TEST REPORT Product Name : Smart watches Brand Mark : **コー** 宝 貞 思 ―― Model No. : W35 **FCC ID** : 2AO58-W35 Report Number : BLA-EMC-202012-A4703 Date of Sample Receipt : 2020/12/14 **Date of Test** : 2020/12/14 to 2021/1/26 **Date of Issue** : 2021/1/26 **Test Standard**: 47 CFR Part 15, Subpart C 15.247 Test Result : Pass ### Prepared for: **Shenzhen Berace Technology Co.,Ltd.** Fourth Floor, Building B, Kaicheng Second Road ICC Industrial City, Xixiang, Bao'an District, Shenzhen, China. Prepared by: BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481 Compiled by: 021 Review by: Approved by: Sweet ling Report No.: BLA-EMC-202012-A4703 Page 2 of65 ### REPORT REVISE RECORD | Version No. Date | | Description | | |------------------|-----------|-------------|--| | 00 | 2021/1/26 | Original | | ## **TABLE OF CONTENTS** | 1 | T | TEST SUMMARY | 6 | |---|-----|---|----| | 2 | G | GENERAL INFORMATION | 7 | | 3 | G | GENERAL DESCRIPTION OF E.U.T | 7 | | 4 | | TEST ENVIRONMENT | | | | | | | | 5 | | TEST MODE | | | 6 | N | MEASUREMENT UNCERTAINTY | 8 | | 7 | [| DESCRIPTION OF SUPPORT UNIT | 9 | | 8 | L | LABORATORY LOCATION | 9 | | 9 | Т | TEST INSTRUMENTS LIST | 10 | | 1 | F | RADIATED SPURIOUS EMISSIONS | 13 | | • | | | | | | 1.1 | | | | | 1.2 | | | | | 1.4 | | | | 2 | F | RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS | 24 | | _ | 2.1 | | | | | 2.1 | | | | | 2.3 | | | | | 2.4 | TEST Data | 27 | | 3 | C | CONDUCTED SPURIOUS EMISSIONS | 31 | | | 3 1 | LIMITS | 31 | | | 3.2 | | | | | 3.3 | TEST Data | 32 | | 4 | P | POWER SPECTRUM DENSITY | 33 | | | 4.1 | LIMITS | 33 | | | 4.2 | | | | | 4.3 | TEST DATA | 33 | | 5 | c | CONDUCTED PEAK OUTPUT POWER | 34 | | | 5.1 | LIMITS | 2/ | | | 5.2 | | | | | | | _ | | | 5.3 | TEST DATA | 35 | |----|------|---|----| | 6 | M | MINIMUM 6DB BANDWIDTH | 36 | | | 6.1 | LIMITS | 36 | | | 6.2 | BLOCK DIAGRAM OF TEST SETUP | 36 | | | 6.3 | TEST DATA | 36 | | 7 | Α | ANTENNA REQUIREMENT | 37 | | | 7.1 | CONCLUSION | 37 | | 8 | C | CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ) | 38 | | | | LIMITS | | | | 8.1 | BLOCK DIAGRAM OF TEST SETUP | | | | 8.2 | PROCEDURE | | | | 8.4 | TEST DATA | | | | | | | | 9 | С | CONDUCTED BAND EDGES MEASUREMENT | 42 | | | 9.1 | LIMITS | 42 | | | 9.2 | BLOCK DIAGRAM OF TEST SETUP | 42 | | | 9.3 | TEST DATA | 43 | | 10 |) A | \PPENDIX | 44 | | | 10.1 | Appendix : DTS Bandwidth | 44 | | | | est Result. | | | | | est Graphs | | | | 10.2 | , | | | | | est Result | | | | | est Graphs | | | | 10.3 | · | | | | Te | est Result | 48 | | | | est Graphs | | | | 10.4 | APPENDIX : MAXIMUM POWER SPECTRAL DENSITY | 50 | | | Te | est Result | 50 | | | Te | est Graphs | 51 | | | 10.5 | APPENDIX E: BAND EDGE MEASUREMENTS | 52 | | | Te | est Result | 52 | | | Te | ēst Graphs | 52 | | | 10.6 | APPENDIX : CONDUCTED SPURIOUS EMISSION | 53 | | | Te | est Result | 53 | | | | | | | Report No.: BLA-EMC-20 |)2012-A4703 | |------------------------|--------------| | | Page 5 of 65 | Page 6 of 65 # 1 TEST SUMMARY | Test item | Test
Requirement | Test Method | Class/Severity | Result | |---|-------------------------------------|--|--|--------| | Radiated Spurious
