.70	54.03	44.99	74.00	29.01	Pass	V	Peak
8	3216.0144	33.29	4.59	-43.11	52.97	47.74	74.00	26.26	Pass	V	Peak
9	4555.1037	34.50	4.78	-42.80	50.10	46.58	74.00	27.42	Pass	V	Peak
10	5970.1980	35.75	5.33	-42.60	48.81	47.29	74.00	26.71	Pass	V	Peak
11	7647.3098	36.54	6.15	-42.13	48.87	49.43	74.00	24.57	Pass	V	Peak
12	10214.4810	38.10	6.85	-42.06	49.42	52.31	74.00	21.69	Pass	V	Peak
		12				•	1 2			12	S

S

Page 97 of 104

Mode:		802.11 g	Transmi	tting		Channel:		2437			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak
1	1794.0794	30.34	3.31	-42.71	50.08	41.02	74.00	32.98	Pass	Н	Peak
2	3249.0166	33.30	4.45	-43.10	53.23	47.88	74.00	26.12	Pass	Н	Peak
3	5010.1340	34.51	4.83	-42.79	51.29	47.84	74.00	26.16	Pass	Н	Peak
4	6472.2315	35.89	5.50	-42.50	48.82	47.71	74.00	26.29	Pass	Н	Peak
5	7652.3102	36.54	6.16	-42.14	48.80	49.36	74.00	24.64	Pass	Н	Peak
6	10150.4767	38.01	6.86	-42.07	48.85	51.65	74.00	22.35	Pass	Н	Peak
7	1797.8798	30.37	3.32	-42.72	54.77	45.74	74.00	28.26	Pass	V	Peak
8	3249.0166	33.30	4.45	-43.10	52.10	46.75	74.00	27.25	Pass	V	Peak
9	5032.1355	34.53	4.86	-42.79	50.24	46.84	74.00	27.16	Pass	V	Peak
10	6695.2464	35.98	5.49	-42.38	49.69	48.78	74.00	25.22	Pass	V	Peak
11	7733.3156	36.51	6.25	-42.15	48.94	49.55	74.00	24.45	Pass	V	Peak
12	9679.4453	37.67	6.64	-42.09	49.42	51.64	74.00	22.36	Pass	V	Peak

Mode:		802.11 g	Transmi	tting		Channel:		2462			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak
1	1965.6966	31.47	3.44	-43.12	51.35	43.14	74.00	30.86	Pass	Н	Peak
2	4126.0751	33.98	4.42	-42.95	49.72	45.17	74.00	28.83	Pass	Н	Peak
3	5007.1338	34.51	4.83	-42.80	50.69	47.23	74.00	26.77	Pass	Н	Peak
4	6253.2169	35.85	5.36	-42.55	49.47	48.13	74.00	25.87	Pass	Н	Peak
5	7820.3214	36.47	6.06	-42.17	48.96	49.32	74.00	24.68	Pass	Н	Peak
6	9266.4178	37.65	6.61	-42.05	49.00	51.21	74.00	22.79	Pass	Н	Peak
7	1796.0796	30.35	3.31	-42.70	54.62	45.58	74.00	28.42	Pass	V	Peak
8	3283.0189	33.31	4.54	-43.10	53.39	48.14	74.00	25.86	Pass	V	Peak
9	4997.1331	34.50	4.82	-42.80	50.95	47.47	74.00	26.53	Pass	V	Peak
10	6457.2305	35.89	5.51	-42.50	49.22	48.12	74.00	25.88	Pass	V	Peak
11	8571.3714	36.76	6.33	-42.00	49.54	50.63	74.00	23.37	Pass	V	Peak
12	10400.4934	38.36	7.20	-42.02	49.63	53.17	74.00	20.83	Pass	V	Peak
		1.28	1							1.2	1

(S)

