FCC Part 15C Measurement and Test Report

For

IAG Group Ltd.

Sanecore Science & Technology Industry Park, Jiuwei Village, Xixiang Town,

Shenzhen, China

FCC ID: 2AO5F-M-ONE FCC Rule(s): FCC Part 15.247 **Product Description:** Power Amplifier **Tested Model:** M-ONE **Report No.:** HCT17LR371E **Sample Receipt Date:** 2017-12-13 **Tested Date:** 2018-01-03 to 2018-03-02 **Issued Date:** 2018-03-05 Jasan Su Silin chen Jumuluso **Tested By:** Jason Su/ Engineer **Reviewed By:** Silin Chen / EMC Manager **Approved & Authorized By:** Jandy So / PSQ Manager **Prepared By:** Shenzhen SEM Test Technology Co., Ltd 1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, 518101, China Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may notbe duplicated without prior permitted byShenzhen SEM Test Technology Co., Ltd.

TABLE OF CONTENTS

1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (FUT) 4 1 2 TEST STANDARDS. 5 1 A TEST FACH ITF. 7 2 SUMMARY OF TEST RESULTS 8 3 RF EXPOSURE 9 3 1 STANDARD APPLICABLE 9 3 1 STANDARD APPLICABLE 9 3 1 STANDARD APPLICABLE 9 4 ANTENNA REQUIREMENT 10 4 1 STANDARD APPLICABLE 10 4 2 EVALUATION INFORMATION 10 5 FREQUENCY HOPPING SYSTEM REQUIREMENTS 11 5 1 STANDARD APPLICABLE 11 5 1 STANDARD APPLICABLE 11 5 1 STANDARD APPLICABLE 13 6 1 STANDARD APPLICABLE 13	1. GENERAL INFORMATION	4
1.3 TEST METHODOLOGY 5 1.4 TEST FACURTY 5 1.5 EUT SETUR AND TEST MODE 6 1.6 MASAUREMENT LUCRETAINTY 7 1.7 TEST EQUIPMENT LIST AND DETAILS 7 2. SUMMARY OF TEST RESULTS 8 3. RF EXPOSURE 9 3.1 STANDARD APPLICABLE 9 3.1 STANDARD APPLICABLE 9 3.1 STANDARD APPLICABLE 10 4.1 STANDARD APPLICABLE 10 4.2 EVALUATION INFORMATION 10 5. FREQUENCY HOPPING SYSTEM REQUIREMENTS 11 5.1 STANDARD APPLICABLE 11 5.1 STANDARD APPLICABLE 12 6. QUANTITY OF HOPPING SYSTEM 11 5.1 STANDARD APPLICABLE 13 6.1 STANDARD APPLICABLE 13 6.1 STANDARD APPLICABLE 13 6.2 EVALUATION FREQUENCY HOPPING SEQUENCE 12 6.3 ENVIROMENTAL CONDITIONS 13 6.4 SUMMARY OF TEST RESULTS/PLOTS 14 7. DWELL TIME OF HOPPING CHANNEL 13 7.1 STANDARD APPLICABLE 13 7.1 STANDARD APPLICABLE 13 7.1 STANDARD APPLICABLE 13 </td <td></td> <td></td>		
1 A TEST FACULTY 5 1 S EUT SETUP AND TEST MODE. 6 1 MEASUREMENT UNCERTAINTY 7 2. TIST EQUIPMENT LIST AND DETAILS. 7 2. SUMMARY OF TEST RESULTS 8 3. RF EXPOSURE 9 3.1 STANDARD APPLICABLE 9 3.2 TEST KUSULT 9 4. ANTENNA REQUIREMENT 10 4.1 STANDARD APPLICABLE 10 4.2 EVALUATION INFORMATION 10 5. FREQUENCY HOPPING SYSTEM REQUIREMENTS 11 5.1 STANDARD APPLICABLE 11 5.2 PREQUENCY HOPPING SYSTEM REQUIREMENTS 11 5.3 EUT PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 12 6. QUANTITY OF HOPPING CHANNELS AND CHANNEL SEPARATION 13 6.1 STANDARD APPLICABLE 13 6.2 TEST PROCEDURE 13 6.4 SUMMARY OF TEST RESULTS/PLOTS 13 7.1 STANDARD APPLICABLE 19 7.1 STANDARD APPLICABLE		
1 S FUT SATUR AND TEST MODE 6 1 6 MEASUREMENT UNCERTAINTY 7 1.7 TEST EQUIPMENT LIST AND DETAILS 7 2. SUMMARY OF TEST RESULTS 8 3. RF EXPOSURE 9 3.1 STANDARD APPLICABLE 9 3.1 STANDARD APPLICABLE 9 4. ANTENNA REQUIREMENT 10 4.1 STANDARD APPLICABLE 10 4.2 EVALUATION INFORMATION 10 5. FREQUENCY HOPPING SYSTEM REQUIREMENTS 11 5.1 STANDARD APPLICABLE 11 5.1 STANDARD APPLICABLE 11 5.2 FREQUENCY HOPPING SYSTEM 11 5.3 EUT PSULDORANDOM FREQUENCY HOPPING SEQUENCE 12 6.1 STANDARD APPLICABLE 13 6.1 STANDARD APPLICABLE 14 7. DWELL TIME OF HOPPING CHANNELS AND CHANNEL SEPARATION 13 6.1 STANDARD APPLICABLE 19 7.1 STANDARD APPLICABLE 19 7.1 STANDARD APPLICABLE 19 7.1 STANDARD APPLICABLE <td></td> <td></td>		
1 6 MEASUREMENT UNCERTAINTY 7 1.7 TEST EQUIPMENT LIST AND DETAILS 7 2. SUMMARY OF TEST RESULTS 8 3. RF EXPOSURE 9 3.1 STANDARD APPLICABLE 9 3.2 TEST RESULT 9 4. ANTENNA REQUIREMENT 10 4.1 STANDARD APPLICABLE 10 4.2 EVALUATION INFORMATION 10 5. FREQUENCY HOPPING SYSTEM REQUIREMENTS 11 5. I STANDARD APPLICABLE 11 5.1 SUT DEUDORANDOM REQUENCY HOPPING SEQUENCE 12 6. QUANTITY OF HOPPING CHANNELS AND CHANNEL SEPARATION 13 6.1 STANDARD APPLICABLE 13 6.2 TEST PROCEDURE 13 6.3 EUT PENDOCANDOM REQUENCY HOPPING SEQUENCE 12 6. QUANTITY OF HOPPING CHANNELS AND CHANNEL SEPARATION 13 6.1 STANDARD APPLICABLE 13 6.2 TEST PROCEDURE 14 7. DWELL TIME OF HOPPING CHANNELS 14 7. DWELL TIME OF HOPPING CHANNEL 19 7.1 STANDARD APPLICABLE 19 7.1 STANDARD APPLICABLE 19 7.1 STANDARD APPLICABLE 19 7.1 STANDARD APPLICABLE 19		
1.7 TEST EQUIPMENT LIST AND DETAILS. 7 2. SUMMARY OF TEST RESULTS 8 3. RF EXPOSURE 9 3.1 STANDARD APPLICABLE 9 4. ANTENNA REQUIREMENT 10 4.1 STANDARD APPLICABLE 10 4.2 EVALUATION INFORMATION 10 5. FREQUENCY HOPPING SYSTEM REQUIREMENTS 11 5.1 STANDARD APPLICABLE 11 5.1 STANDARD APPLICABLE 11 5.2 REQUENCY HOPPING SYSTEM REQUIREMENTS 11 5.1 STANDARD APPLICABLE 11 5.2 REQUENCY HOPPING SYSTEM 11 5.3 ENVIRONMESTAL CONDITIONS 12 6. QUANTITY OF HOPPING CHANNELS AND CHANNEL SEPARATION 13 6.4 SUMMARY OF TEST RESULTS/PLOTS 14 7. DWELL TIME OF HOPPING CHANNEL 19 7.1 STANDARD APPLICABLE 19 7.1 STANDARD APPLICABLE 19 7.1 STANDARD APPLICABLE 19 7.1 STANDARD APPLICABLE 20 8. ODB BANDWIDTH 35 8. STANDARD APPLICABLE 35 9. TEST RESULTS/PLOTS 36 8. ODD BANDWIDTH 35 9. STANDARD APPLICABLE	1.6 Measurement Uncertainty	
3. RF EXPOSURE 9 3.1 STANDARD APPLICABLE 9 3.2 TEST RESULT. 9 4. ANTENNA REQUIREMENT 10 4.1 STANDARD APPLICABLE 10 4.1 STANDARD APPLICABLE 10 5. FREQUENCY HOPPING SYSTEM REQUIREMENTS 11 5.1 STANDARD APPLICABLE 11 5.1 STANDARD APPLICABLE 11 5.1 STANDARD APPLICABLE 11 5.3 EUT PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 12 6. QUANTITY OF HOPPING CHANNELS AND CHANNEL SEPARATION 13 6.1 STANDARD APPLICABLE 13 6.1 STANDARD APPLICABLE 13 6.1 STANDARD APPLICABLE 13 6.2 TEST PROCEDURE 13 6.3 ENVIRONMENTAL CONDITIONS 13 6.4 SUMMARY OF TEST RESULTS/PLOTS 14 7. DWELL TIME OF HOPPING CHANNEL 19 7.1 STANDARD APPLICABLE 19 7.4 SUMMARY OF TEST RESULTS/PLOTS 20 8. 20DB BANDWIDTH 3	1.7 Test Equipment List and Details	7
3.1 STANDARD APPLICABLE	2. SUMMARY OF TEST RESULTS	8
3.2 TEST RESULT. 9 4. ANTENNA REQUIREMENT. 10 4.1 STANDARD APPLICABLE. 10 4.2 EVALUATION INFORMATION 10 5. FREQUENCY HOPPING SYSTEM REQUIREMENTS 11 5.1 STANDARD APPLICABLE. 11 5.2 FREQUENCY HOPPING SYSTEM. 11 5.3 EUT PSEUDORANDOM FREQUENCY HOPPING SEQUENCE. 12 6. QUANTITY OF HOPPING CHANNELS AND CHANNEL SEPARATION. 13 6.1 STANDARD APPLICABLE. 13 6.2 TEST PROCEDURE. 13 6.4 SUMMARY OF TEST RESULTS/PLOTS. 14 7. DWELL TIME OF HOPPING CHANNEL. 19 7.1 STANDARD APPLICABLE. 19 7.1 STANDARD APPLICABLE. 19 7.1 STANDARD APPLICABLE. 19 7.1 STANDARD APPLICABLE. 19 7.4 SUMMARY OF TEST RESULTS/PLOTS. 20 8. 20DB BANDWIDTH 35 8. 20DB BANDWIDTH 35 8. 1 STANDARD APPLICABLE. 35 8. 1 STANDARD APPLICABLE. 35 8. 1 STANDARD APPLICABLE. 35 8. 2 TEST PROCEDURE. 36 9. 1 STANDARD APPLICABLE. 36 9. 2 TEST PR	3. RF EXPOSURE	9
4. ANTENNA REQUIREMENT 10 4.1 STANDARD APPLICABLE 10 4.2 EVALUATION INFORMATION 10 5. FREQUENCY HOPPING SYSTEM REQUIREMENTS 11 5.1 STANDARD APPLICABLE 11 5.1 STANDARD APPLICABLE 11 5.3 EUT PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 12 6. QUANTITY OF HOPPING CHANNELS AND CHANNEL SEPARATION 13 6.1 STANDARD APPLICABLE 13 6.1 STANDARD APPLICABLE 13 6.4 SUMMARY OF TEST RESULTS/PLOTS 14 7. DWELL TIME OF HOPPING CHANNEL 19 7.1 STANDARD APPLICABLE 19 7.2 TEST PROCEDURE 19 7.2 TEST PROCEDURE 19 7.4 SUMMARY OF TEST RESULTS/PLOTS 20 8.2 ODB BANDWDTH 35 8.1 STANDARD APPLICABLE 35 9.1 STANDARD APPLICABLE		
4.1 STANDARD APPLICABLE 10 4.2 EVALUATION INFORMATION 10 5. FREQUENCY HOPPING SYSTEM REQUIREMENTS 11 5.1 STANDARD APPLICABLE 11 5.2 FREQUENCY HOPPING SYSTEM 11 5.3 EVT PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 12 6. QUANTITY OF HOPPING CHANNELS AND CHANNEL SEPARATION 13 6.1 STANDARD APPLICABLE 13 6.1 STANDARD APPLICABLE 13 6.4 SUMMARY OF TEST RESULTS/PLOTS 14 7. DWELL TIME OF HOPPING CHANNEL 19 7.1 STANDARD APPLICABLE 19 7.1 STANDARD APPLICABLE 19 7.2 TEST PROCEDURE 19 7.4 SUMMARY OF TEST RESULTS/PLOTS 20 8.2 ODB BANDWDTH 35 8.2 ODB BANDWDTH 35 8.3 ENVIRONMENTAL CONDITIONS 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 20 8.4 SUMMARY OF TEST RESULTS/PLOTS 20 9.1 STANDARD APPLICABLE 35 8.1 STANDARD APPLICABLE 35 8.2 TEST PROCEDURE 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 36 9.1 STANDARD APPLICABLE 35	3.2 TEST RESULT	9
4.2 EVALUATION INFORMATION 10 5. FREQUENCY HOPPING SYSTEM REQUIREMENTS 11 5.1 STANDARD APPLICABLE 11 5.2 FREQUENCY HOPPING SYSTEM 11 5.3 EUT PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 12 6. QUANTITY OF HOPPING CHANNELS AND CHANNEL SEPARATION 13 6.1 STANDARD APPLICABLE 13 6.2 TEST PROCEDURE 13 6.4 SUMMARY OF TEST RESULTS/PLOTS 14 7. DWELL TIME OF HOPPING CHANNEL 19 7.1 STANDARD APPLICABLE 19 7.1 STANDARD APPLICABLE 19 7.2 TEST PROCEDURE 19 7.3 ENVIRONMENTAL CONDITIONS 19 7.4 SUMMARY OF TEST RESULTS/PLOTS 20 8. 20DB BANDWIDTH 35 8.1 STANDARD APPLICABLE 35 8.1 STANDARD APPLICABLE 35 8.1 STANDARD APPLICABLE 35 8.2 ODB BANDWIDTH 35 8.1 STANDARD APPLICABLE 35 8.2 TEST PROCEDURE 35 8.3 ENVIRONMENTAL CONDITIONS 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 36 9.8 FOUTPUT POWER 42 9.1 FATADARD APPLIC	•	
5. FREQUENCY HOPPING SYSTEM REQUIREMENTS 11 5.1 STANDARD APPLICABLE 11 5.2 FREQUENCY HOPPING SYSTEM 11 5.3 EUT PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 12 6. QUANTITY OF HOPPING CHANNELS AND CHANNEL SEPARATION 13 6.1 STANDARD APPLICABLE 13 6.2 TEST PROCEDURE 13 6.3 ENVIRONMENTAL CONDITIONS 13 6.4 SUMMARY OF TEST RESULTS/PLOTS 14 7. DWELL TIME OF HOPPING CHANNEL 19 7.1 STANDARD APPLICABLE 19 7.1 STANDARD APPLICABLE 19 7.2 TEST PROCEDURE 19 7.4 SUMMARY OF TEST RESULTS/PLOTS 20 8. 20DB BANDWIDTH 35 8.1 STANDARD APPLICABLE 35 8.1 STANDARD APPLICABLE 35 8.2 TEST PROCEDURE 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 36 9. RF OUTPUT POWER 42 9.1 STANDARD APPLICABLE 42 9.2 TEST PROCEDURE 36 9.3 ENVIRONMENTAL CONDITIONS 36 9.4 SUMMARY OF TEST RESULTS/PLOTS 36 9.4 SUMMARY OF TEST RESULTS/PLOTS 36		
5.1 STANDARD APPLICABLE 11 5.2 FREQUENCY HOPPING SYSTEM 11 5.3 EUT PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 12 6. QUANTITY OF HOPPING CHANNELS AND CHANNEL SEPARATION 13 6.1 STANDARD APPLICABLE 13 6.2 TEST PROCEDURE 13 6.4 SUMMARY OF TEST RESULTS/PLOTS 14 7. DWELL TIME OF HOPPING CHANNEL 19 7.1 STANDARD APPLICABLE 19 7.1 STANDARD APPLICABLE 19 7.1 STANDARD APPLICABLE 19 7.2 TEST PROCEDURE 19 7.4 SUMMARY OF TEST RESULTS/PLOTS 20 8. 20DB BANDWIDTH 35 8.1 STANDARD APPLICABLE 35 8.2 TEST PROCEDURE 35 8.3 ENVIRONMENTAL CONDITIONS 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 36 9. RF OUTPUT POWER 42 9.1 STANDARD APPLICABLE 35 8.4 SUMMARY OF TEST RESULTS/PLOTS 36 9. RF OUTPUT POWER 42 9.1 STANDARD APPLICABLE 42 9.2 TEST PROCEDURE 42 9.3 ENVIRONMENTAL CONDITIONS 42 9.4 SUMMARY OF TEST RESULTS/PLOT		
5.2 FREQUENCY HOPPING SYSTEM		
5.3 EUT PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 12 6. QUANTITY OF HOPPING CHANNELS AND CHANNEL SEPARATION 13 6.1 STANDARD APPLICABLE 13 6.2 TEST PROCEDURE 13 6.3 ENVIRONMENTAL CONDITIONS 13 6.4 SUMMARY OF TEST RESULTS/PLOTS 14 7. DWELL TIME OF HOPPING CHANNEL 19 7.1 STANDARD APPLICABLE 19 7.2 TEST PROCEDURE 19 7.3 ENVIRONMENTAL CONDITIONS 19 7.4 SUMMARY OF TEST RESULTS/PLOTS 20 8. 20DB BANDWIDTH 35 8.1 STANDARD APPLICABLE 35 8.2 TEST PROCEDURE 35 8.3 ENVIRONMENTAL CONDITIONS 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 36 9.8 FOUTPUT POWER 42 9.1 STANDARD APPLICABLE 42 9.2 TEST PROCEDURE 42 9.3 ENVIRONMENTAL CONDITIONS 42 9.4 SUMMARY OF TEST RESULTS/PLOTS 36 9.4 SUMMARY OF TEST RESULTS/PLOTS 42 9.3 ENVIRONMENTAL CONDITIONS 42 <tr< td=""><td></td><td></td></tr<>		
6. QUANTITY OF HOPPING CHANNELS AND CHANNEL SEPARATION 13 6.1 STANDARD APPLICABLE 13 6.2 TEST PROCEDURE 13 6.3 SENVIRONMENTAL CONDITIONS 13 6.4 SUMMARY OF TEST RESULTS/PLOTS 14 7. DWELL TIME OF HOPPING CHANNEL 19 7.1 STANDARD APPLICABLE 19 7.2 TEST PROCEDURE 19 7.3 ENVIRONMENTAL CONDITIONS 19 7.4 SUMMARY OF TEST RESULTS/PLOTS 20 8. 20DB BANDWIDTH 35 8.1 STANDARD APPLICABLE 35 8.1 STANDARD APPLICABLE 35 8.2 TEST PROCEDURE 35 8.3 ENVIRONMENTAL CONDITIONS 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 36 9.1 STANDARD APPLICABLE 42 9.1 STANDARD APPLICABLE 42 9.1 STANDARD APPLICABLE 42 9.2 TEST PROCEDURE 42 9.3 ENVIRONMENTAL CONDITIONS 42 9.4 SUMMARY OF TEST RESULTS/PLOTS 42 9.4 SUMMARY OF TEST RESULTS/PLOTS 42 9.4 SUMMAR	5.2 FREQUENCY HOPPING SYSTEM	
6.1 STANDARD APPLICABLE 13 6.2 TEST PROCEDURE 13 6.3 ENVIRONMENTAL CONDITIONS 13 6.4 SUMMARY OF TEST RESULTS/PLOTS 14 7. DWELL TIME OF HOPPING CHANNEL 19 7.1 STANDARD APPLICABLE 19 7.2 TEST PROCEDURE 19 7.3 ENVIRONMENTAL CONDITIONS 19 7.4 SUMMARY OF TEST RESULTS/PLOTS 20 8 20DB BANDWIDTH 35 8.1 STANDARD APPLICABLE 35 8.1 STANDARD APPLICABLE 35 8.2 TEST PROCEDURE 35 8.3 ENVIRONMENTAL CONDITIONS 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 36 9.8 FOUTPUT POWER 36 9.1 STANDARD APPLICABLE 36 9.1 STANDARD APPLICABLE 42 9.1 STANDARD APPLICABLE 42 9.2 TEST PROCEDURE 42 9.3 ENVIRONMENTAL CONDITIONS 42 9.1 STANDARD APPLICABLE 42 9.2 TEST PROCEDURE 42 9.3 ENVIRONMENTAL CONDITIONS 42 9.4 SUMMARY OF TEST RESULTS/PLOTS 42 9.4 SUMMARY OF TEST RESULTS/PLOTS 42		