Page 98 of 104

Mode:	802.11 n	802.11 n (HT20)				Channel:		2412			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak
1	1864.2864	30.80	3.39	-42.86	51.12	42.45	74.00	31.55	Pass	Н	Peak
2	2562.3562	32.50	4.09	-43.10	51.82	45.31	74.00	28.69	Pass	Н	Peak
3	5038.1359	34.54	4.87	-42.79	50.38	47.00	74.00	27.00	Pass	Н	Peak
4	6473.2315	35.89	5.50	-42.50	49.04	47.93	74.00	26.07	Pass	Н	Peak
5	7621.3081	36.55	6.12	-42.12	49.59	50.14	74.00	23.86	Pass	Н	Peak
6	9299.4200	37.64	6.64	-42.06	49.32	51.54	74.00	22.46	Pass	Н	Peak
7	1800.2800	30.38	3.32	-42.71	54.73	45.72	74.00	28.28	Pass	V	Peak
8	3216.0144	33.29	4.59	-43.11	53.34	48.11	74.00	25.89	Pass	V	Peak
9	3939.0626	33.75	4.34	-43.01	50.11	45.19	74.00	28.81	Pass	V	Peak
10	5058.1372	34.56	4.86	-42.77	49.95	46.60	74.00	27.40	Pass	V	Peak
11	7504.3003	36.60	5.95	-42.10	49.56	50.01	74.00	23.99	Pass	V	Peak
12	9209.4140	37.66	6.47	-42.04	49.50	51.59	74.00	22.41	Pass	V	Peak
								1			1

Mode:		802.11 n	302.11 n (HT20)				Channel:		2437			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak	
1	2134.7135	31.89	3.63	-43.18	51.06	43.40	74.00	30.60	Pass	н	Peak	
2	3249.0166	33.30	4.45	-43.10	52.42	47.07	74.00	26.93	Pass	Н	Peak	
3	5006.1337	34.51	4.83	-42.80	50.49	47.03	74.00	26.97	Pass	Н	Peak	
4	6427.2285	35.89	5.42	-42.51	49.60	48.40	74.00	25.60	Pass	Н	Peak	
5	7785.3190	36.49	6.14	-42.16	50.54	51.01	74.00	22.99	Pass	Н	Peak	
6	9238.4159	37.65	6.56	-42.04	49.33	51.50	74.00	22.50	Pass	Н	Peak	
7	1798.8799	30.37	3.32	-42.71	53.38	44.36	74.00	29.64	Pass	V	Peak	
8	3249.0166	33.30	4.45	-43.10	51.44	46.09	74.00	27.91	Pass	V	Peak	
9	5037.1358	34.54	4.86	-42.78	50.49	47.11	74.00	26.89	Pass	V	Peak	
10	6822.2548	36.03	5.58	-42.31	48.94	48.24	74.00	25.76	Pass	V	Peak	
11	7578.3052	36.57	5.99	-42.12	49.34	49.78	74.00	24.22	Pass	V	Peak	
12	9159.4106	37.67	6.45	-42.04	49.02	51.10	74.00	22.90	Pass	V	Peak	
ST		0	1		ST.		6	9		6).	

Page 99 of 104

Mode:		802.11 n (HT20) (6.5Mbps)				Channel:		2462			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak
1	1822.2822	30.53	3.35	-42.77	51.71	42.82	74.00	31.18	Pass	Н	Peak
2	2194.9195	31.97	3.65	-43.16	51.22	43.68	74.00	30.32	Pass	Н	Peak
3	5052.1368	34.55	4.88	-42.78	50.92	47.57	74.00	26.43	Pass	Н	Peak
4	6464.2309	35.89	5.51	-42.51	49.42	48.31	74.00	25.69	Pass	Н	Peak
5	8394.3596	36.56	6.31	-42.04	49.32	50.15	74.00	23.85	Pass	Н	Peak
6	10565.5044	38.51	6.97	-42.00	48.86	52.34	74.00	21.66	Pass	Н	Peak
7	1798.6799	30.37	3.32	-42.71	54.71	45.69	74.00	28.31	Pass	V	Peak
8	3283.0189	33.31	4.54	-43.10	53.21	47.96	74.00	26.04	Pass	V	Peak
9	5064.1376	34.56	4.85	-42.77	51.52	48.16	74.00	25.84	Pass	V	Peak
10	6402.2268	35.88	5.32	-42.52	50.12	48.80	74.00	25.20	Pass	V	Peak
11	7785.3190	36.49	6.14	-42.16	48.86	49.33	74.00	24.67	Pass	V	Peak
12	9227.4152	37.65	6.53	-42.04	49.38	51.52	74.00	22.48	Pass	V	Peak