6.2 TEST PROCEDURE136.3 ENVIRONMENTAL CONDITIONS136.4 SUMMARY OF TEST RESULTS/PLOTS147. DWELL TIME OF HOPPING CHANNEL197.1 STANDARD APPLICABLE197.2 TEST PROCEDURE197.3 ENVIRONMENTAL CONDITIONS197.4 SUMMARY OF TEST RESULTS/PLOTS208. 20DB BANDWIDTH358.1 STANDARD APPLICABLE358.2 TEST PROCEDURE358.2 TEST PROCEDURE358.1 STANDARD APPLICABLE358.2 TEST PROCEDURE358.3 ENVIRONMENTAL CONDITIONS369. RF OUTPUT POWER429.1 STANDARD APPLICABLE429.1 STANDARD APPLICABLE429.2 TEST PROCEDURE429.3 ENVIRONMENTAL CONDITIONS369. RF OUTPUT POWER429.1 STANDARD APPLICABLE429.2 TEST PROCEDURE429.3 ENVIRONMENTAL CONDITIONS429.4 SUMMARY OF TEST RESULTS/PLOTS429.4 SUMMARY OF TEST RESULTS/PLOTS4210. FIELD STRENGTH OF SPURIOUS EMISSIONS4910.1 STANDARD APPLICABLE4910.2 TEST PROCEDURE4910.3 CORRECTED AMPLITUDE & MARGIN CALCULATION5010.4 ENVIRONMENTAL CONDITIONS5010.5 SUMMARY OF TEST RESULTS/PLOTS5111. OUT OF BAND EMISSIONS7211.1 STANDARD APPLICABLE7211.2 TEST PROCEDURE7211.3 ENVIRONMENTAL CONDITIONS5010.4 ENVIRONMENTAL CONDITIONS5111. OUT OF BAND EMI		
6.3 ENVIRONMENTAL CONDITIONS 13 6.4 SUMMARY OF TEST RESULTS/PLOTS 14 7. DWELL TIME OF HOPPING CHANNEL 19 7.1 STANDARD APPLICABLE 19 7.2 TEST PROCEDURE 19 7.3 ENVIRONMENTAL CONDITIONS 19 7.4 SUMMARY OF TEST RESULTS/PLOTS 20 8. 20DB BANDWIDTH 35 8.1 STANDARD APPLICABLE 35 8.2 TEST PROCEDURE 35 8.1 STANDARD APPLICABLE 35 8.2 TEST PROCEDURE 35 8.3 ENVIRONMENTAL CONDITIONS 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 36 9. RF OUTPUT POWER 42 9.1 STANDARD APPLICABLE 36 9.2 TEST PROCEDURE 42 9.1 STANDARD APPLICABLE 42 9.2 TEST PROCEDURE 42 9.3 ENVIRONMENTAL CONDITIONS 42 9.4 SUMMARY OF TEST RESULTS/PLOTS 42 9.4 SUMMARY OF TEST RESULTS/PLOTS 42 9.1 STANDARD APPLICABLE 42 9.2 TEST PROCEDURE 42 9.3 ENVIRONMENTAL CONDITIONS 42 9.4 SUMMARY OF TEST RESULTS/PLOTS 50 <		
7. DWELL TIME OF HOPPING CHANNEL 19 7.1 STANDARD APPLICABLE 19 7.2 TEST PROCEDURE 19 7.3 ENVIRONMENTAL CONDITIONS 19 7.4 SUMMARY OF TEST RESULTS/PLOTS 20 8. 20DB BANDWIDTH 35 8.1 STANDARD APPLICABLE 35 8.2 TEST PROCEDURE 35 8.3 ENVIRONMENTAL CONDITIONS 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 36 9. RF OUTPUT POWER 42 9.1 STANDARD APPLICABLE 42 9.2 TEST PROCEDURE 42 9.3 ENVIRONMENTAL CONDITIONS 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 42 9.1 STANDARD APPLICABLE 42 9.2 TEST PROCEDURE 42 9.3 ENVIRONMENTAL CONDITIONS 42 9.4 SUMMARY OF TEST RESULTS/PLOTS 42 9.4 SUMMARY OF TEST RESULTS/PLOTS 42 9.1 STANDARD APPLICABLE 49 10.2 TEST PROCEDURE 49 10.3 STANDARD APPLICABLE 49 10.4 ENVIRONMENTAL CONDITIONS 50 10.4 ENVIRONMENTAL CONDITIONS 50	6.3 Environmental Conditions	
7.1 STANDARD APPLICABLE197.2 TEST PROCEDURE.197.3 ENVIRONMENTAL CONDITIONS197.4 SUMMARY OF TEST RESULTS/PLOTS208. 20DB BANDWIDTH358. 1 STANDARD APPLICABLE358.1 STANDARD APPLICABLE358.2 TEST PROCEDURE358.3 ENVIRONMENTAL CONDITIONS368.4 SUMMARY OF TEST RESULTS/PLOTS369. RF OUTPUT POWER429.1 STANDARD APPLICABLE429.2 TEST PROCEDURE429.3 ENVIRONMENTAL CONDITIONS429.4 SUMMARY OF TEST RESULTS/PLOTS429.4 SUMMARY OF TEST RESULTS/PLOTS4210. FIELD STRENGTH OF SPURIOUS EMISSIONS4910.1 STANDARD APPLICABLE4910.2 TEST PROCEDURE4910.3 CORRECTED AMPLITUDE & MARGIN CALCULATION5010.4 ENVIRONMENTAL CONDITIONS5010.5 SUMMARY OF TEST RESULTS/PLOTS5111. OUT OF BAND EMISSIONS4910.1 STANDARD APPLICABLE7211.1 STANDARD APPLICABLE7211.3 ENVIRONMENTAL CONDITIONS7311.4 SUMMARY OF TEST RESULTS/PLOTS7311.4 SUMMARY OF TEST RESULTS/PLOTS7311.4 SUMMARY OF TEST RESULTS/PLOTS74	6.4 SUMMARY OF TEST RESULTS/PLOTS	
7.2 TEST PROCEDURE197.3 ENVIRONMENTAL CONDITIONS197.4 SUMMARY OF TEST RESULTS/PLOTS208. 20DB BANDWIDTH358.1 STANDARD APPLICABLE358.2 TEST PROCEDURE358.3 ENVIRONMENTAL CONDITIONS368.4 SUMMARY OF TEST RESULTS/PLOTS369. RF OUTPUT POWER429.1 STANDARD APPLICABLE429.2 TEST PROCEDURE429.3 ENVIRONMENTAL CONDITIONS369. RF OUTPUT POWER429.1 STANDARD APPLICABLE429.2 TEST PROCEDURE429.3 ENVIRONMENTAL CONDITIONS4210. FIELD STRENGTH OF SPURIOUS EMISSIONS4910.1 STANDARD APPLICABLE4910.2 TEST PROCEDURE4910.3 CORRECTED AMPLITUDE & MARGIN CALCULATION5010.4 ENVIRONMENTAL CONDITIONS5010.5 SUMMARY OF TEST RESULTS/PLOTS5111. OUT OF BAND EMISSIONS7211.1 STANDARD APPLICABLE7211.1 STANDARD APPLICABLE7211.2 TEST PROCEDURE7211.3 ENVIRONMENTAL CONDITIONS7311.4 SUMMARY OF TEST RESULTS/PLOTS74	7. DWELL TIME OF HOPPING CHANNEL	
7.3 ENVIRONMENTAL CONDITIONS197.4 SUMMARY OF TEST RESULTS/PLOTS208. 20DB BANDWIDTH358.1 STANDARD APPLICABLE358.1 STANDARD APPLICABLE358.2 TEST PROCEDURE358.3 ENVIRONMENTAL CONDITIONS368.4 SUMMARY OF TEST RESULTS/PLOTS369. RF OUTPUT POWER429.1 STANDARD APPLICABLE429.2 TEST PROCEDURE429.3 ENVIRONMENTAL CONDITIONS429.4 SUMMARY OF TEST RESULTS/PLOTS429.4 SUMMARY OF TEST RESULTS/PLOTS429.4 SUMMARY OF TEST RESULTS/PLOTS429.4 SUMMARY OF TEST RESULTS/PLOTS4910.1 STANDARD APPLICABLE4910.2 TEST PROCEDURE4910.3 CORRECTED AMPLICABLE4910.4 ENVIRONMENTAL CONDITIONS5010.4 ENVIRONMENTAL CONDITIONS5010.5 SUMMARY OF TEST RESULTS/PLOTS5111. OUT OF BAND EMISSIONS7211.1 STANDARD APPLICABLE7211.1 STANDARD APPLICABLE7211.3 ENVIRONMENTAL CONDITIONS7311.4 SUMMARY OF TEST RESULTS/PLOTS7311.4 SUMMARY OF TEST RESULTS/PLOTS7311.4 SUMMARY OF TEST RESULTS/PLOTS7311.4 SUMMARY OF TEST RESULTS/PLOTS74		
7.4 SUMMARY OF TEST RESULTS/PLOTS208. 20DB BANDWIDTH358.1 STANDARD APPLICABLE358.2 TEST PROCEDURE358.3 ENVIRONMENTAL CONDITIONS368.4 SUMMARY OF TEST RESULTS/PLOTS369. RF OUTPUT POWER429.1 STANDARD APPLICABLE429.2 TEST PROCEDURE429.3 ENVIRONMENTAL CONDITIONS429.4 SUMMARY OF TEST RESULTS/PLOTS4210. FIELD STRENGTH OF SPURIOUS EMISSIONS4910.1 STANDARD APPLICABLE4910.2 TEST PROCEDURE4910.3 CORRECTED AMPLICABLE4910.3 CORRECTED AMPLICABLE4910.4 ENVIRONMENTAL CONDITIONS5010.4 ENVIRONMENTAL CONDITIONS5010.5 SUMMARY OF TEST RESULTS/PLOTS5011.0 UT OF BAND EMISSIONS5011.1 STANDARD APPLICABLE7211.1 STANDARD APPLICABLE7211.2 TEST PROCEDURE7211.3 ENVIRONMENTAL CONDITIONS7311.4 SUMMARY OF TEST RESULTS/PLOTS7311.4 SUMMARY OF TEST RESULTS/PLOTS74		
8. 20DB BANDWIDTH 35 8.1 STANDARD APPLICABLE 35 8.2 TEST PROCEDURE 35 8.3 ENVIRONMENTAL CONDITIONS 36 8.4 SUMMARY OF TEST RESULTS/PLOTS 36 9. RF OUTPUT POWER 42 9.1 STANDARD APPLICABLE 42 9.2 TEST PROCEDURE 42 9.3 ENVIRONMENTAL CONDITIONS 42 9.4 SUMMARY OF TEST RESULTS/PLOTS 42 10. FIELD STRENGTH OF SPURIOUS EMISSIONS 49 10.1 STANDARD APPLICABLE 49 10.2 TEST PROCEDURE 49 10.3 CORRECTED AMPLITUDE & MARGIN CALCULATION 50 10.4 ENVIRONMENTAL CONDITIONS 50 10.5 SUMMARY OF TEST RESULTS/PLOTS 51 11. OUT OF BAND EMISSIONS 72 11.1 STANDARD APPLICABLE 72 11.2 TEST PROCEDURE 72 11.3 ENVIRONMENTAL CONDITIONS 73 11.4 SUMMARY OF TEST RESULTS/PLOTS 73 <td></td> <td></td>		
8.1 STANDARD APPLICABLE.358.2 TEST PROCEDURE.358.3 ENVIRONMENTAL CONDITIONS368.4 SUMMARY OF TEST RESULTS/PLOTS369. RF OUTPUT POWER.429.1 STANDARD APPLICABLE.429.2 TEST PROCEDURE.429.3 ENVIRONMENTAL CONDITIONS429.4 SUMMARY OF TEST RESULTS/PLOTS4210. FIELD STRENGTH OF SPURIOUS EMISSIONS4910.1 STANDARD APPLICABLE.4910.2 TEST PROCEDURE.4910.3 CORRECTED AMPLITUDE & MARGIN CALCULATION5010.4 ENVIRONMENTAL CONDITIONS5010.5 SUMMARY OF TEST RESULTS/PLOTS5111. OUT OF BAND EMISSIONS7211.1 STANDARD APPLICABLE.7211.2 TEST PROCEDURE.7211.3 ENVIRONMENTAL CONDITIONS7311.4 SUMMARY OF TEST RESULTS/PLOTS7311.4 SUMMARY OF TEST RESULTS/PLOTS74		
8.2 TEST PROCEDURE358.3 ENVIRONMENTAL CONDITIONS368.4 SUMMARY OF TEST RESULTS/PLOTS369. RF OUTPUT POWER429.1 STANDARD APPLICABLE429.2 TEST PROCEDURE429.3 ENVIRONMENTAL CONDITIONS429.4 SUMMARY OF TEST RESULTS/PLOTS4210. FIELD STRENGTH OF SPURIOUS EMISSIONS4910.1 STANDARD APPLICABLE4910.2 TEST PROCEDURE4910.3 CORRECTED AMPLITUDE & MARGIN CALCULATION5010.4 ENVIRONMENTAL CONDITIONS5010.5 SUMMARY OF TEST RESULTS/PLOTS5111. OUT OF BAND EMISSIONS7211.1 STANDARD APPLICABLE7211.1 STANDARD APPLICABLE7211.2 TEST PROCEDURE7211.3 ENVIRONMENTAL CONDITIONS7311.4 SUMMARY OF TEST RESULTS/PLOTS7311.4 SUMMARY OF TEST RESULTS/PLOTS74		
8.3 ENVIRONMENTAL CONDITIONS368.4 SUMMARY OF TEST RESULTS/PLOTS369. RF OUTPUT POWER429.1 STANDARD APPLICABLE429.2 TEST PROCEDURE429.3 ENVIRONMENTAL CONDITIONS429.4 SUMMARY OF TEST RESULTS/PLOTS4210. FIELD STRENGTH OF SPURIOUS EMISSIONS4910.1 STANDARD APPLICABLE4910.2 TEST PROCEDURE4910.3 CORRECTED AMPLITUDE & MARGIN CALCULATION5010.4 ENVIRONMENTAL CONDITIONS5010.5 SUMMARY OF TEST RESULTS/PLOTS5111. OUT OF BAND EMISSIONS7211.1 STANDARD APPLICABLE7211.2 TEST PROCEDURE7211.3 ENVIRONMENTAL CONDITIONS7311.4 SUMMARY OF TEST RESULTS/PLOTS74		
9. RF OUTPUT POWER 42 9.1 STANDARD APPLICABLE. 42 9.2 TEST PROCEDURE. 42 9.3 ENVIRONMENTAL CONDITIONS 42 9.4 SUMMARY OF TEST RESULTS/PLOTS 42 10. FIELD STRENGTH OF SPURIOUS EMISSIONS 49 10.1 STANDARD APPLICABLE. 49 10.2 TEST PROCEDURE 49 10.3 CORRECTED AMPLITUDE & MARGIN CALCULATION 50 10.4 ENVIRONMENTAL CONDITIONS 50 10.5 SUMMARY OF TEST RESULTS/PLOTS 51 11. OUT OF BAND EMISSIONS 72 11.1 STANDARD APPLICABLE 72 11.2 TEST PROCEDURE 72 11.3 ENVIRONMENTAL CONDITIONS 73 11.4 SUMMARY OF TEST RESULTS/PLOTS 73		
9.1 STANDARD APPLICABLE429.2 TEST PROCEDURE429.3 ENVIRONMENTAL CONDITIONS429.4 SUMMARY OF TEST RESULTS/PLOTS42 10. FIELD STRENGTH OF SPURIOUS EMISSIONS 4910.1 STANDARD APPLICABLE4910.2 TEST PROCEDURE4910.3 CORRECTED AMPLITUDE & MARGIN CALCULATION5010.4 ENVIRONMENTAL CONDITIONS5010.5 SUMMARY OF TEST RESULTS/PLOTS51 11. OUT OF BAND EMISSIONS 7211.1 STANDARD APPLICABLE7211.2 TEST PROCEDURE7211.3 ENVIRONMENTAL CONDITIONS7311.4 SUMMARY OF TEST RESULTS/PLOTS74	8.4 SUMMARY OF TEST RESULTS/PLOTS	
9.2 TEST PROCEDURE429.3 ENVIRONMENTAL CONDITIONS429.4 SUMMARY OF TEST RESULTS/PLOTS42 10. FIELD STRENGTH OF SPURIOUS EMISSIONS 4910.1 STANDARD APPLICABLE4910.2 TEST PROCEDURE4910.3 CORRECTED AMPLITUDE & MARGIN CALCULATION5010.4 ENVIRONMENTAL CONDITIONS5010.5 SUMMARY OF TEST RESULTS/PLOTS51 11. OUT OF BAND EMISSIONS 7211.1 STANDARD APPLICABLE7211.2 TEST PROCEDURE7211.3 ENVIRONMENTAL CONDITIONS7311.4 SUMMARY OF TEST RESULTS/PLOTS74	9. RF OUTPUT POWER	
9.3 ENVIRONMENTAL CONDITIONS429.4 SUMMARY OF TEST RESULTS/PLOTS4210. FIELD STRENGTH OF SPURIOUS EMISSIONS4910.1 STANDARD APPLICABLE4910.2 TEST PROCEDURE4910.3 CORRECTED AMPLITUDE & MARGIN CALCULATION5010.4 ENVIRONMENTAL CONDITIONS5010.5 SUMMARY OF TEST RESULTS/PLOTS5111. OUT OF BAND EMISSIONS7211.1 STANDARD APPLICABLE7211.2 TEST PROCEDURE7211.3 ENVIRONMENTAL CONDITIONS7311.4 SUMMARY OF TEST RESULTS/PLOTS74		
9.4 SUMMARY OF TEST RESULTS/PLOTS4210. FIELD STRENGTH OF SPURIOUS EMISSIONS4910.1 STANDARD APPLICABLE4910.2 TEST PROCEDURE4910.3 CORRECTED AMPLITUDE & MARGIN CALCULATION5010.4 ENVIRONMENTAL CONDITIONS5010.5 SUMMARY OF TEST RESULTS/PLOTS5111. OUT OF BAND EMISSIONS7211.1 STANDARD APPLICABLE7211.2 TEST PROCEDURE7211.3 ENVIRONMENTAL CONDITIONS7311.4 SUMMARY OF TEST RESULTS/PLOTS74		
10. FIELD STRENGTH OF SPURIOUS EMISSIONS4910.1 STANDARD APPLICABLE4910.2 TEST PROCEDURE4910.3 CORRECTED AMPLITUDE & MARGIN CALCULATION5010.4 ENVIRONMENTAL CONDITIONS5010.5 SUMMARY OF TEST RESULTS/PLOTS5111. OUT OF BAND EMISSIONS7211.1 STANDARD APPLICABLE7211.2 TEST PROCEDURE7211.3 ENVIRONMENTAL CONDITIONS7311.4 SUMMARY OF TEST RESULTS/PLOTS74		
10.1 STANDARD APPLICABLE4910.2 TEST PROCEDURE4910.3 CORRECTED AMPLITUDE & MARGIN CALCULATION5010.4 ENVIRONMENTAL CONDITIONS.5010.5 SUMMARY OF TEST RESULTS/PLOTS.51 11. OUT OF BAND EMISSIONS .7211.1 STANDARD APPLICABLE7211.2 TEST PROCEDURE7211.3 ENVIRONMENTAL CONDITIONS.7311.4 SUMMARY OF TEST RESULTS/PLOTS.74		
10.2 TEST PROCEDURE.4910.3 CORRECTED AMPLITUDE & MARGIN CALCULATION.5010.4 ENVIRONMENTAL CONDITIONS5010.5 SUMMARY OF TEST RESULTS/PLOTS51 11. OUT OF BAND EMISSIONS.72 11.1 STANDARD APPLICABLE.7211.2 TEST PROCEDURE.7211.3 ENVIRONMENTAL CONDITIONS7311.4 SUMMARY OF TEST RESULTS/PLOTS74		
10.3 CORRECTED AMPLITUDE & MARGIN CALCULATION5010.4 ENVIRONMENTAL CONDITIONS5010.5 SUMMARY OF TEST RESULTS/PLOTS51 11. OUT OF BAND EMISSIONS72 11.1 STANDARD APPLICABLE7211.2 TEST PROCEDURE7211.3 ENVIRONMENTAL CONDITIONS7311.4 SUMMARY OF TEST RESULTS/PLOTS74		
10.5 SUMMARY OF TEST RESULTS/PLOTS5111. OUT OF BAND EMISSIONS7211.1 STANDARD APPLICABLE7211.2 TEST PROCEDURE7211.3 ENVIRONMENTAL CONDITIONS7311.4 SUMMARY OF TEST RESULTS/PLOTS74		
11. OUT OF BAND EMISSIONS		
11.1 Standard Applicable. 72 11.2 Test Procedure. 72 11.3 Environmental Conditions 73 11.4 Summary of Test Results/Plots 74		
11.2 TEST PROCEDURE		
11.3 Environmental Conditions 73 11.4 Summary of Test Results/Plots 74		
11.4 Summary of Test Results/Plots		

12.1 Test Procedure	90
12.2BASIC TEST SETUP BLOCK DIAGRAM	
12.3 Environmental Conditions	
12.4 Test Receiver Setup	91
12.5 SUMMARY OF TEST RESULTS/PLOTS	
12.6 CONDUCTED EMISSIONS TEST DATA	

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information	
Applicant:	IAG Group Ltd.
Address of applicant:	Sanecore Science & Technology Industry Park, Jiuwei Village, Xixiang Town, Shenzhen, China
Manufacturer:	IAG Group Ltd.
Address of manufacturer:	Sanecore Science & Technology Industry Park,
	Jiuwei Village, Xixiang Town, Shenzhen, China

Power Amplifier	
audiolab	
M-ONE	
/	
Input:AC100-120V 50/60Hz 150W	
V4.2	
JS1T_V01B	
	audiolab M-ONE / Input:AC100-120V 50/60Hz 150W V4.2

Note: The test data is gathered from a production sample, provided by the manufacturer.

Technical Characteristics of EUT	
Bluetooth Version:	V4.0 (Single mode)
Frequency Range:	2402-2480MHz
RF Output Power:	3.790dBm (Conducted)
Modulation:	GFSK, π/4 DQPSK, 8DPSK
Quantity of Channels:	79
Channel Separation:	1MHz
Type of Antenna:	Cylindrical Antenna
Antenna Gain:	2.90dBi
Lowest Internal Frequency of EUT:	26MHz

1.2 Test Standards

The following report is prepared on behalf of the IAG Group Ltd. in accordance with FCC Part15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices.

1.4 Test Facility

FCC – Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. Laboratory has been recognized to perform compliance testing on equipment subject to the Commissions Declaration Of Conformity (DOC). The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM. Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List				
Test Mode	Description	Remark		
TM1	Low Channel	2402MHz		
TM2	Middle Channel	2441MHz		
TM3	High Channel	2480MHz		
TM4	Hopping	2402-2480MHz		

Modulation	Packet	Packet Type	Packet Size
	DH1	4	27
GFSK	DH3	11	183
	DH5	15	339
	2DH1	20	54
$\pi/4$ DQPSK	2DH3	26	367
	2DH5	30	679
	3DH1	24	83
8DPSK	3DH3	27	552
	3DH5	31	1021

8DPSK, compliance test and record the worst case.

Accessories Equipment List and Details					
Description	Manufacturer	Model No.	Serial Number		
/	/	/	/		
Accessories Cable List	Accessories Cable List and Details				
Cable Description	Length (m)	Shielded/Unshielded	With Core/Without Core		
/	/	/	/		
EUT Cable List and D	etails	•			
Cable Description	Length (m)	Shielded/Unshielded	With Core/Without Core		
USB Cable	0.95	Shielded	Without Core		
Earphone	1.2	Unshielded	Without Core		

1.6 Measurement Uncertainty

Measurement uncertainty		
Parameter	Conditions	Uncertainty
RF Output Power	Conducted	±0.42dB
Occupied Bandwidth	Conducted	±1.5%
Conducted Spurious Emission	Conducted	±2.17dB
Conducted Emissions	Conducted	9-150kHz ±3.74dB
		0.15-30MHz ±3.34dB
	Radiated	30-200MHz ±4.52dB
Transmitter Spurious Emissions		0.2-1GHz ±5.56dB
		1-6GHz ±3.84dB
		6-18GHz ±3.92dB

1.7 Test Equipment List and Details

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due Date
SEMT-1072	Spectrum Analyzer	Agilent	E4407B	MY41440400	2017-06-12	2018-06-11
SEMT-1031	Spectrum Analyzer	Rohde & Schwarz	FSP30	836079/035	2017-06-12	2018-06-11
SEMT-1007	EMI Test Receiver	Rohde & Schwarz	ESVB	825471/005	2017-06-12	2018-06-11
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2017-06-12	2018-06-11
SEMT-1043	Amplifier	C&D	PAP-1G18	2002	2017-06-12	2018-06-11
SEMT-1011	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2017-06-08	2018-06-07
SEMT-1042	Horn Antenna	ETS	3117	00086197	2017-06-08	2018-06-07
SEMT-1121	Horn Antenna	Schwarz beck	BBHA 9170	BBHA9170582	2017-06-08	2018-06-07
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2017-06-08	2018-06-07
SEMT-1001	EMI Test Receiver	Rohde & Schwarz	ESPI	101611	2017-06-12	2018-06-11
SEMT-1003	L.I.S.N	Schwarz beck	NSLK8126	8126-224	2017-06-12	2018-06-11
SEMT-1002	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100911	2017-06-12	2018-06-11
SEMT-1168	Pre-amplifier	Direction Systems Inc.	PAP-0126	14141-12838	2017-08-15	2018-08-14
SEMT-1169	Pre-amplifier	Direction Systems Inc.	PAP-2640	14145-14153	2017-08-15	2018-08-14
SEMT-1163	Spectrum Analyzer	Rohde & Schwarz	FSP40	100612	2017-06-12	2018-06-11
SEMT-1170	DRG Horn Antenna	A.H. SYSTEMS	SAS-574	571	2017-03-09	2018-03-08

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§ 2.1093	RF Exposure	Compliant
§15.203;§15.247(b)(4)(i)	Antenna Requirement	Compliant
§15.205	Restricted Band of Operation	Compliant
§15.207(a)	Conducted Emission	Compliant
§15.209(a)	Radiated Spurious Emissions	Compliant
§15.247(a)(1)(iii)	Quantity of Hopping Channel	Compliant
§15.247(a)(1)	Channel Separation	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell time)	Compliant
§15.247(a)	20dB Bandwidth	Compliant
§15.247(b)(1)	RF Power Output	Compliant
§15.247(d)	Band Edge (Out of Band Emissions)	Compliant
§15.247(a)(1)	Frequency Hopping Sequence	Compliant
§15.247(g), (h)	Frequency Hopping System	Compliant

N/A: not applicable

3. RF Exposure

3.1 Standard Applicable

According to §1.1307 and §2.1093, the portable transmitter must comply the RF exposure requirements.

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the RF Exposure Report.

4. Antenna Requirement

4.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

4.2 Evaluation Information

This product has an integral antenna, fulfill the requirement of this section.

5. Frequency Hopping System Requirements

5.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

5.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for DA 00-705 and FCC Part 15.247 rule.

5.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6. Quantity of Hopping Channels and Channel Separation

6.1 Standard Applicable

According to FCC 15.247(a)(1), frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, and frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

6.2 Test Procedure

According to ANSI C63.10-2013 section 7.8.3, the number of hopping frequencies test method as follows.

a) Span: The frequency band of operation. Depending on the number of channels the devicesupports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.

b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channelspacing or the 20 dB bandwidth, whichever is smaller.

c) VBW \geq RBW.

d) Sweep: Auto.

e) Detector function: Peak.

f) Trace: Max hold.

g) Allow the trace to stabilize.

According to ANSI C63.10-2013 section 7.8.2, the EUT shall have its hopping function enabled, the Carrier frequency separation test method as follows:

a) Span: Wide enough to capture the peaks of two adjacent channels.

b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessaryto best identify the center of each individual channel.

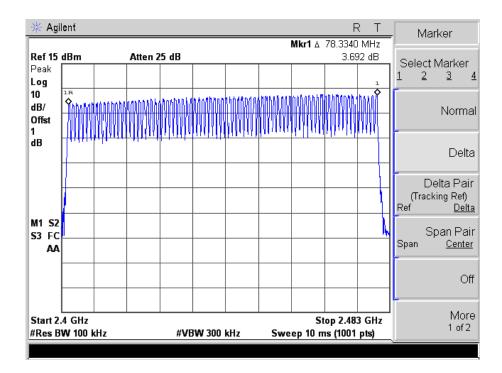
c) Video (or average) bandwidth (VBW) \geq RBW.

d) Sweep: Auto.

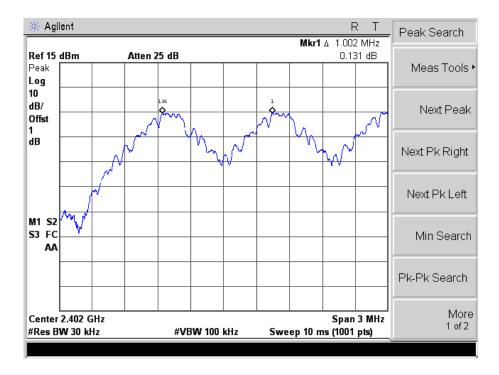
e) Detector function: Peak.

f) Trace: Max hold.

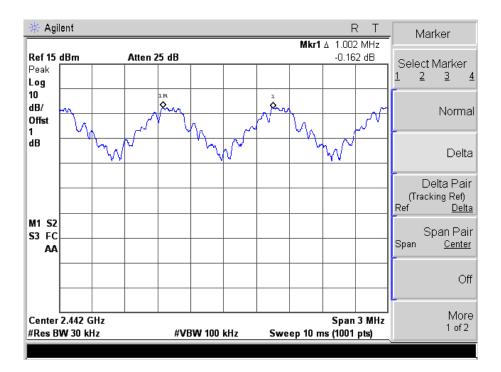
g) Allow the trace to stabilize.

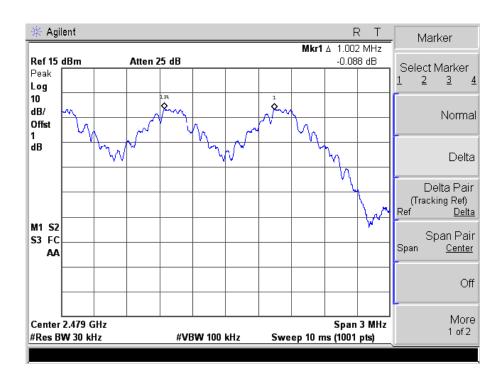

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

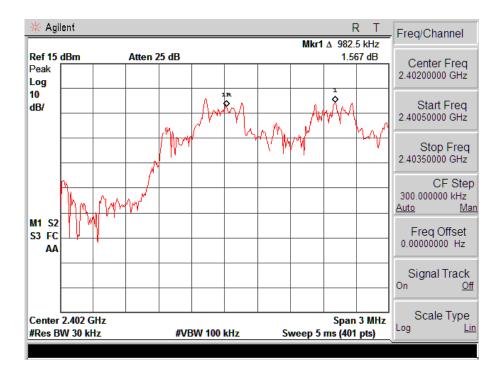
6.3 Environmental Conditions

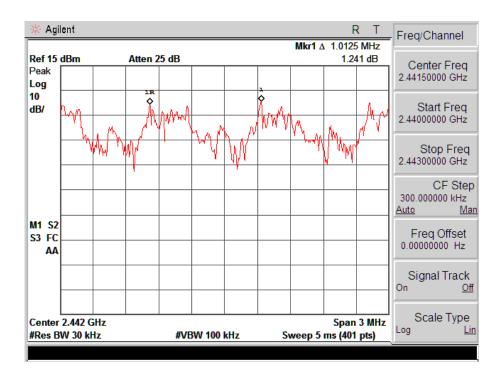

Temperature:	24 °C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

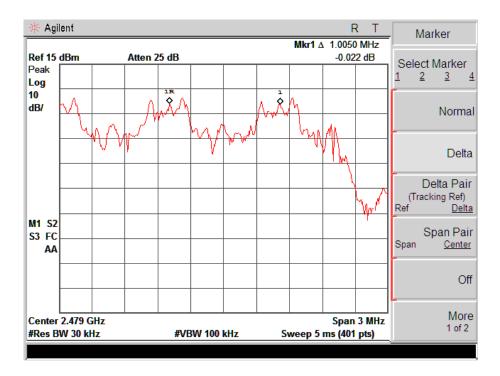
6.4 Summary of Test Results/Plots

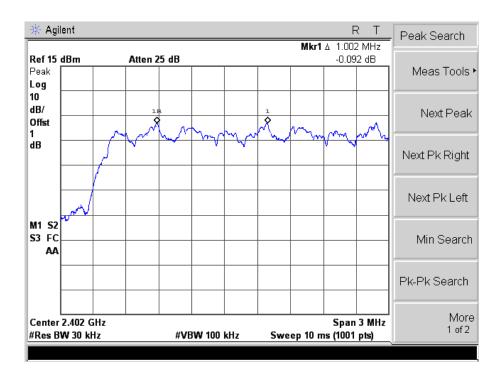

No. of Channel = 79

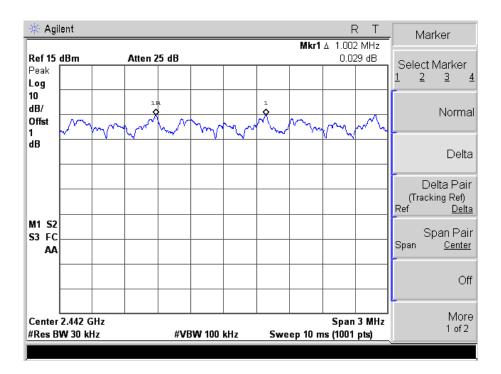

For GFSK mode Channel Spacing (Low CH=1MHz)

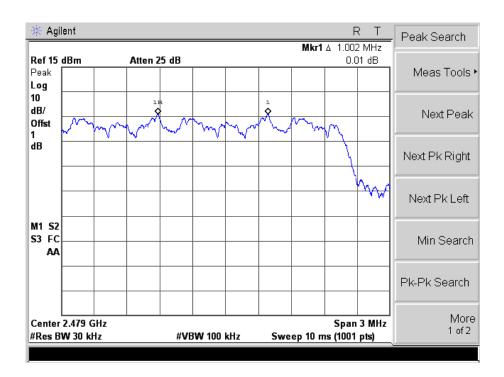

Channel Spacing (Middle CH=1MHz)


Channel Spacing (High CH=1MHz)


For Pi/4QDPSK mode Channel Spacing (Low CH=1MHz)


Channel Spacing (Middle CH=1MHz)


Channel Spacing (High CH=1MHz)


For 8DPSK mode Channel Spacing (Low CH=1MHz)

Channel Spacing (Middle CH=1MHz)

Channel Spacing (High CH=1MHz)

7. Dwell Time of Hopping Channel

7.1 Standard Applicable

According to 15.247(a)(1)(iii), Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

7.2 Test Procedure

According to ANSI C63.10-2013 section 7.8.4, the dwell time of a hopping channel test method as follows.

a) Span: Zero span, centered on a hopping channel.

b) RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.

c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use avideo trigger and trigger delay so that the transmitted signal starts a little to the right of the start

of the plot. The trigger level might need slight adjustment to prevent triggering when the systemhops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.

d) Detector function: Peak.

e) Trace: Max hold.

Use the marker-delta function to determine the transmit time per hop. If this value varies with differentmodes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this testfor each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the periodspecified in the requirements. The sweep time shall be equal to, or less than, the period specified in therequirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

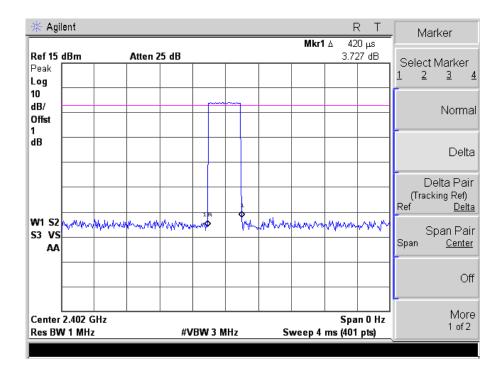
(Number of hops in the period specified in the requirements) =

(number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time)

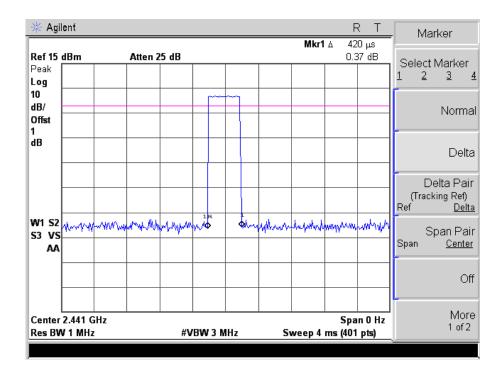
The average time of occupancy is calculated from the transmit time per hop multiplied by the number ofhops in the period specified in the requirements. If the number of hops in a specific time varies withdifferent modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeatthis test for each variation. The measured transmit time and time between hops shall be consistent with the values described in theoperational description for the EUT.

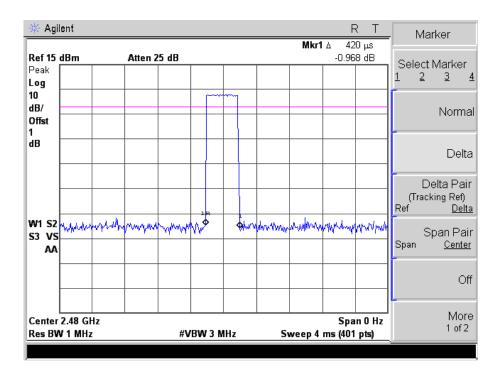
7.3 Environmental Conditions

Temperature:	24 °C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

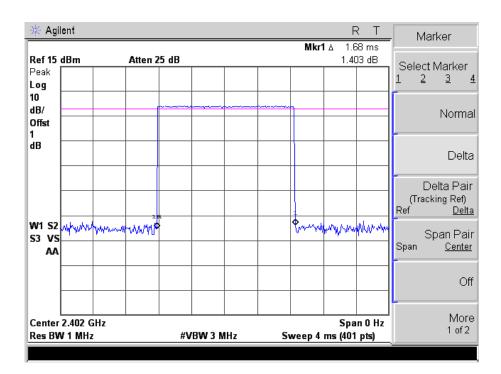

7.4 Summary of Test Results/Plots

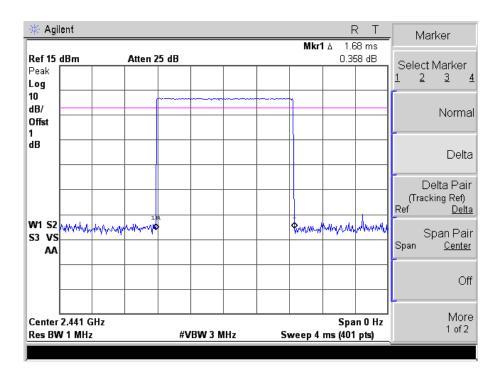
The dwell time within a period in data mode is independent from the packet type (packet length).