Mode:		802.11 n (HT40) (13.5Mbps)				Channel:		2422			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak
1	2029.9030	31.74	3.52	-43.19	50.66	42.73	74.00	31.27	Pass	Н	Peak
2	3229.0153	33.29	4.53	-43.09	52.55	47.28	74.00	26.72	Pass	Н	Peak
3	5024.1349	34.52	4.85	-42.79	51.14	47.72	74.00	26.28	Pass	Н	Peak
4	6967.2645	36.09	5.77	-42.23	49.83	49.46	74.00	24.54	Pass	Н	Peak
5	8486.3658	36.59	6.47	-42.01	48.88	49.93	74.00	24.07	Pass	Н	Peak
6	9714.4476	37.69	6.64	-42.10	49.41	51.64	74.00	22.36	Pass	Н	Peak
7	1797.8798	30.37	3.32	-42.72	54.48	45.45	74.00	28.55	Pass	V	Peak
8	2501.1501	32.40	4.03	-43.09	54.59	47.93	74.00	26.07	Pass	V	Peak
9	3032.0021	33.21	4.87	-43.10	51.16	46.14	74.00	27.86	Pass	V	Peak
10	5014.1343	34.51	4.84	-42.79	50.85	47.41	74.00	26.59	Pass	V	Peak
11	6936.2624	36.07	5.83	-42.23	49.44	49.11	74.00	24.89	Pass	V	Peak
12	9225.4150	37.65	6.52	-42.04	49.38	51.51	74.00	22.49	Pass	V	Peak
SI	•	6	1		C.S.		(6)	9		6)

Report No. : EED32M80046003

Mode: 802.11 n (HT40)					Channel:			2437			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak
1	1810.6811	30.45	3.33	-42.73	50.66	41.71	74.00	32.29	Pass	н	Peak
2	3249.0166	33.30	4.45	-43.10	53.70	48.35	74.00	25.65	Pass	н	Peak
3	5002.1335	34.50	4.82	-42.79	51.26	47.79	74.00	26.21	Pass	н	Peak
4	6927.2618	36.07	5.84	-42.24	49.11	48.78	74.00	25.22	Pass	н	Peak
5	8520.3680	36.64	6.42	-41.99	48.63	49.70	74.00	24.30	Pass	н	Peak
6	10346.4898	38.29	6.92	-42.04	49.56	52.73	74.00	21.27	Pass	н	Peak
7	1796.0796	30.35	3.31	-42.70	54.34	45.30	74.00	28.70	Pass	V	Peak
8	3249.0166	33.30	4.45	-43.10	51.93	46.58	74.00	27.42	Pass	V	Peak
9	5031.1354	34.53	4.86	-42.79	50.73	47.33	74.00	26.67	Pass	V	Peak
10	6454.2303	35.89	5.52	-42.51	49.34	48.24	74.00	25.76	Pass	V	Peak
11	8512.3675	36.63	6.45	-42.00	49.47	50.55	74.00	23.45	Pass	V	Peak
12	10398.4932	38.36	7.19	-42.02	49.38	52.91	74.00	21.09	Pass	V	Peak
					-					-	

Mode:	: 802.11 n (HT40)					Channel:		2452			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak
1	2173.5174	31.94	3.65	-43.16	51.41	43.84	74.00	30.16	Pass	Н	Peak
2	3269.0179	33.31	4.50	-43.10	51.49	46.20	74.00	27.80	Pass	Н	Peak
3	5541.1694	35.07	5.16	-42.60	49.71	47.34	74.00	26.66	Pass	Н	Peak
4	6950.2634	36.08	5.81	-42.23	49.82	49.48	74.00	24.52	Pass	Н	Peak
5	9346.4231	37.63	6.61	-42.07	48.92	51.09	74.00	22.91	Pass	Н	Peak
6	11309.5540	38.79	7.34	-42.01	48.96	53.08	74.00	20.92	Pass	Н	Peak
7	1797.2797	30.36	3.32	-42.71	54.61	45.58	74.00	28.42	Pass	V	Peak
8	3269.0179	33.31	4.50	-43.10	52.87	47.58	74.00	26.42	Pass	V	Peak
9	5056.1371	34.56	4.87	-42.78	51.27	47.92	74.00	26.08	Pass	V	Peak
10	7024.2683	36.12	5.69	-42.19	49.81	49.43	74.00	24.57	Pass	V	Peak
11	9265.4177	37.65	6.61	-42.05	49.22	51.43	74.00	22.57	Pass	V	Peak
12	10969.5313	38.59	7.45	-41.99	48.52	52.57	74.00	21.43	Pass	V	Peak

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