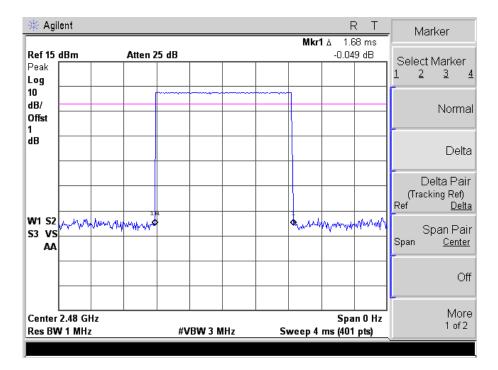

The test period: T = 0.4 Second * 79 Channel = 31.6 s Dwell time (DH1) = time slot length * (1600 / 2 / 79) * 31.6 Dwell time (DH3) = time slot length * (1600 / 4 / 79) * 31.6 Dwell time (DH5) = time slot length * (1600 / 6 / 79) * 31.6

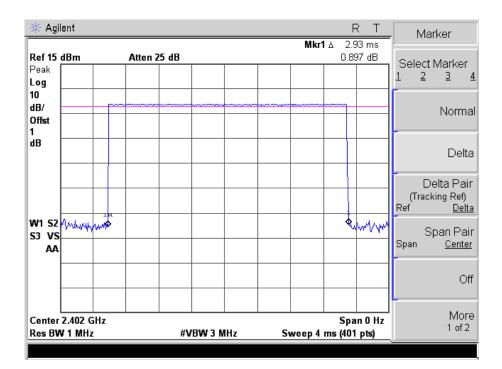

Modulation	Test Channel	Packet	Time Slot Length	Dwell Time	Limit
			ms	ms	ms
GFSK	2402MHz	DH1	0.420	134.400	400
		DH3	1.680	268.800	400
		DH5	2.930	312.533	400
	2441MHz	DH1	0.420	134.400	400
		DH3	1.680	268.800	400
		DH5	2.920	311.467	400
	2480MHz	DH1	0.420	134.400	400
		DH3	1.680	268.800	400
		DH5	2.920	311.467	400
	2402MHz	2DH1	0.380	121.600	400
		2DH3	1.640	262.400	400
		2DH5	2.880	307.200	400
Pi/4 QDPSK	2441MHz	2DH1	0.380	121.600	400
		2DH3	1.640	262.400	400
		2DH5	2.880	307.200	400
	2480MHz	2DH1	0.370	118.400	400
		2DH3	1.640	262.400	400
		2DH5	2.880	307.200	400
	2402MHz	3DH1	0.430	137.600	400
		3DH3	1.680	268.800	400
		3DH5	2.930	312.533	400
	2441MHz	3DH1	0.440	140.800	400
8DPSK		3DH3	1.680	268.800	400
		3DH5	2.940	313.600	400
	2480MHz	3DH1	0.440	140.800	400
		3DH3	1.680	268.800	400
		3DH5	2.940	313.600	400

Please refer to the test plots as below:

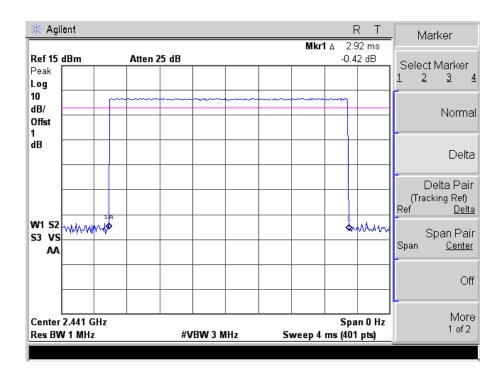


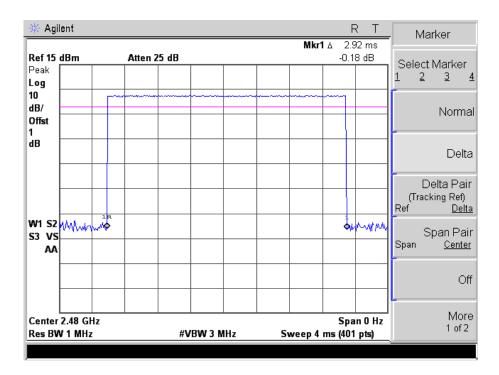

DH1 time slot (Low, Middle, High Channels)

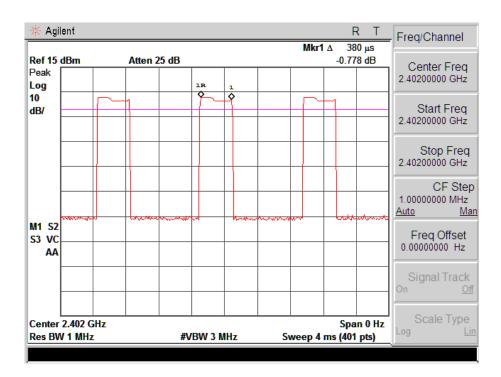


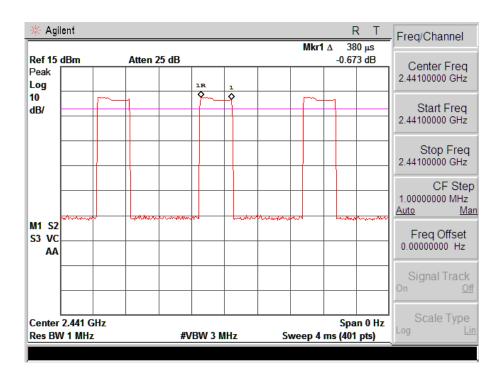


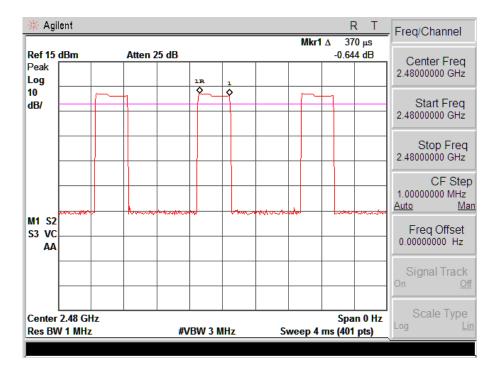
DH3 time slot (Low, Middle, High Channels)

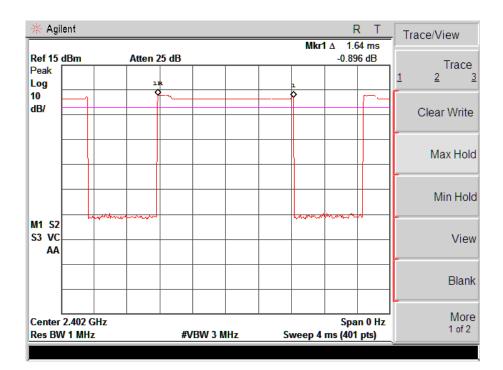




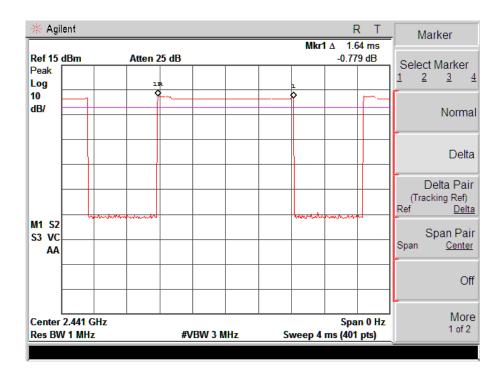


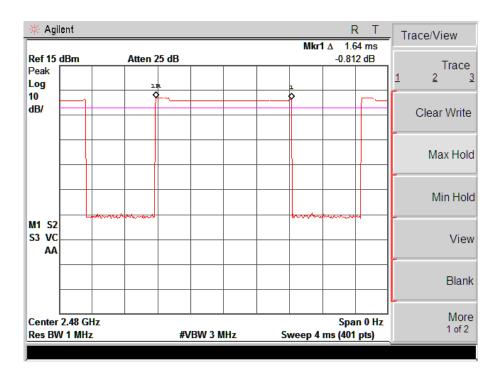

DH5 time slot (Low, Middle, High Channels)

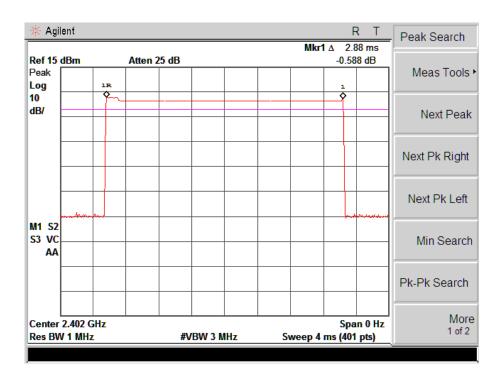


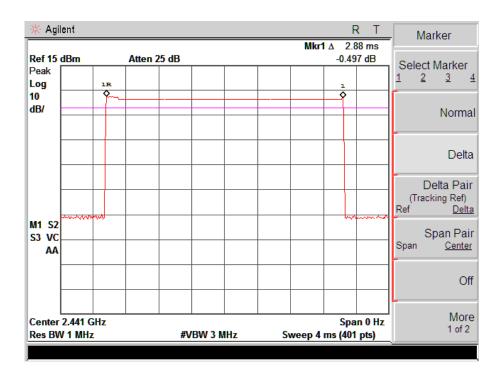


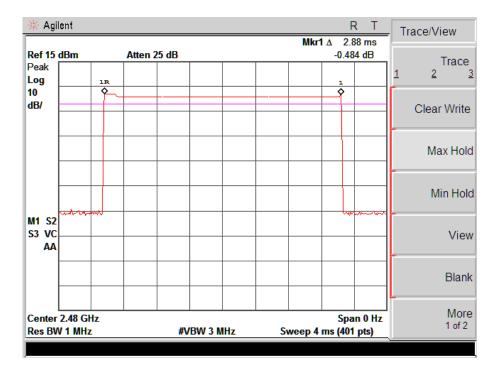
2DH1 time slot (Low, Middle, High Channels)

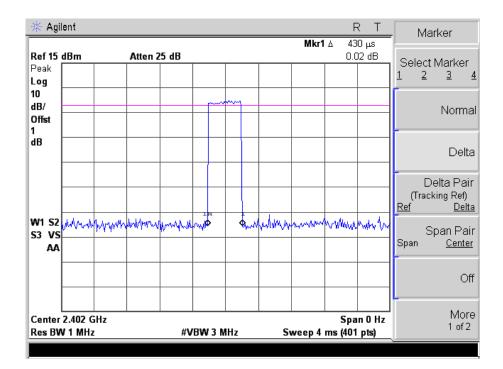




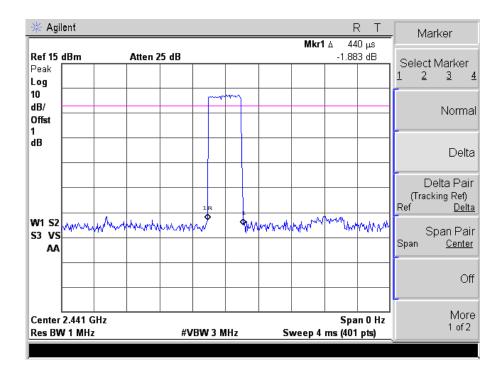


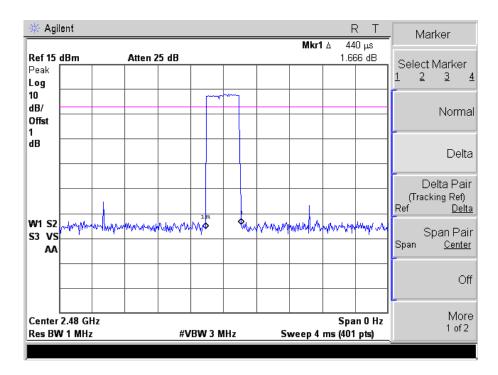

2DH3 time slot (Low, Middle, High Channels)

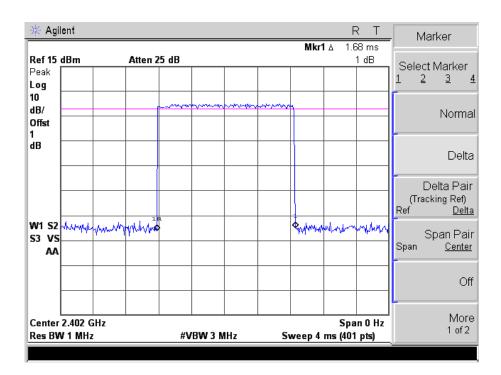


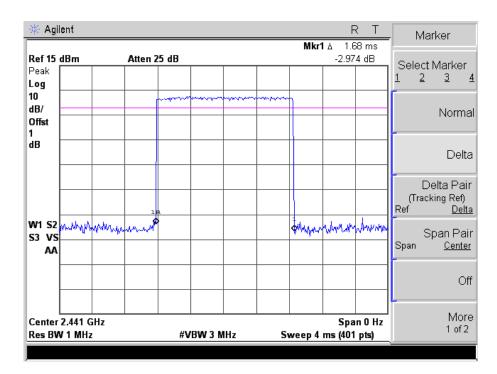


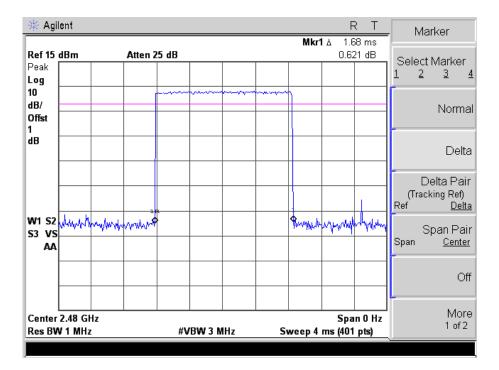
2DH5 time slot (Low, Middle, High Channels)

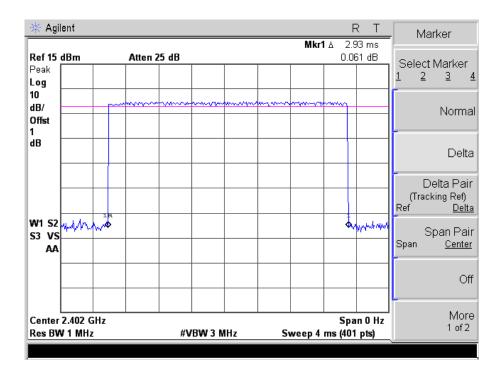




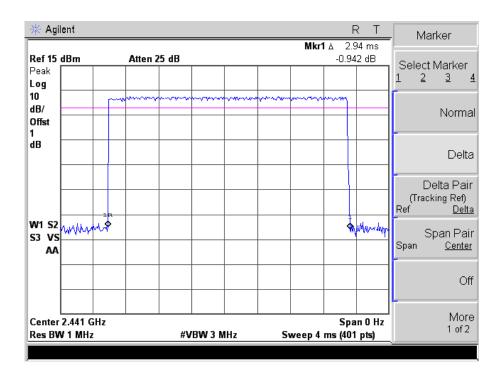


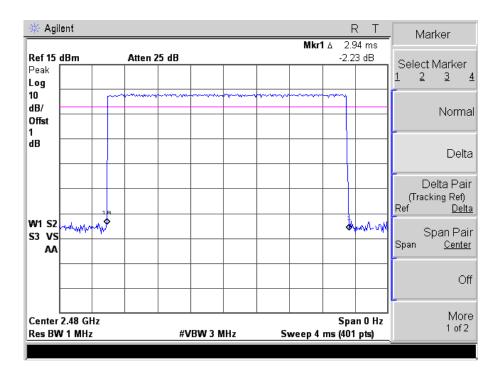

3DH1 time slot (Low, Middle, High Channels)





3DH3 time slot (Low, Middle, High Channels)





3DH5 time slot (Low, Middle, High Channels)

8. 20dB Bandwidth

8.1 Standard Applicable

According to 15.247(a) and 15.215(c). 20dB bandwidth is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

8.2 Test Procedure

According to ANSI C63.10-2013 section 6.9.2, the 20dB bandwidth test method as follows.

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and fivetimes the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW andvideo bandwidth (VBW) shall be approximately three times RBW, unless otherwise specifiedby the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding themaximum input mixer level for linear operation. In general, the peak of the spectral envelopeshall be more than [10 log (OBW/RBW)] below the reference level.

d) Steps a) through c) might require iteration to adjust within the specified tolerances.

e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below thetarget "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dBOBW, the instrument noise floor at the selected RBW shall be at least 30 dB below thereference value.

f) Set detection mode to peak and trace mode to max hold.

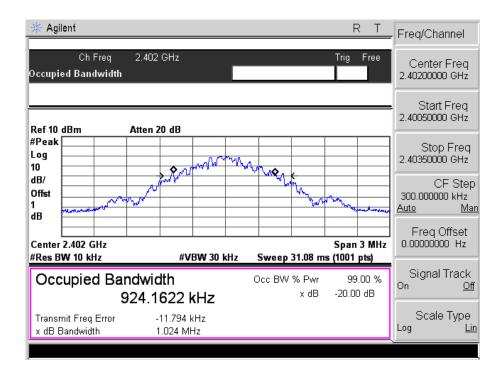
g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).

h) Determine the "-xx dB down amplitude" using [(reference value) -xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.

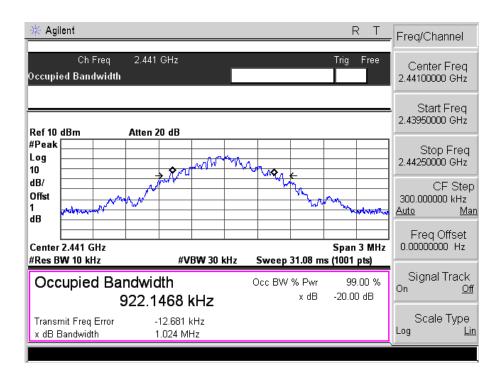
i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulationON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow thenew trace to stabilize. Otherwise, the trace from step g) shall be used for step j).

j) Place two markers, one at the lowest frequency and the other at the highest frequency of theenvelope of the spectral display, such that each marker is at or slightly below the "–xx dB downamplitude" determined in step h). If a marker is below this "–xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequencydifference between the two markers. Alternatively, set a marker at the lowest frequency of theenvelope of the spectral display, such that the marker is at or slightly below the "–xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to theother side of the emission until the delta marker amplitude is at the same level as the referencemarker amplitude. The marker-delta frequency reading at this point is the specified emissionbandwidth.

k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data maybe reported in addition to the plot(s).


8.3 Environmental Conditions

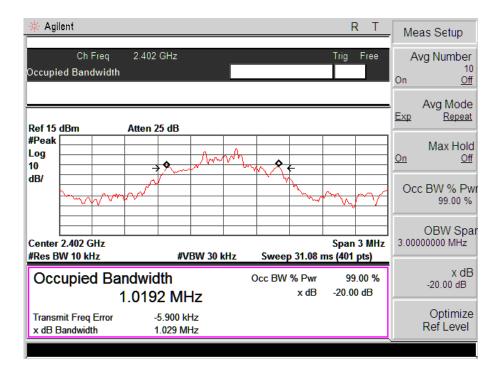
Temperature:	25 °C
Relative Humidity:	53%
ATM Pressure:	1018 mbar


8.4 Summary of Test Results/Plots

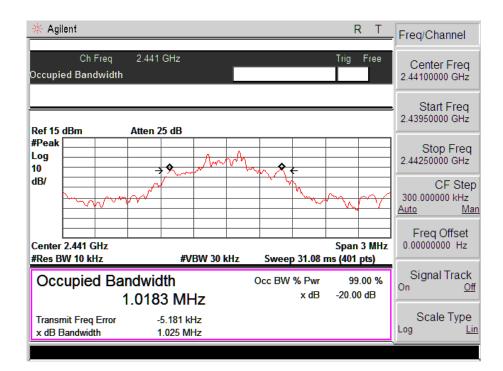
Test Mode	Test Channel MHz	20 dB Bandwidth MHz	99% Bandwidth KHz	Result
GFSK	2402	1.024	924.1622	Pass
	2441	1.024	922.1468	Pass
	2480	1.024	925.4027	Pass
Pi/4 QDPSK	2402	1.029	1019.2000	Pass
	2441	1.025	1018.3000	Pass
	2480	1.026	1018.5000	Pass
8DPSK	2402	1.360	1201.1000	Pass
	2441	1.365	1210.4000	Pass
	2480	1.369	1224.5000	Pass

For GFSK Low Channel:

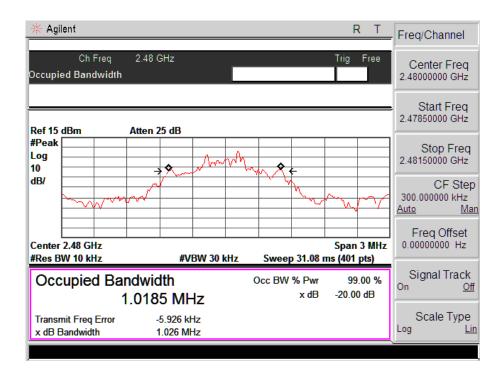
Middle Channel:

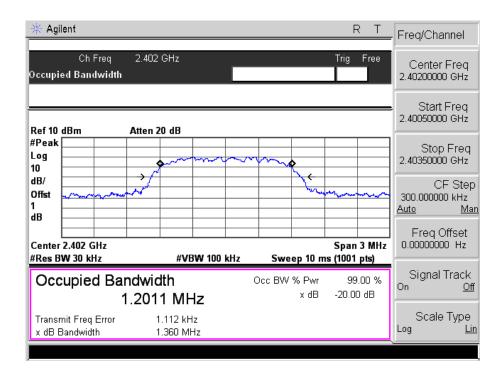


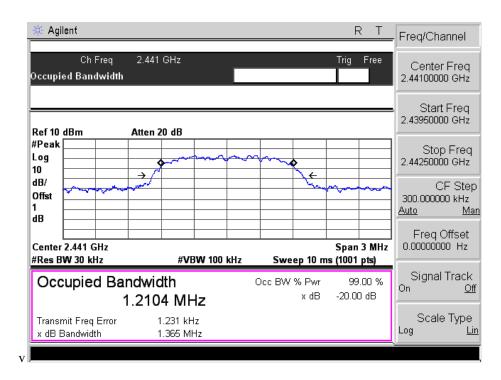
High Channel:

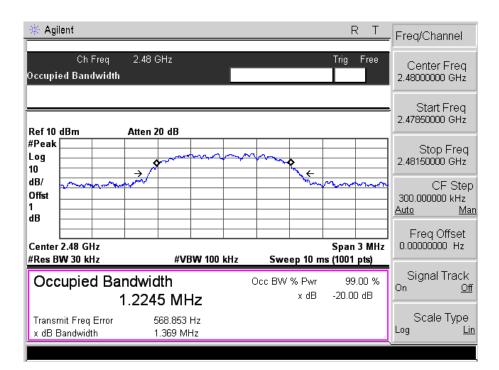


For Pi/4 QDPSK


Low Channel:


Middle Channel:


High Channel:


For 8DPSK Low Channel:

Middle Channel:

High Channel:

9. RF Output Power

9.1 Standard Applicable

According to 15.247(b)(1). For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

9.2 Test Procedure

According to ANSI C63.10-2013 section 7.8.5, the output power test method as follows.

Remove the antenna from the EUT and then connect a low loss RF cable from the antennaport to the spectrum analyzer.

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between theantenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation.

Thehopping shall be disabled for this test:

a) Use the following spectrum analyzer settings:

1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.

2) RBW > 20 dB bandwidth of the emission being measured.

3) VBW \geq RBW.

4) Sweep: Auto.

5) Detector function: Peak.

6) Trace: Max hold.

b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power, after any corrections for external attenuators and cables.

e) A plot of the test results and setup description shall be included in the test report.

9.3 Environmental Conditions

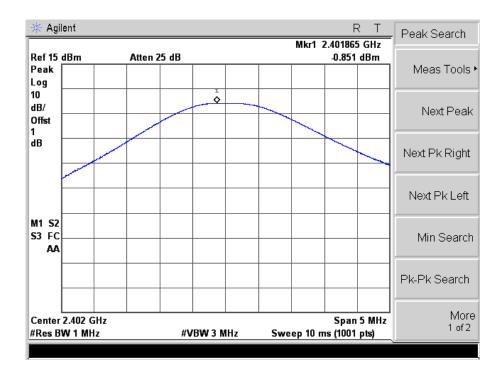
Temperature:	24 °C
Relative Humidity:	55%
ATM Pressure:	1011 mbar

9.4 Summary of Test Results/Plots

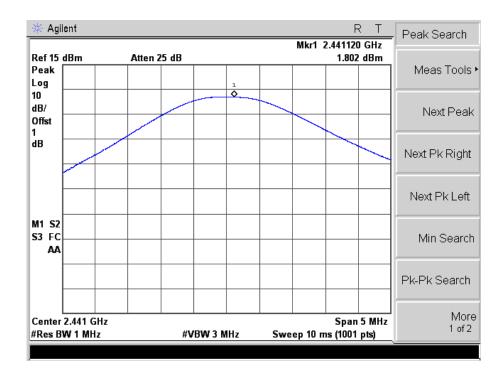
For GFSK

Channel	Frequency MHz	Measured Value dBm	Output Power mW	Limit mW
Low Channel	2402	-0.851	0.822	1000
Middle Channel	2442	1.802	1.514	1000
High Channel	2480	2.855	1.930	1000

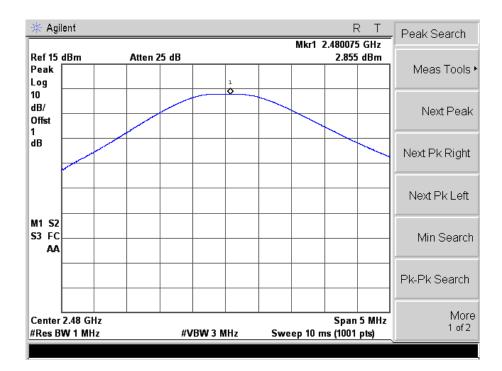
For Pi/4 QDPSK


Channel	Frequency	Measured Value	Output Power	Limit
Channel	MHz	dBm	mW	mW
Low Channel	2402	0.322	1.077	1000
Middle Channel	2442	2.863	1.933	1000
High Channel	2480	3.708	2.349	1000

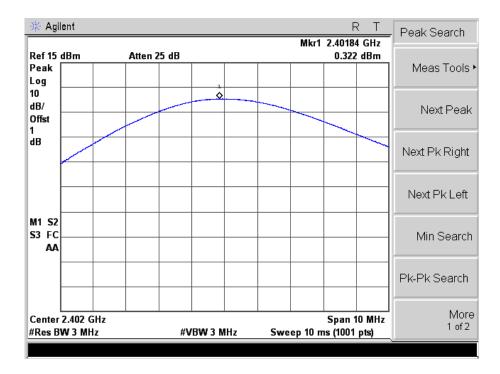
For 8DPSK


Channel	Frequency	Measured Value	Output Power	Limit
Channel	MHz	dBm	mW	mW
Low Channel	2402	0.504	1.123	1000
Middle Channel	2442	3.079	2.032	1000
High Channel	2480	3.790	2.393	1000

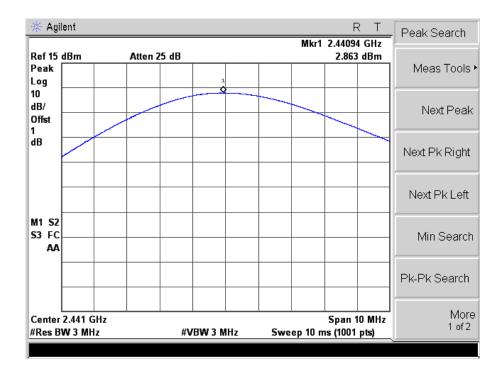
Note: the antenna gain of 0.23dBi less than 6dBi maximum permission antenna gain value based on 1 watt peak output power limit.


For GFSK Low Channel

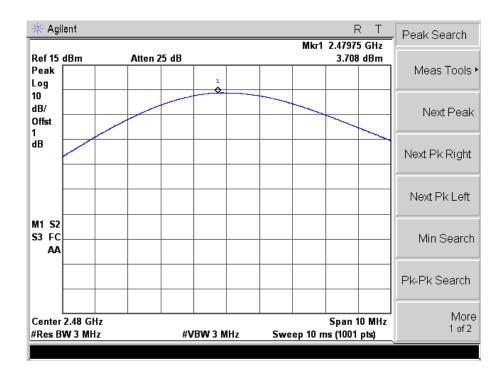
Middle Channel

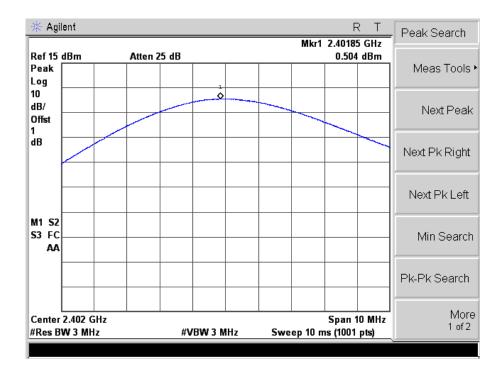


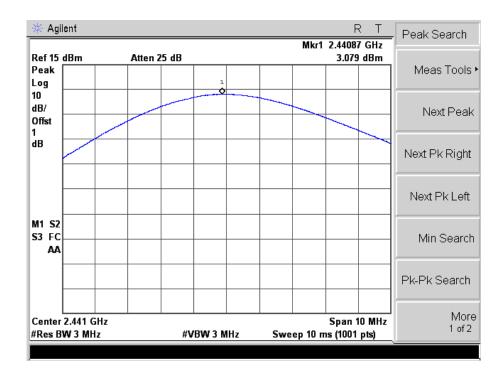
High Channel

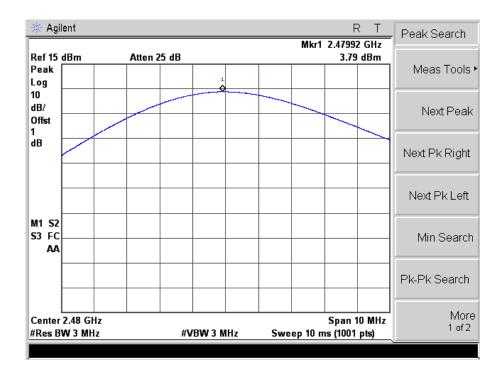


For Pi/4 QDPSK Low Channel


Low Channel


Middle Channel


High Channel

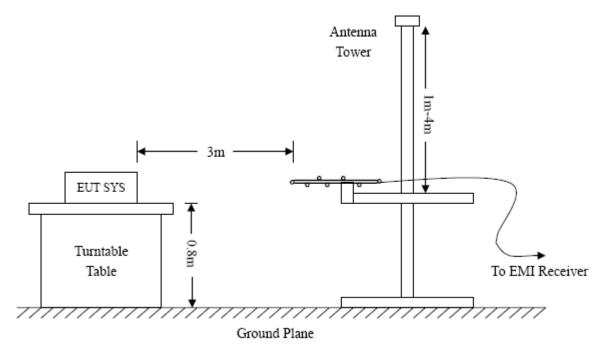

For 8DPSK Low Channel

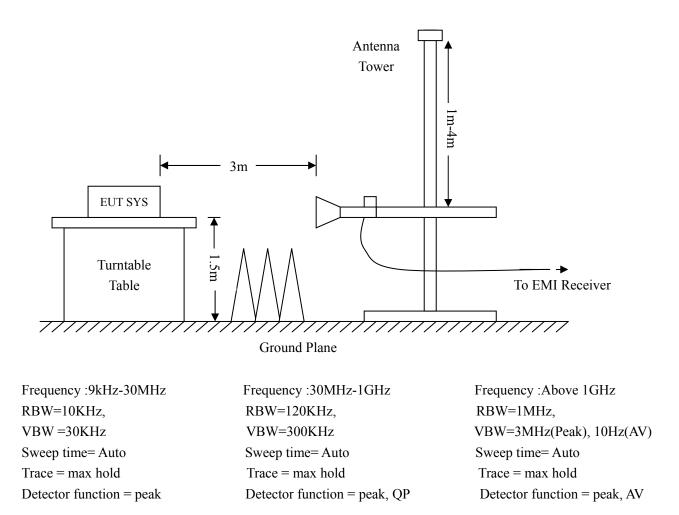
Middle Channel

High Channel

10. Field Strength of Spurious Emissions

10.1 Standard Applicable


According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a), must also comply with the radiated emission limits specified in §15.209(a).


The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

10.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.247(a) and FCC Part 15.209 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

10.3 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Ant. Factor + Cable Loss – Ampl. Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – FCCPart15 Limit

10.4 Environmental Conditions

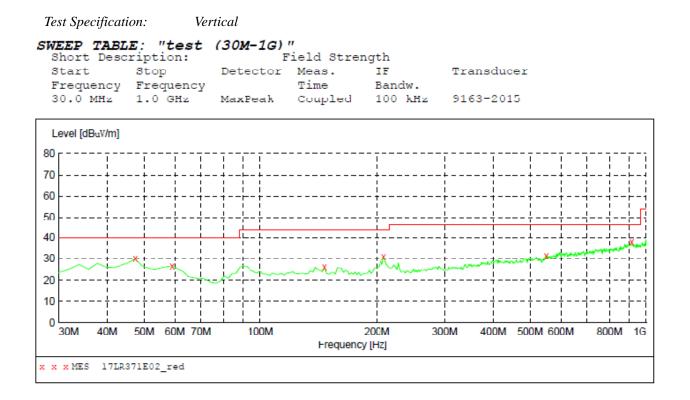
Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

10.5 Summary of Test Results/Plots

According to the data below, the FCC Part 15.205, 15.209 and 15.247 standards, and had the worst cases:

Plot of Radiated Emissions Test Data (30MHz to 1GHz)

Horizontal

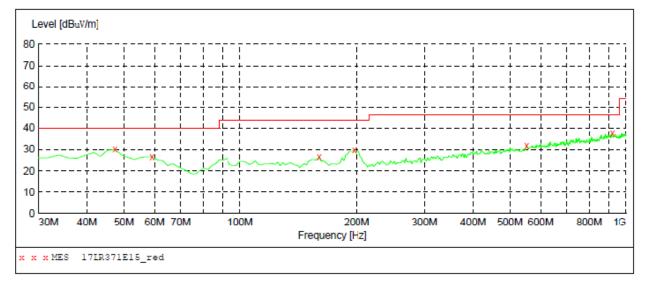

EUT:	Power Amplifier
Tested Model:	M-ONE
Operating Condition:	GFSK Transmitting Low Channel (2402MHz)
Comment:	AC 120V/60Hz

Test Specification:

SWEEP TABLE: "test (30M-1G)" Short Description: Field Strength Start Stop Transducer Detector Meas. IF Time Bandw. Frequency Frequency 30.0 MHz 100 kHz 9163-2015 1.0 GHz MaxFeak Coupled Level [dBuV/m] 80 I 70 60 50 40 30 20 10 0 30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 1G Frequency [Hz] x x x MES 17LR371E14_red

MEASUREMENT RESULT: "17LR371E14_red"

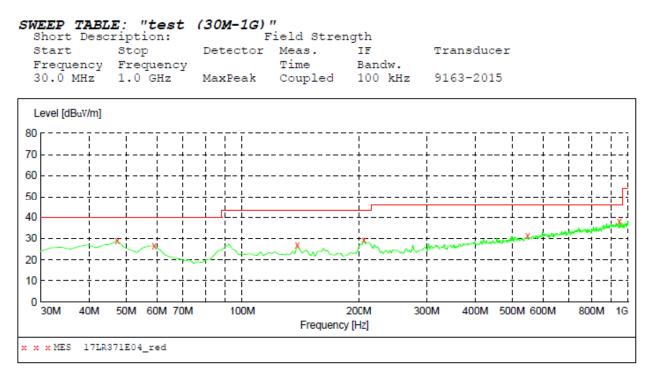
Frequency MIIz	Level dDuV/m		Limit dBuV/m	Margin dD	Det.	Height cm	Azimuth d e g	Polarization
47.460000	30.50	16.7	40.0	9.5		100.0	0.00	HORIZONTAL
59.100000	26.80	15.7	40.0	13.2		100.0	0.00	HORIZONTAL
158.040000	25.70	12.3	43.5	17.8		100.0	0.00	HORIZONTAL
196.840000	31.30	13.8	43.5	12.2		100.0	0.00	HORIZONTAL
544.100000	31.20	19.9	46.0	14.8		100.0	0.00	HORIZONTAL
924.340000	38.30	25.8	46.0	7.7		100.0	0.00	HORIZONTAL


MEASUREMENT RESULT: "17LR371E02_red"

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000	30.00	16.7	40.0	10.0		100.0	0.00	VERTICAL
59.100000	26.60	15.7	40.0	13.4		100.0	0.00	VERTICAL
146.400000	25.90	12.0	43.5	17.6		100.0	0.00	VERTICAL
208.480000	31.20	14.1	43.5	12.3		100.0	0.00	VERTICAL
549.920000	31.60	20.5	46.0	14.4		100.0	0.00	VERTICAL
912.700000	37.90	25.8	46.0	8.1		100.0	0.00	VERTICAL

Operating Condition:	GFSK Transmitting Middle Channel (2441MHz)
Comment:	AC 120V/60Hz

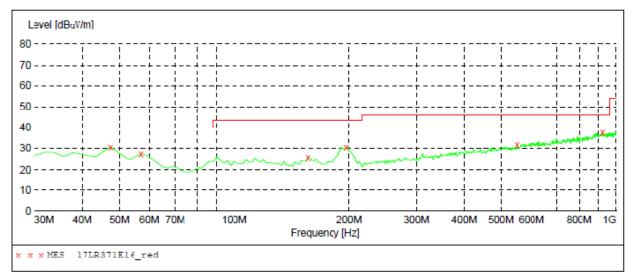
Test Specification: Horizontal


SWEEP TAEL	E: "test	(30M-1G)	, ield Stren		
Short Desc	ription:	F	gth		
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz	9163-2015

MEASUREMENT RESULT: "17LR371E15_red"

Frequency MHz	Leve⊥ dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000 59.100000 159.980000 196.840000 551.860000	30.10 26.60 26.30 29.90 32.00	16.7 15.7 12.9 13.8 20.5	40.0 40.0 43.5 43.5 46.0	13.4 17.2 13.6 14.0	 	100.0 100.0 100.0 100.0 100.0	0.00 0.00 0.00 0.00 0.00	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL
916.580000	37.50	25.8	46.0	8.5		100.0	0.00	HORIZONTAL

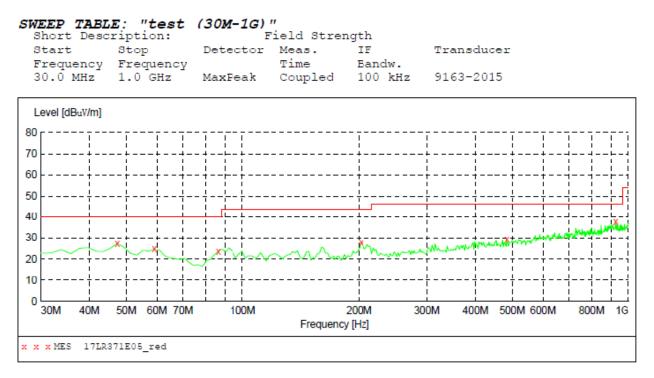
Test Specification: Vertical


MEASUREMENT RESULT: "17LR371E04_red"

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000 59.100000 138.640000 206.540000 547.980000 943.740000	29.10 26.60 26.80 29.40 31.30 38.00	16.7 15.7 12.6 14.1 20.3 25.3	40.0 40.0 43.5 43.5 46.0 46.0	16.7 14.1 14.7	 	100.0 100.0 100.0 100.0 100.0 100.0	0.00 0.00 0.00 0.00 0.00	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Operating Condition:	GFSK Transmitting High Channel (2480MHz)
Comment:	AC 120V/60Hz

Test Specification: Horizontal

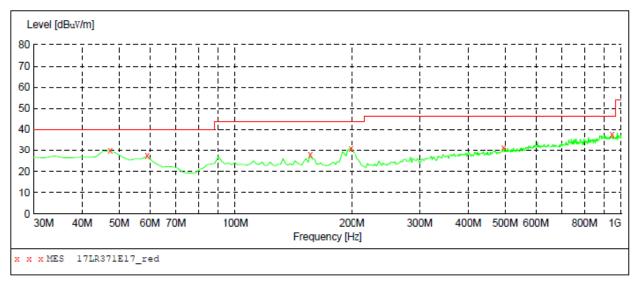

SWEEP TABL Short Desc	E: "test ription:		, ield Stren	gth	
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz	9163-2015

MEASUREMENT RESULT: "17LR371E16_red"

Frequency MHz	Level dBuV/m			Margin dB	Height cm	Azimuth deg	Polarization
47.460000 57.160000 156.100000 196.840000 549.920000	30.80 27.40 25.70 30.70 31.80	16.7 15.7 11.6 13.8 20.5	40.0 40.0 43.5 43.5 46.0	12.6	100.0 100.0 100.0 100.0 100.0	0.00 0.00 0.00	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL
922.400000	37.80	25.8	46.0		 100.0	0.00	HORIZONTAL

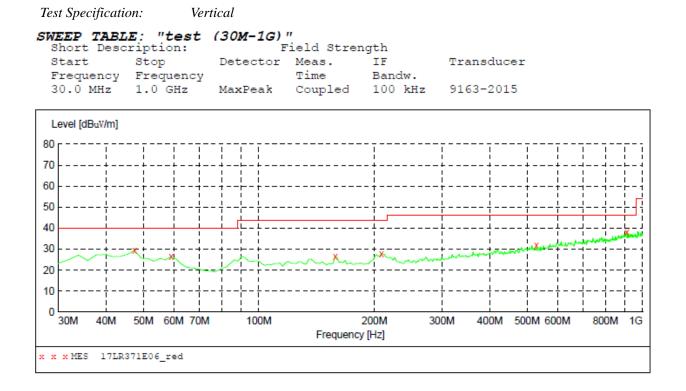
Test Specification: Vertical

MEASUREMENT RESULT: "17LR371E05_red"


Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000	27.30	16.7	40.0	12.7		100.0	0.00	VERTICAL
59.100000	24.70	15.7	40.0	15.3		100.0	0.00	VERTICAL
86.260000	23.50	12.9	40.0	16.5		100.0	0.00	VERTICAL
202.660000	27.90	14.0	43.5	15.6		100.0	0.00	VERTICAL
483.960000	29.20	19.1	46.0	16.8		100.0	0.00	VERTICAL
922.400000	37.50	25.8	46.0	8.5		100.0	0.00	VERTICAL

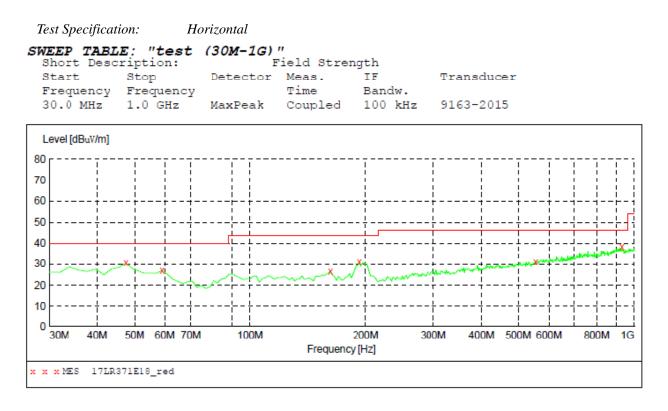
Plot of Radiated Emissions Test Data (30MHz to 1GHz)

EUT:	Power Amplifier
Tested Model:	M-ONE
Operating Condition:	Pi/4 DQPSK Transmitting Low Channel (2402MHz)
Comment:	AC 120V/60Hz


Test Specification: Horizontal

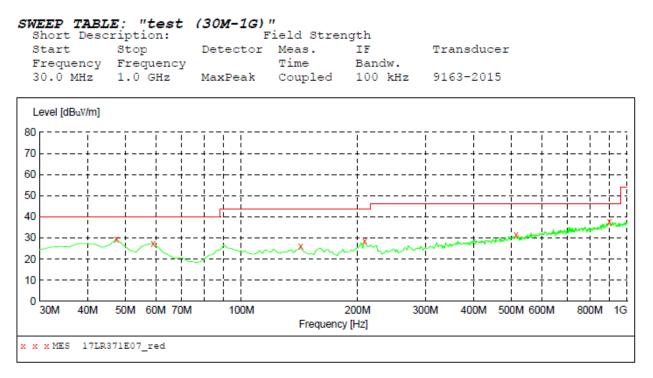
SWEEP TABLE: "test (30M-1G)"Short Description:Field StrengthStartStopDetector Meas.FrequencyFrequencyFrequencyTime30.0 MHz1.0 GHzMaxPeakCoupled100 kHz9163-2015

MEASUREMENT RESULT: "17LR371E17_red"


Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000	29.00	16.7	40.0	10.2		100.0	0.00	HORIZONTAL
59.100000	27.20	15.7	40.0	12.8		100.0	0.00	HORIZONTAL
156.100000	27.60	11.6	43.5	15.9		100.0	0.00	HORIZONTAL
198.780000	31.20	13.9	43.5	12.3		100.0	0.00	HORIZONTAL
495.600000	31.50	19.5	46.0	14.5		100.0	0.00	HORIZONTAL
941.800000	37.70	25.3	46.0	8.3		100.0	0.00	HORIZONTAL

MEASUREMENT RESULT: "17LR371E06_red"

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000 59.100000 158.040000 208.480000 528.580000	29.40 26.40 26.60 27.70 31.90	16.7 15.7 12.3 14.1 19.7	43.5 43.5 46.0	15.8 14.1	 	100.0 100.0 100.0 100.0 100.0	0.00 0.00 0.00 0.00	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL
908.820000	38.20	25.8	46.0	7.8		100.0	0.00	VERTICAL

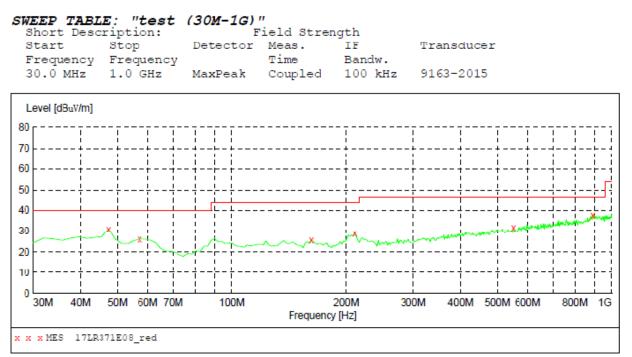

Operating Condition:	Pi/4 DQPSK Transmitting Middle Channel (2441MHz)
Comment:	AC 120V/60Hz

MEASUREMENT RESULT: "17LR371E18_red"

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000	30.40	16.7	40.0	2.0		100.0	0.00	HORIZONTAL
59.100000 161.920000	26.90 26.60	15.7 12.9	40.0 43.5	13.1 16.9		100.0 100.0	0.00	HORIZONTAL HORIZONTAL
192.960000	31.10	13.7	43.5	12.4		100.0	0.00	HORIZONTAL
553.800000	31.10	20.4	46.0	14.9		100.0	0.00	HORIZONTAL
928.220000	38.60	25.9	46.0	7.4		100.0	0.00	HORIZONTAL

Test Specification: Vertical

MEASUREMENT RESULT: "17LR371E07_red"


Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000 59.100000 142.520000 208.480000 515.00000	29.50 27.40 26.20 28.50 31.50	16.7 15.7 12.3 14.1 19.6	43.5 43.5 46.0	10.5 12.6 17.3 15.0 14.5	 	100.0 100.0 100.0 100.0 100.0	0.00 0.00 0.00 0.00	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL
59.100000 142.520000 208.480000	27.40 26.20 28.50	15.7 12.3 14.1	40.0 43.5 43.5	12.6 17.3 15.0 14.5	 	100.0 100.0 100.0	0.00 0.00 0.00	VERTICAL VERTICAL VERTICAL

Operating Condition:Pi/4 DQPSK Transmitting High Channel (2480MHz)Comment:AC 120V/60Hz

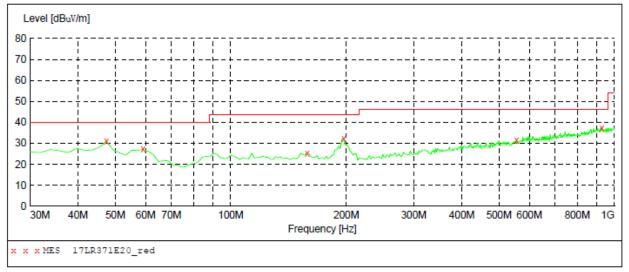
Test Specification: Horizontal SWEEP TAELE: "test (30M-1G)" Short Description: Fi Field Strength Detector Meas. Start Stop IF Transducer Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz Coupled 100 kHz MaxPeak 9163-2015 Level [dBuV/m] 80 T 70 60 50 40 30 20 10 0 30M 50M 60M 70M 100M 300M 400M 500M 600M 40M 200M 800M 1G Frequency [Hz] x x x MES 17LR371E19_red

MEASUREMENT RESULT: "17LR371E19_red"

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000 57.160000 152.220000 196.840000 493.660000 904.940000	30.10 26.70 25.80 32.00 31.10 37.90	16.7 15.7 11.4 13.8 19.5 25.8	40.0 40.0 43.5 43.5 46.0 46.0	13.3 17.7 11.5 14.9		100.0 100.0 100.0 100.0 100.0 100.0	0.00	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

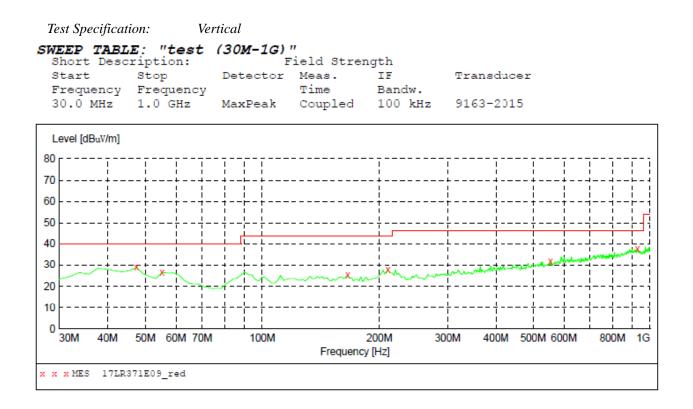
Test Specification: Vertical

MEASUREMENT RESULT: "17LR371E08_red"


Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000 57.160000 161.920000 210.420000 549.920000	31.20 26.20 25.70 29.00 31.70	16.7 15.7 12.9 14.0 20.5	40.0 40.0 43.5 43.5 46.0	17.8 14.5		100.0 100.0		VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL
889.420000	37.70	25.5	46.0			100.0	0.00	VERTICAL

Plot of Radiated Emissions Test Data (30MHz to 1GHz)

EUT:	Power Amplifier
Tested Model:	M-ONE
Operating Condition:	8DPSK Transmitting Low Channel (2402MHz)
Comment:	AC 120V/60Hz

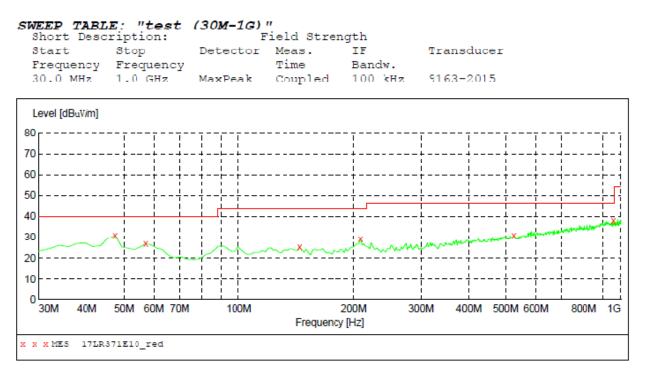

Test Specification: Horizontal

MEASUREMENT RESULT: "17LR371E20_red"

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000 59.100000 158.040000 196.840000 555.740000	31.00 27.20 25.40 32.40 31.40	16.7 15.7 12.3 13.8 20.4	40.0 40.0 43.5 43.5 46.0	9.0 12.8 18.1 11.1 14.6		100.0 100.0 100.0 100.0 100.0	0.00 0.00 0.00 0.00 0.00	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL
926.280000	37.40	25.9	46.0	8.6		100.0	0.00	HORIZONTAL

MEASUREMENT RESULT: "17LR371E09_red"

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000 55.220000 165.800000 210.420000 553.800000 926.280000	28.80 26.40 25.20 27.70 31.90 37.60	16.7 15.1 12.9 14.0 20.4 25.9	40.0 40.0 43.5 43.5 46.0 46.0	11.2 13.6 18.3 15.8 14.1 8 4	 	100.0 100.0 100.0 100.0 100.0 100.0	0.00	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL


Operating Condition:	8DPSK Transmitting Middle Channel (2441MHz)
Comment:	AC 120V/60Hz

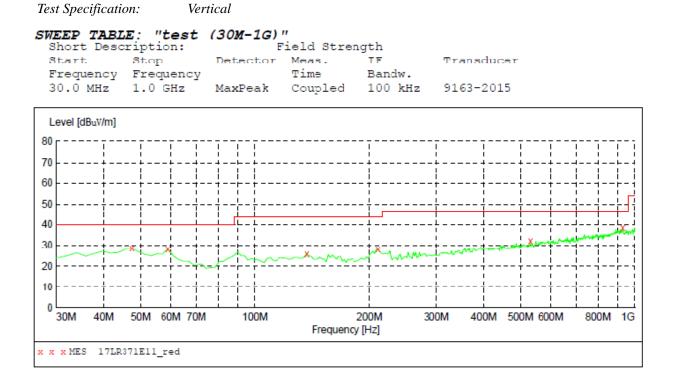
Test Specification:	Horizontal				
SWEEP TABLE: "test Short Description:	(30M-1G)	" Field Strea	ngth		
Start Stop	Detector	Meas.	IF	Transducer	
Frequency Frequency 30.0 MHz 1.0 GHz	/ MaxPeak	Time Coupled	Bandw. 100 kHz	9163-2015	
30.0 MHz 1.0 GHz	Maxreak	coupied	100 KH2	9163-2015	
Level [dBuV/m]					
80					
70++++	+		+	·++	++++++++++++-
60					
50					
				· · · · ·	
40					
30		X.	The more	mun marine	*-+++-+
20		······ ···		·+ + + ·	++-+
10			+	++	
0 30M 40M 50M 60M 70	M 100M		200M 3	DOM 400M 500	M 600M 800M 1G
30M 40M 50M 60M 70		Frequenc		UUM 400M 500	M 600M 800M 1G
x x x MES 17LR371E21 red					

MEASUREMENT RESULT: "17LR371E21_red"

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000	29.50	16.7	40.0	10.5		100.0	0.00	HORIZONTAL
59.100000	26.60	15.7	40.0	13.4		100.0	0.00	HORIZONTAL
158.040000	26.70	12.3	43.5	16.8		100.0	0.00	HORIZONTAL
202.660000	31.20	14.0	43.5	12.3		100.0	0.00	HORIZONTAL
553.800000	31.20	20.4	46.0	14.8		100.0	0.00	HORIZONTAL
932.100000	38.00	25.8	46.0	8.0		100.0	0.00	HORIZONTAL

Test Specification: Vertical

MEASUREMENT RESULT: "17LR371E10 red"


Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Height cm	Azimuth deg	Polarization
47.460000 57.160000 144.460000 208.480000 524.700000 955.380000	31.00 26.80 25.40 29.30 31.10 37.90	16.7 15.7 12.2 14.1 19.7 25.3	40.0 40.0 43.5 43.5 46.0 46.0	13.2 18.1 14.2 14.9	 100.0 100.0 100.0	0.00	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Operating Condition:	8DPSK Transmitting High Channel (2480MHz)
Comment:	AC 120V/60Hz

Test Specification: Horizontal SWEEP TABLE: "test (30M-1G)" Short Description: Fig Start Stop Detector Field Strength Detector Meas. IF Time Bar Start Stop Transducer Frequency Frequency 30.0 MHz 1.0 GHz Bandw. Coupled 100 kHz MaxPeak 9163-2015 Level [dBuV/m] 80 r I Т ł I 70 60 50 40 Т 30 20 10 0 30M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 40M 1G Frequency [Hz] x x x MES 17LR371E22_red

MEASUREMENT RESULT: "17LR371E22_red"

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000	30.40	16.7	40.0	9.6		100.0	0.00	HORIZONTAL
59.100000	26.80	15.7	40.0	13.2		100.0	0.00	HORIZONTAL
159.980000	27.10	12.9	43.5	16.4		100.0	0.00	HORIZONTAL
196.840000	30.00	13.8	43.5	13.5		100.0	0.00	HORIZONTAL
553.800000	31.20	20.4	46.0	14.8		100.0	0.00	HORIZONTAL
951.500000	38.70	25.3	46.0	7.3		100.0	0.00	HORIZONTAL

MEASUREMENT RESULT: "17LR371E11_red"

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth dog	Polarization
47.460000 59.100000 136.700000 210.420000 530.520000 930.160000	28.60 28.00 25.70 28.20 32.20 38.40	16.7 15.7 12.6 14.0 19.6 25.9	40.0 40.0 43.5 43.5 46.0 46.0	11.4 12.0 17.8 15.3 13.8 7.6	 	100.0 100.0 100.0 100.0 100.0 100.0	0.00 0.00 0.00 0.00 0.00 0.00	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB	(dBuV/m)	(dBuV/m)	(dB)	H/V	
			Low Channe	el-2402MHz			
4804	60.75	-3.59	57.16	74	-16.84	Н	РК
4804	40.87	-3.59	37.28	54	-16.72	Н	AV
7206	62.04	-0.52	61.52	74	-12.48	Н	РК
7206	41.33	-0.52	40.81	54	-13.19	Н	AV
4804	62.15	-3.59	58.56	74	-15.44	V	РК
4804	41.25	-3.59	37.66	54	-16.34	V	AV
7206	61.86	-0.52	61.34	74	-12.66	V	РК
7206	38.25	-0.52	37.73	54	-16.27	V	AV
			Middle Chan	nel-2441MHz			
4884	62.07	-3.49	58.58	74	-15.42	Н	РК
4884	39.68	-3.49	36.19	54	-17.81	Н	AV
7326	61.39	-0.47	60.92	74	-13.08	Н	РК
7326	41.64	-0.47	41.17	54	-12.83	Н	AV
4884	61.56	-3.49	58.07	74	-15.93	V	РК
4884	41.68	-3.49	38.19	54	-15.81	V	AV
7326	62.22	-0.47	61.75	74	-12.25	V	РК
7326	39.18	-0.47	38.71	54	-15.29	V	AV
			High Channe	el-2480MHz			
4960	60.92	-3.41	57.51	74	-16.49	Н	РК
4960	39.7	-3.41	36.29	54	-17.71	Н	AV
7440	60.47	-0.42	60.05	74	-13.95	Н	РК
7440	41.32	-0.42	40.9	54	-13.1	Н	AV
4960	61.66	-3.41	58.25	74	-15.75	V	РК
4960	41.65	-3.41	38.24	54	-15.76	V	AV
7440	60.68	-0.42	60.26	74	-13.74	V	РК
7440	38.71	-0.42	38.29	54	-15.71	V	AV

Spurious Emissions Above 1GHz(GFSK)

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB	(dBuV/m)	(dBuV/m)	(dB)	H/V	
			Low Channe	el-2402MHz			
4804	61.55	-2.79	58.76	74	-15.24	Н	РК
4804	41.47	-2.99	38.48	54	-15.52	Н	AV
7206	62.74	0.18	62.92	74	-11.08	Н	РК
7206	41.53	-0.32	41.21	54	-12.79	Н	AV
4804	62.45	-3.29	59.16	74	-14.84	V	РК
4804	41.75	-3.09	38.66	54	-15.34	V	AV
7206	62.76	0.38	63.14	74	-10.86	V	РК
7206	38.35	-0.42	37.93	54	-16.07	V	AV
			Middle Chan	nel-2441MHz			
4884	62.87	-2.69	60.18	74	-13.82	Н	РК
4884	40.28	-2.89	37.39	54	-16.61	Н	AV
7326	62.09	0.23	62.32	74	-11.68	Н	РК
7326	41.84	-0.27	41.57	54	-12.43	Н	AV
4884	61.86	-3.19	58.67	74	-15.33	V	РК
4884	42.18	-2.99	39.19	54	-14.81	V	AV
7326	63.12	0.43	63.55	74	-10.45	V	РК
7326	39.28	-0.37	38.91	54	-15.09	V	AV
			High Chann	el-2480MHz			
4960	61.72	-2.61	59.11	74	-14.89	Н	РК
4960	40.30	-2.81	37.49	54	-16.51	Н	AV
7440	61.17	0.28	61.45	74	-12.55	Н	РК
7440	41.52	-0.22	41.30	54	-12.70	Н	AV
4960	61.96	-3.11	58.85	74	-15.15	V	РК
4960	42.15	-2.91	39.24	54	-14.76	V	AV
7440	61.58	0.48	62.06	74	-11.94	V	РК
7440	38.81	-0.32	38.49	54	-15.51	V	AV

Spurious Emissions Above 1GHz(Pi/4 DQPSK)

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB	(dBuV/m)	(dBuV/m)	(dB)	H/V	
Low Channel-2402MHz							
4804	60.25	-4.09	56.16	74	-17.84	Н	РК
4804	40.27	-4.19	36.08	54	-17.92	Н	AV
7206	61.64	-0.92	60.72	74	-13.28	Н	РК
7206	40.53	-1.32	39.21	54	-14.79	Н	AV
4804	61.85	-3.89	57.96	74	-16.04	V	РК
4804	40.55	-4.29	36.26	54	-17.74	V	AV
7206	61.66	-0.72	60.94	74	-13.06	V	РК
7206	37.75	-1.02	36.73	54	-17.27	V	AV
Middle Channel-2441MHz							
4884	61.57	-3.99	57.58	74	-16.42	Н	РК
4884	39.08	-4.09	34.99	54	-19.01	Н	AV
7326	60.99	-0.87	60.12	74	-13.88	Н	РК
7326	40.84	-1.27	39.57	54	-14.43	Н	AV
4884	61.26	-3.79	57.47	74	-16.53	V	РК
4884	40.98	-4.19	36.79	54	-17.21	V	AV
7326	62.02	-0.67	61.35	74	-12.65	V	РК
7326	38.68	-0.97	37.71	54	-16.29	V	AV
High Channel-2480MHz							
4960	60.42	-3.91	56.51	74	-17.49	Н	РК
4960	39.10	-4.01	35.09	54	-18.91	Н	AV
7440	60.07	-0.82	59.25	74	-14.75	Н	РК
7440	40.52	-1.22	39.30	54	-14.70	Н	AV
4960	61.36	-3.71	57.65	74	-16.35	V	РК
4960	40.95	-4.11	36.84	54	-17.16	V	AV
7440	60.48	-0.62	59.86	74	-14.14	V	РК
7440	38.21	-0.92	37.29	54	-16.71	V	AV

Spurious Emissions Above 1GHz(8DPSK)

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

11. Out of Band Emissions

11.1 Standard Applicable

According to §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a), must also comply with the radiated emission limits specified in §15.209(a).

11.2 Test Procedure

According to ANSI C63.10-2013 section 7.8.6, the Band-edge measurements for RF conducted emissions test method as follows.

a) Connect the EMI receiver or spectrum analyzer to the EUT using an appropriate RF cableconnected to the EUT output. Configure the spectrum analyzer settings as described in step e)(be sure to enter all losses between the unlicensed wireless device output and the spectrumanalyzer).

b) Set the EUT to the lowest frequency channel (for the hopping on test, the hopping sequenceshall include the lowest frequency channel).

c) Set the EUT to operate at maximum output power and 100% duty cycle, or equivalent "normalmode of operation" as specified in 6.10.3.

d) If using the radiated method, then use the applicable procedure(s) of 6.4, 6.5, or 6.6, and orientthe EUT and measurement antenna positions to produce the highest emission level.

e) Perform the test as follows:

- 1) Span: Wide enough to capture the peak level of the emission operating on the channelclosest to the band edge, as well as any modulation products that fall outside of theauthorized band of operation.
- Reference level: As required to keep the signal from exceeding the maximuminstrument input mixer level for linear operation. In general, the peak of the spectralenvelope shall be more than [10 log (OBW/RBW)] below the reference level. Specificguidance is given in 4.1.5.2.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: Coupled.
- 5) Resolution bandwidth: 100 kHz.
- 6) Video bandwidth: 300 kHz.
- 7) Detector: Peak.
- 8) Trace: Max hold.

f) Allow the trace to stabilize. For the test with the hopping function turned ON, this can takeseveral minutes to achieve a reasonable probability of intercepting any emissions due tooscillator overshoot.

g) Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, and then use the marker-to-peak

function to move the marker to the peak of the in-band emission.

h) Repeat step c) through step e) for every applicable modulation.

i) Set the EUT to the highest frequency channel (for the hopping on test, the hopping sequenceshall include the highest frequency channel) and repeat step c) through step d).

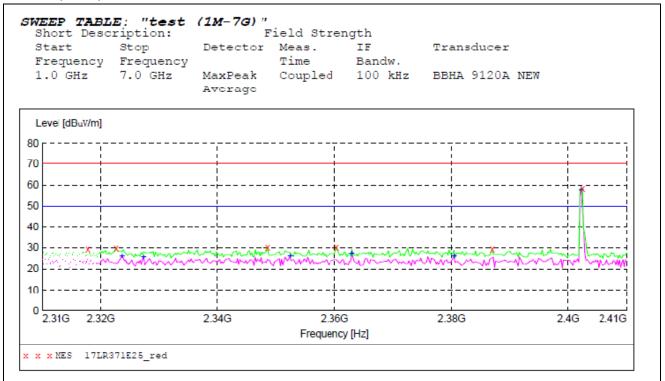
j) The band-edge measurement shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data maybe reported in addition to the plot(s).

Restricted-band band-edge test method please refers to ANSI C63.10-2013 section 6.10.5. The emission must comply with the 15.209 limit for fall in the restricted bands listed in section 15.205. Note that the method of measurement KDB publication number: 913591 may be used for the radiated band-edge measurements.

According to ANSI C63.10-2013 section 7.8.8, Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at themaximum transmit powers.

Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

11.3 Environmental Conditions


Temperature:	23°C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

11.4 Summary of Test Results/Plots

Bandedge (Radiated)

Lowest Bandedge

Vertical (GFSK)

MEASUREMENT RESULT: "17LR371E25_red"

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
2317.800000 2322.600000 2348.600000 2360.400000 2387.000000	29.10 29.70 30.00 29.90 29.10	-4.1 -4.1 -4.1 -4.1 -4.1	70.0 70.0 70.0 70.0 70.0	40.9 40.3 40.0 40.1 40.9	 	100.0 100.0 100.0 100.0 100.0	0.00 0.00 0.00 0.00 0.00	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL
2402.400000	58.50	-4.0	70.0	11.5		100.0	0.00	VERTICAL

MEASUREMENT RESULT: "17LR371E25_red2"

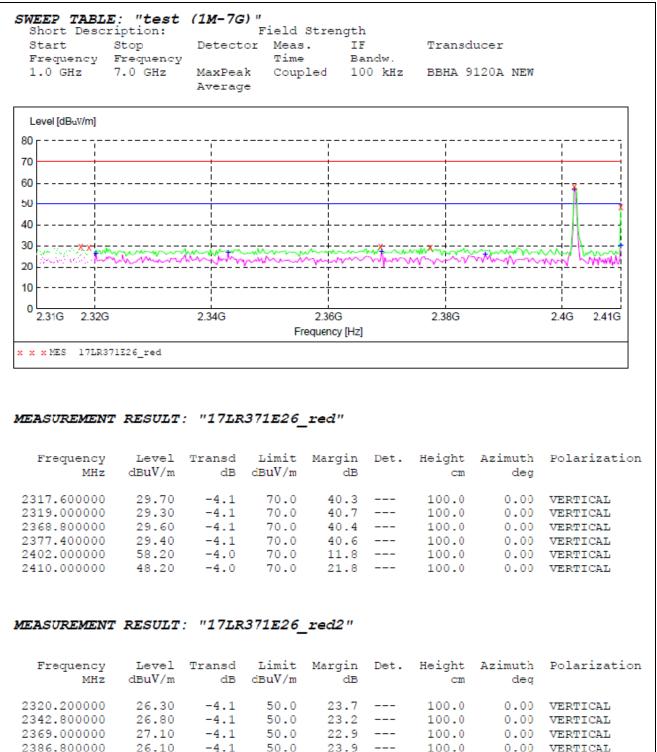
Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
2323.600000	26.00	-4.1	50.0	24.0		100.0	0.00	VERTICAL
2327.400000	25.40	-4.1	50.0	24.6		100.0	0.00	VERTICAL
2352.400000	25.90	-4.1	50.0	24.1		100.0	0.00	VERTICAL
2363.000000	27.20	-4.1	50.0	22.8		100.0	0.00	VERTICAL
2380.400000	25.80	-4.1	50.0	24.2		100.0	0.00	VERTICAL
2402.200000	57.50	-4.0	50.0	-7.5		100.0	0.00	VERTICAL

Highest Bandedge

Vertical (GFSK)

Start	Stop	Detector	ield Strem Meas.	-	Transducer		
	Frequency		Time				
					BBHA 9120A	NEW	
Level [dBuV/m]							
ח					;		
			1				
,							
	711		!				
D							
)	 			İ ·			į
	*		4	·			*
)				www	Vosso	adar and a	, wh
							1
°				·			
2.475G	2 49G	2/	1950	2 49G	2.40	56	2.50
2.4150	2.400	2.4	Frequenc		2.43		2.50
2.475G	2.48G	2.4	185G Frequenc	2.49G y [Hz]	2.49)5G	2.5G

MEASUREMENT RESULT: "17LR371E29_red"


Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
2479.000000 2479.500000	31.60 53.00	-3.4 -3.4	70.0 70.0	38.4 17.0		100.0	0.00	VERTICAL VERTICAL
2480.150000	67.20	-3.4	70.0	2.8		100.0		VERTICAL
2484.150000	29.40	-3.3	70.0	40.6		100.0	0.00	VERTICAL
2491.850000	29.20	-3.3	70.0	40.8		100.0	0.00	VERTICAL
2499.150000	30.40	-3.2	70.0	39.6		100.0	0.00	VERTICAL

MEASUREMENT RESULT: "17LR371E29_red2"

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
2479.000000	33.10	-3.4	50.0	16.9		100.0	0.00	VERTICAL
2479.850000	66.20	-3.4	50.0	-16.2		100.0	0.00	VERTICAL
2480.150000	65.80	-3.4	50.0	-15.8		100.0	0.00	VERTICAL
2484.200000	28.40	-3.3	50.0	21.6		100.0	0.00	VERTICAL
2491.800000	28.20	-3.3	50.0	21.8		100.0	0.00	VERTICAL
2499.150000	30.10	-3.2	50.0	19.9		100.0	0.00	VERTICAL

Lowest Bandedge

Vertical (Pi/4 DQPSK)

2402.000000

2410.000000

-4.0

50.0

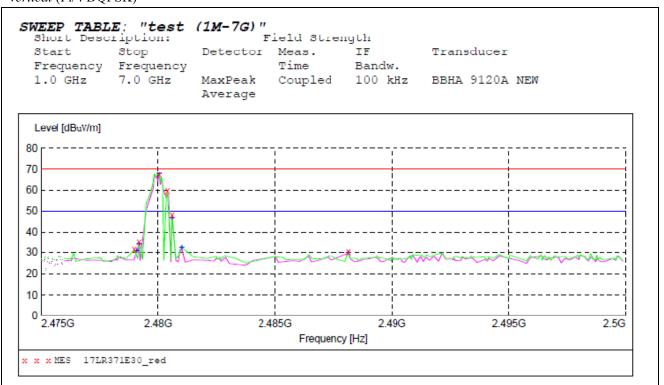
-4.0 50.0

57.10

30.00

-7.1 ----

20.0 ---


100.0

100.0

0.00 VERTICAL

0.00 VERTICAL

Highest Bandedge Vertical (Pi/4 DQPSK)

MEASUREMENT RESULT: "17LR371E30_red"

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height CM	Azimuth deg	Polarization
2479.000000 2479.200000 2480.050000 2480.400000 2480.600000 2488.150000	31.20 35.00 67.60 59.40 47.80 30.30	-3.4 -3.4 -3.4 -3.4 -3.4 -3.4	70.0 70.0 70.0 70.0 70.0 70.0	35.0		100.0 100.0 100.0 100.0 100.0 100.0	0.00 0.00 0.00 0.00 0.00	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

MEASUREMENT RESULT: "17LR371E30 red2"

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
2479.100000 2479.200000	30.40 33.80	-3.4 -3.4	50.0 50.0	19.6 16.2		100.0	0.00	VERTICAL VERTICAL
2480.050000	67.50	-3.4	50.0	-17.5		100.0	0.00	VERTICAL
2480.600000 2481.000000	46.70 32.00	-3.4 -3.4	50.0 50.0	3.3 18.0		100.0 100.0	0.00	VERTICAL VERTICAL
2488.150000	29.70	-3.3	50.0	20.3		100.0	0.00	VERTICAL

Lowest Bandedge

Vertical (8DPSK)

Start St Frequency Fr	-	Detector	Meas. Time		Transducer	
1.0 GHz 7.		MaxPeak Average	Coupled	100 kHz	BBHA 9120A NEW	
Level [dBuV/m]						
·۱						
)						
) <u>and an </u>	how have		Marine	www.wwww	C. Martin Martin	222 Prove
)						
,						
2.31G 2.32G		2.34G	2.36G Frequency		2.38G	2.4G 2.41G
n n MES 17LR371E:	27_red					
	_					

MEASUREMENT RESULT: "17LR371E27_red"

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth dəg	Polarization
2315.200000	29.30	-4.1	70.0	40.7		100.0	0.00	VERTICAL
2319.000000	28.80	-4.1	70.0	41.2		100.0	0.00	VERTICAL
2349.200000	29.90	-4.1	70.0	40.1		100.0	0.00	VERTICAL
2365.200000	28.70	-4.1	70.0	41.3		100.0	0.00	VERTICAL
2390.800000	29.60	-4.1	70.0	40.4		100.0	0.00	VERTICAL
2402.400000	59.00	-4.0	70.0	11.0		100.0	0.00	VERTICAL

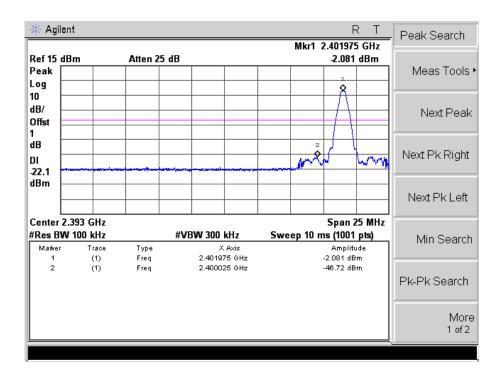
MEASUREMENT RESULT: "17LR371E27_red2"

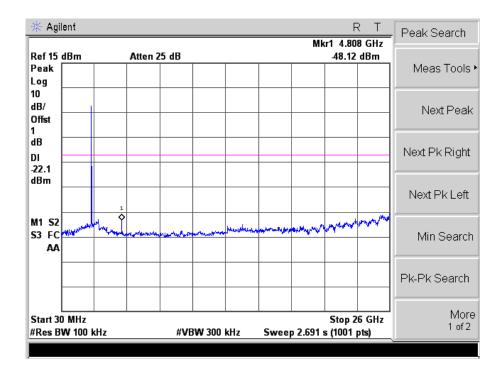
Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth dəg	Polarization
2325.600000	25.60	-4.1	50.0	24.4		100.0	0.00	VERTICAL
2337.200000	25.60	-4.1	50.0	24.4		100.0	0.00	VERTICAL
2351.800000	25.90	-4.1	50.0	24.1		100.0	0.00	VERTICAL
2366.600000	25.30	-4.1	50.0	24.7		100.0	0.00	VERTICAL
2390.800000	25.80	-4.1	50.0	24.2		100.0	0.00	VERTICAL
2402.200000	57.10	-4.0	50.0	-7.1		100.0	0.00	VERTICAL

Highest Bandedge

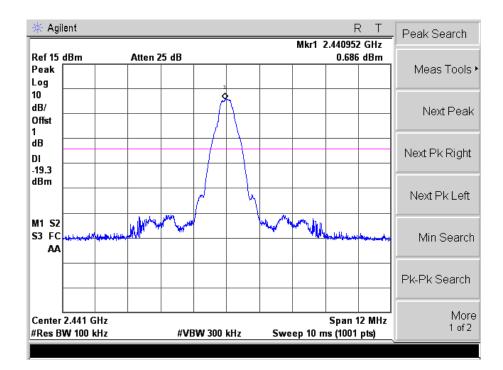
Vertical (8DPSK)

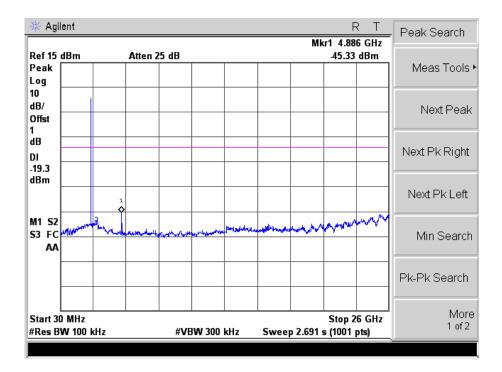
Start	stop	Detector	Meas.	IF	Transducer		
Frequency	Frequency		Time	Bandw.			
1.0 GHz	7.0 GHz	MaxPeak Average	Coupled	100 kHz	ввна 9120а	NEW	
Level [dBuV/m]							
	·						
)			I +				
	Å t		1				
	····/		1 I	 I	۱ ۱		
)	/+ 		<u> </u> 	<u> </u>	 		¦
	/_¦_ <mark>`</mark> *		 J		ا اL		ا لـــــــــ
			1	I			1
dia siste		\sim	and	them	non	mant	\sim
)							
			!	!!	ا إ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ		
2.475G	2.48G	2.4	85G	2.49G	2.49)5G	2.5G
			Frequenc	'v [Hz]			

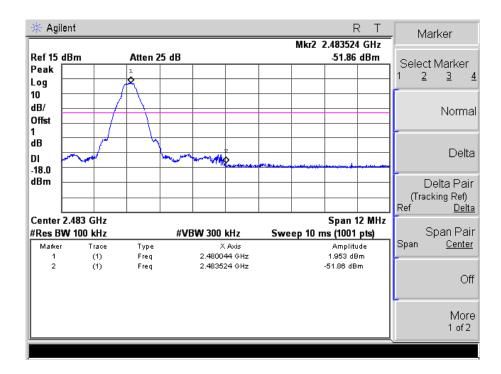

MEASUREMENT RESULT: "17LR371E31_red"

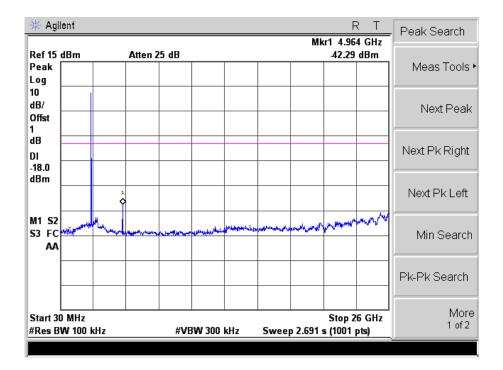

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
2479.850000 2480.400000 2480.600000 2488.550000 2492.550000	67.90 55.20 44.40 29.70 29.00	-3.4 -3.4 -3.4 -3.3 -3.3	70.0 70.0 70.0 70.0 70.0	14.8 25.6 40.3 41.0	 	100.0 100.0 100.0 100.0 100.0	0.00 0.00 0.00 0.00 0.00	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL
2500.000000	29.30	-3.2	70.0	40.7		100.0	0.00	VERTICAL

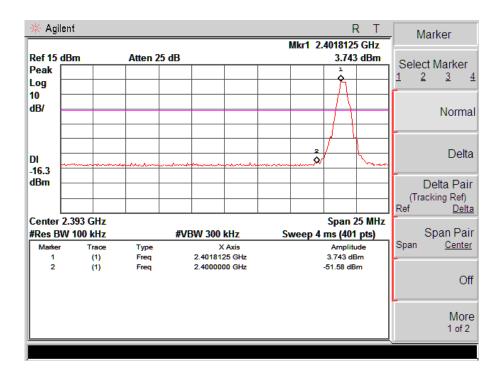
MEASUREMENT RESULT: "17LR371E31_red2"


Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
2478.300000	28.00	-3.4	50.0	22.0		100.0	0.00	VERTICAL
2480.150000	66.10	-3.4	50.0	-16.1		100.0	0.00	VERTICAL
2483.350000	28.10	-3.3	50.0	21.9		100.0	0.00	VERTICAL
2488.550000	29.10	-3.3	50.0	20.9		100.0	0.00	VERTICAL
2492.550000	28.70	-3.3	50.0	21.3		100.0	0.00	VERTICAL
2499.450000	28.40	-3.2	50.0	21.6		100.0	0.00	VERTICAL

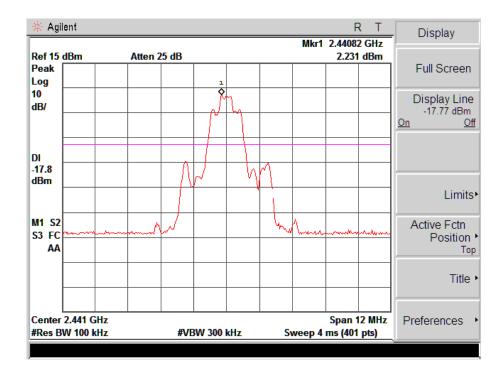

GFSK Bandedge (Conducted) Lowest

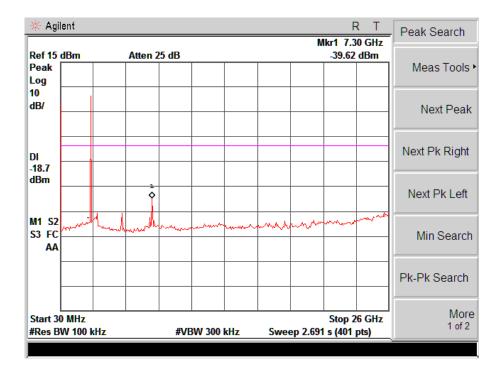


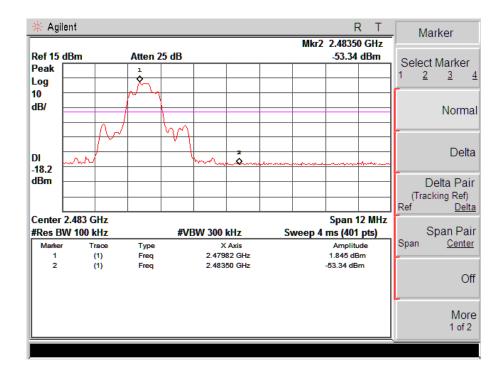

Middle Channel

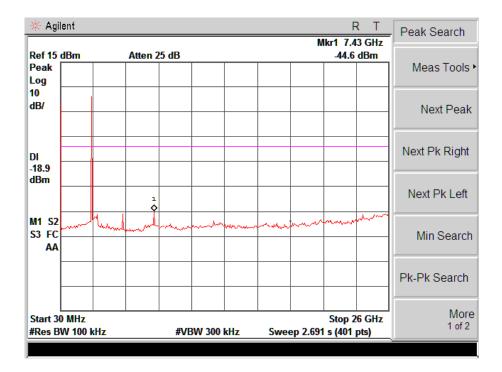


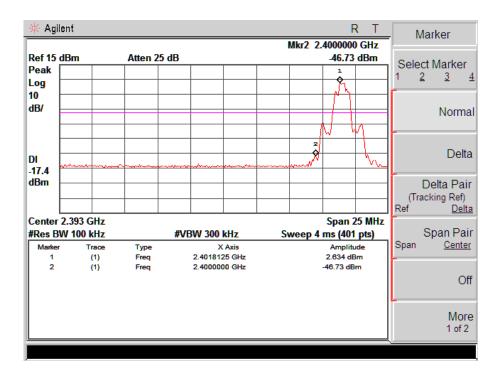
Highest

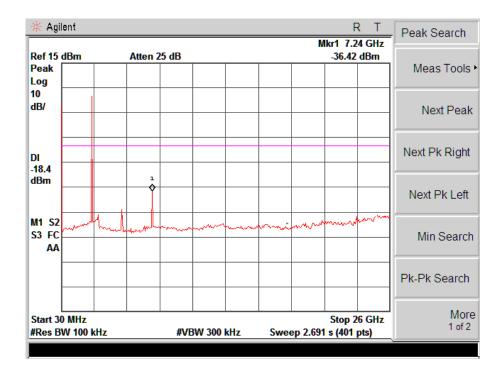


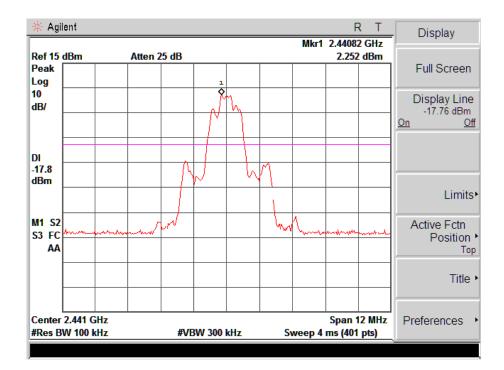

Pi/4 DQPSK Bandedge (Conducted) Lowest

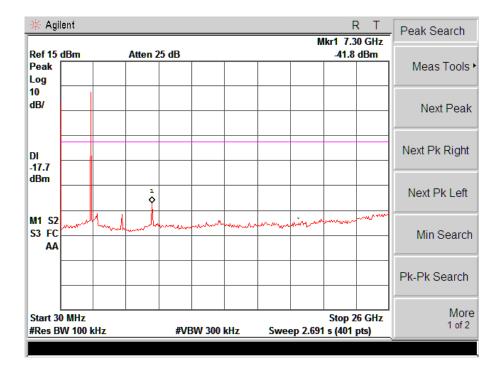


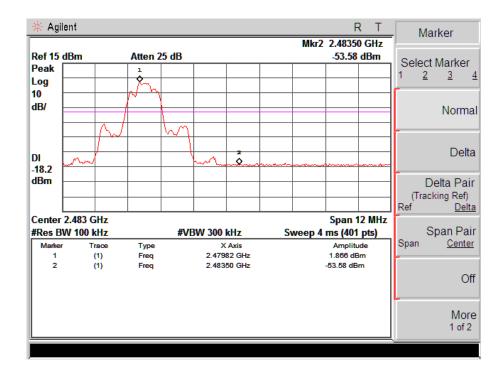

Middle Channel

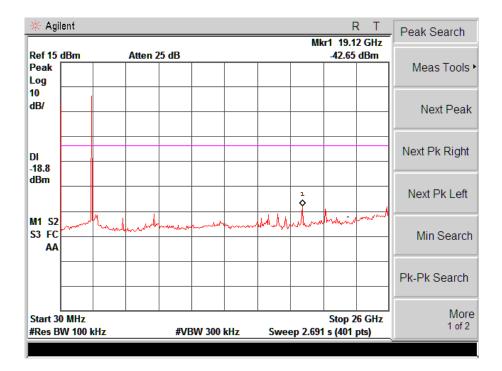


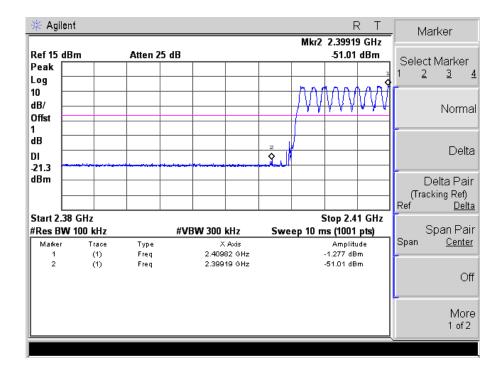

Highest



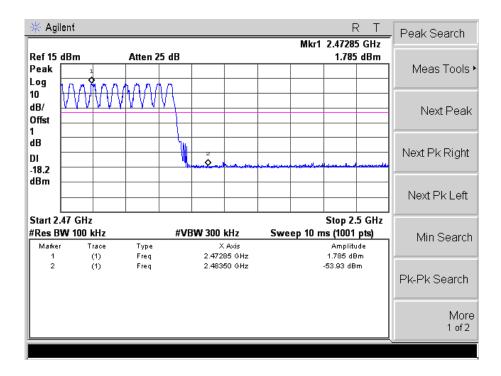

8DPSK Bandedge (Conducted) Lowest




Middle Channel

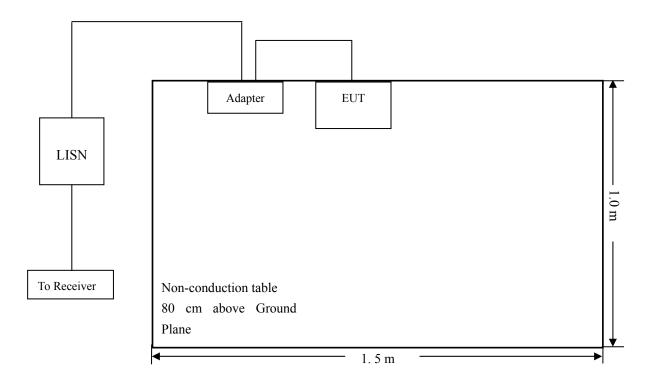


Highest



Bandedge with Hopping on: Worst mode(GFSK): Lowest Bandedge

Highest Bandedge


12. Conducted Emissions

12.1 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

12.2Basic Test Setup Block Diagram

12.3 Environmental Conditions

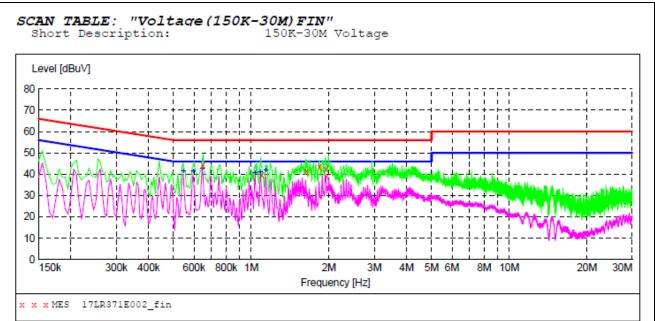
Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

12.4 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	150 kHz
Stop Frequency	30 MHz
Sweep Speed	Auto
IF Bandwidth	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	. Normal

12.5 Summary of Test Results/Plots

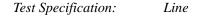

We test all the modes, and the mode of charging & BT Transmitting has the worst margin.

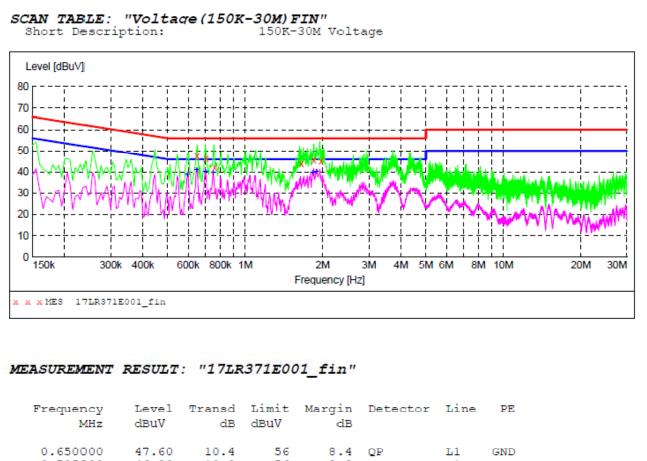
12.6 Conducted Emissions Test Data

Plot of Conducted Emissions Test Data

EUT:	Power Amplifier
Tested Model:	M-ONE
Operating Condition:	Charging & BT Transmitting GFSK
Comment:	AC 120V/60Hz

Test Specification: Neutral



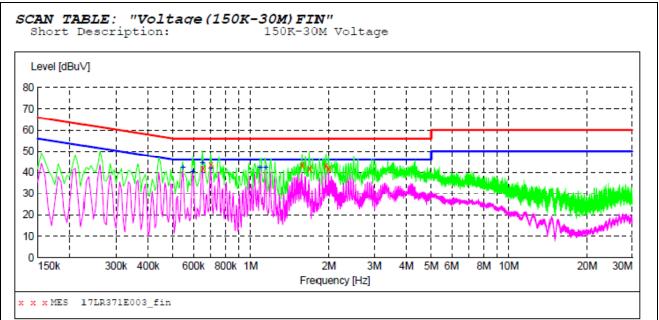

MEASUREMENT RESULT: "17LR371E002_fin"

Frequency MHz	Level dBuV		Limit dBuV	Margin dB	Detector	Line	PE
0.650000 1.100000 1.640000 1.840000 1.950000 1.960000	44.20 39.60 41.50 43.60 42.10 38.70	10.4 10.5 11.0 11.2 11.2 11.2	56 56 56 56 56	16.4 14.5 12.4	QP QP QP QP	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT: "17LR371E002_fin2"

Frequency MHz	Level dBuV		Limit dBuV	Margin dB	Detector	Line	PE
0.545000	41.20	10.4	46	4.8	AV	N	GND
0.595000	41.20	10.4	46	4.8	AV	N	GND
0.645000	42.40	10.4	46	3.6	AV	N	GND
1.035000	40.70	10.5	46	5.3	AV	Ν	GND
1.085000	40.90	10.5	46	5.1	AV	Ν	GND
1.140000	41.60	10.6	46	4.4	AV	Ν	GND

0.650000	4/.60	10.4	56	8.4	QP	11	GND
0.705000	46.20	10.3	56	9.8	QP	г1	GND
0.760000	42.00	10.3	56	14.0	QP	L1	GND
1.650000	44.00	11.0	56	12.0	QP	г1	GND
1.845000	45.60	11.2	56	10.4	QP	г1	GND
1.970000	45.00	11.3	56	11.0	QP	L1	GND

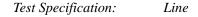

MEASUREMENT RESULT: "17LR371E001_fin2"

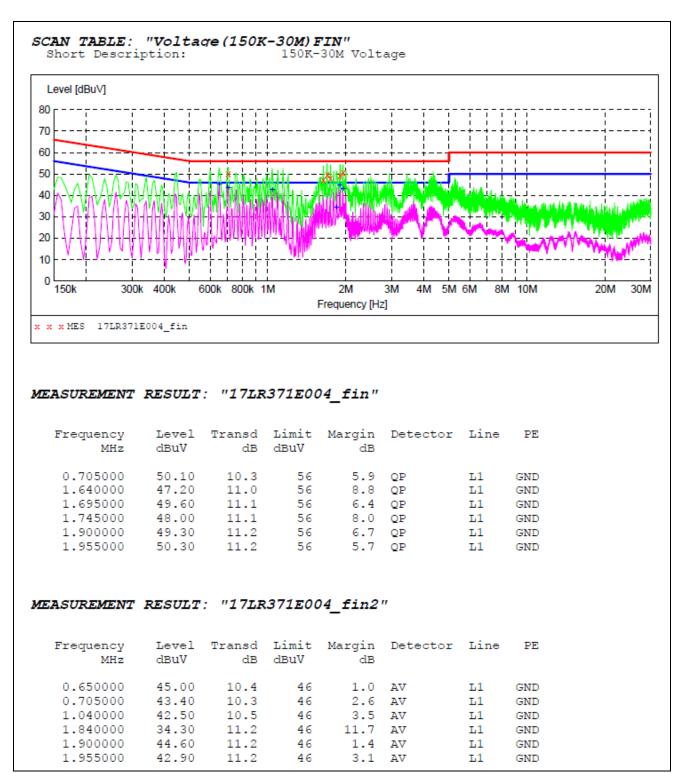
Frequency MHz	Level dBuV		Limit dBuV	Margin dB	Detector	Line	PE	
0.595000 0.645000 0.700000 0.750000 1.825000 1.885000	38.90 41.10 40.00 39.70 39.80 39.90	10.4 10.4 10.3 10.3 11.2 11.2	46 46 46 46 46	7.1 4.9 6.0 6.3 6.2 6.1	AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND	

Plot of Conducted Emissions Test Data

EUT:	Power Amplifier
Tested Model:	M-ONE
Operating Condition:	Charging & BT Transmitting Pi/4 DQPSK
Comment:	AC 120V/60Hz

Test Specification: Neutral

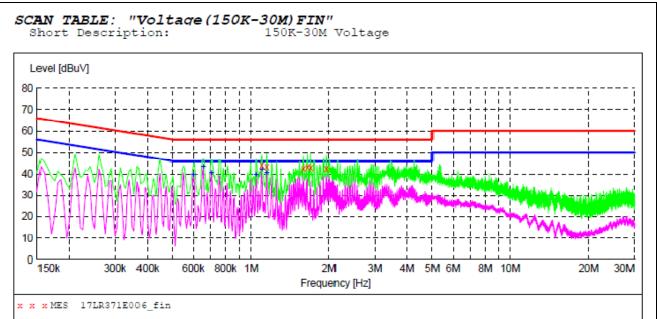



MEASUREMENT RESULT: "17LR371E003_fin"

Frequency MHz	Level dBuV		Limit dBuV	Margin dB	Detector	Line	PE
0.655000	41.60 43.40	10.4		12.6	QP	N N	GND GND
1.585000	43.60 41.70	11.0 11.1	56 56	12.4 14.3	-	N	GND GND
1.945000	41.70	11.1	56		OP	N N	GND
1.995000	41.90	11.3	56	14.1	-	N	GND

MEASUREMENT RESULT: "17LR371E003_fin2"

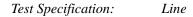
4/9/2018 8: Frequency MHz	Level		Limit dBuV	Margin dB	Detector	Line	PE
0.545000	42.10	10.4	46	3.9	AV	N	GND
0.595000	39.90	10.4	46	6.1	AV	N	GND
0.650000	44.10	10.4	46	1.9	AV	N	GND
0.700000	41.60	10.3	46	4.4	AV	N	GND
1.090000	42.30	10.5	46	3.7	AV	N	GND
1.145000	42.20	10.6	46	3.8	AV	Ν	GND

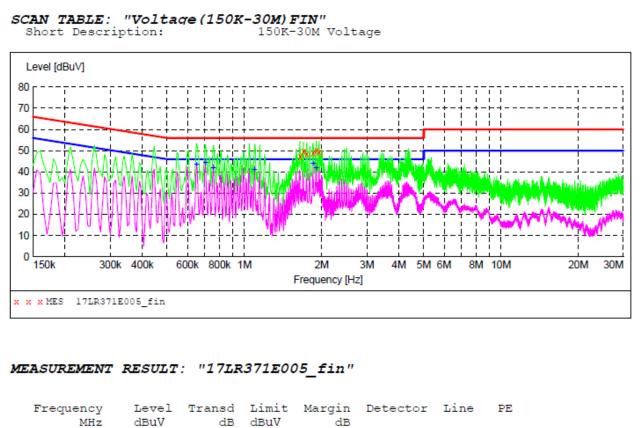


Plot of Conducted Emissions Test Data

EUT:	Power Amplifier
Tested Model:	M-ONE
Operating Condition:	Charging & BT Transmitting 8DPSK
Comment:	AC 120V/60Hz

Test Specification: Neutral




MEASUREMENT RESULT: "17LR371E006_fin"

Frequency MHz	Level dBuV		Limit dBuV	Margin dB	Detector	Line	PE
1.100000	44.20	10.5	56	11.8	QP	N	GND
1.150000	43.50	10.6	56	12.5	QP	N	GND
1.595000	42.70	11.0	56	13.3	QP	N	GND
1.655000	43.30	11.0	56	12.7	QP	N	GND
1.705000	43.00	11.1	56	13.0	QP	N	GND
1.960000	42.50	11.2	56	13.5	QP	N	GND

MEASUREMENT RESULT: "17LR371E006_fin2"

Frequency MHz	Level dBuV		Limit dBuV	Margin dB	Detector	Line	PE
0.600000	39.80	10.4	46	6.2	AV	N	GND
0.655000	43.50	10.4	46	2.5	AV	N	GND
0.705000	40.70	10.3	46	5.3	VA	N	GND
1.045000	39.50	10.5	46	6.5	AV	N	GND
1.100000	42.30	10.5	46	3.7	AV	N	GND
1.150000	40.70	10.6	46	5.3	AV	Ν	GND

MHz	dBuV		dBuV	dB	Defector	TTHE	FL
1.700000 1.750000 1.855000 1.910000	48.90	11.1 11.1 11.2 11.2	56 56 56	6.4 7.6 7.1 5.8	QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND
					-		

MEASUREMENT RESULT: "17LR371E005_fin2"

Frequency MHz	Level dBuV		Limit dBuV	Margin dB	Detector	Line	PE
0.650000	43.40	10.4	46	2.6		L1	GND
0.705000	44.40	10.3	46	1.6		L1	GND
0.755000	41.70	10.3	46	4.3		L1	GND
1.095000	41.10	10.5	46		AV	L1	GND
1.855000	43.90	11.2	46		AV	L1	GND
1.905000	41.60	11.2	46	4.4	AV	L1	GND

***** END OF REPORT *****