Emissions | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 6.4,6.5,6.6 | 47 CFR Part 15,
Subpart C 15.209 &
15.247(d) | Pass | | Radiated Emissions which fall in the restricted bands | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 6.10.5 | 47 CFR Part 15,
Subpart C 15.209 &
15.247(d) | Pass | | Conducted Spurious
Emissions | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.6 &
Section 11.11 | 47 CFR Part 15,
Subpart C 15.247(d) | Pass | | Power Spectrum Density | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 11.10.2 | 47 CFR Part 15,
Subpart C 15.247(e) | Pass | | Conducted Peak Output
Power | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.5 | 47 CFR Part 15,
Subpart C
15.247(b)(3) | Pass | | Minimum 6dB Bandwidth | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 11.8.1 | 47 CFR Part 15,
Subpart C 15.247a(2) | Pass | | Antenna Requirement | 47 CFR Part 15,
Subpart C 15.247 | N/A | 47 CFR Part 15,
Subpart C 15.203 &
15.247(c) | Pass | | Conducted Emissions at AC Power Line (150kHz-30MHz) | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 6.2 | 47 CFR Part 15,
Subpart C 15.207 | Pass | | Conducted Band Edges
Measurement | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.8 &
Section 11.13.3.2 | 47 CFR Part 15,
Subpart C 15.247(d) | Pass | Page 7 of 65 ### 2 GENERAL INFORMATION | Applicant | Shenzhen Berace Technology Co.,Ltd. | |----------------|--| | Address | Fourth Floor, Building B, Kaicheng Second Road ICC Industrial City, Xixiang, Bao'an District, Shenzhen, China. | | Manufacturer | Shenzhen Berace Technology Co.,Ltd. | | Address | Fourth Floor, Building B, Kaicheng Second Road ICC Industrial City, Xixiang, Bao'an District, Shenzhen, China. | | Factory | Shenzhen Berace Technology Co.,Ltd. | | Address | Fourth Floor, Building B, Kaicheng Second Road ICC Industrial City, Xixiang, Bao'an District, Shenzhen, China. | | Product Name | Smart watches | | Test Model No. | W35 | # 3 GENERAL DESCRIPTION OF E.U.T. | Hardware Version | MOY-REL3-2.0.1 | |----------------------|--------------------------------| | Software Version | MOY.M80089.02 | | Operation Frequency: | 2402MHz-2480MHz | | Modulation Type: | GFSK | | Channel Spacing: | 2MHz | | Number of Channels: | 40 | | Antenna Type: | Internal antenna | | Antenna Gain: | 2dBi(Provided by the customer) | Page 8 of 65 ### **4 TEST ENVIRONMENT** | Environment | Temperature | Voltage | |-------------|-------------|---------| | Normal | +25°C | 3.7Vdc | ### 5 TEST MODE | TEST MODE | TEST MODE DESCRIPTION | | | |--|-----------------------------------|--|--| | TX | Keep the EUT in transmitting mode | | | | Remark:Only the data of the worst mode would be recorded in this report. | | | | ### **6 MEASUREMENT UNCERTAINTY** | Parameter | Expanded Uncertainty (Confidence of 95%) | | | |--|--|--|--| | Radiated Emission(9kHz-30MHz) | ±4.34dB | | | | Radiated Emission(30Mz-1000MHz) | ±4.24dB | | | | Radiated Emission(1GHz-18GHz) | ±4.68dB | | | | AC Power Line Conducted Emission(150kHz-30MHz) | ±3.45dB | | | Page 9 of 65 ### 7 DESCRIPTION OF SUPPORT UNIT | Device Type | Manufacturer | Model Name | Serial No. | Remark | | |--|--------------|------------|------------|--------|--| | PC | HASEE | K610D | | | | | Note: "" means no any support device during testing. | | | | | | ### 8 LABORATORY LOCATION All tests were performed at: BlueAsia of Technical Services(Shenzhen) Co., Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted. Page 10 of65 # 9 TEST INSTRUMENTS LIST | Test Equipment Of Radiated Spurious Emissions | | | | | | |---|--------------|---------------|------------------|------------|------------| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | Chamber | SKET | 966 | N/A | 2020/11/10 | 2023/11/9 | | Spectrum | R&S | FSP40 | 100817 | 2020/10/12 | 2021/10/11 | | Receiver | R&S | ESR7 | 101199 | 2020/10/12 | 2021/10/11 | | broadband Antenna | Schwarzbeck | VULB9168 | 00836
P:00227 | 2020/9/26 | 2022/9/25 | | Horn Antenna | Schwarzbeck | 9120D | 01892
P:00331 | 2020/9/26 | 2022/9/25 | | Amplifier | SKET | PA-000318G-45 | N/A | 2020/10/16 | 2021/10/15 | | EMI software | EZ | EZ-EMC | EEMC-3A1 | N/A | N/A | | Loop antenna | SCHNARZBECK | FMZB1519B | 00102 | 2020/9/26 | 2022/9/25 | | Controller | SKET | N/A | N/A | N/A | N/A | | Coaxial Cable | BlueAsia | BLA-XC-02 | N/A | N/A | N/A | | Coaxial Cable | BlueAsia | BLA-XC-03 | N/A | N/A | N/A | | Coaxial Cable | BlueAsia | BLA-XC-01 | N/A | N/A | N/A | | Test Equipment Of I | ent Of Radiated Emissions which fall in the r | | | nds | | |---------------------|---|----------|------------------|------------|------------| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | Chamber | SKET | 966 | N/A | 2020/11/10 | 2023/11/9 | | Spectrum | R&S | FSP40 | 100817 | 2020/10/12 | 2021/10/11 | | Receiver | R&S | ESR7 | 101199 | 2020/10/12 | 2021/10/11 | | broadband Antenna | Schwarzbeck | VULB9168 | 00836
P:00227 | 2020/9/26 | 2022/9/25 | | Horn Antenna | Schwarzbeck | 9120D | 01892
P:00331 | 2020/9/26 | 2022/9/25 | Page 11 of65 | Amplifier | SKET | PA-000318G-45 | N/A | 2020/10/16 | 2021/10/15 | |---------------|-------------|---------------|----------|------------|------------| | EMI software | EZ | EZ-EMC | EEMC-3A1 | N/A | N/A | | Loop antenna | SCHNARZBECK | FMZB1519B | 00102 | 2020/9/26 | 2022/9/25 | | Controller | SKET | N/A | N/A | N/A | N/A | | Coaxial Cable | BlueAsia | BLA-XC-02 | N/A | N/A | N/A | | Coaxial Cable | BlueAsia | BLA-XC-03 | N/A | N/A | N/A | | Coaxial Cable | BlueAsia | BLA-XC-01 | N/A | N/A | N/A | | Test Equipment Of Conducted Spurious Emissions | | | | | | |--|--------------|--------|------------|------------|------------| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | Spectrum | R&S | FSP40 | 100817 | 2020/10/12 | 2021/10/11 | | Spectrum | Agilent | N9020A | MY49100060 | 2020/10/12 | 2021/10/11 | | Signal Generator | Agilent | N5182A | MY49060650 | 2020/10/12 | 2021/10/11 | | Signal Generator | Agilent | E8257D | MY44320250 | 2020/10/12 | 2021/10/11 | | Test Equipment Of | st Equipment Of Power Spectrum Density | | | | | | |-------------------|--|--------|------------|------------|------------|--| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | | Spectrum | R&S | FSP40 | 100817 | 2020/10/12 | 2021/10/11 | | | Spectrum | Agilent | N9020A | MY49100060 | 2020/10/12 | 2021/10/11 | | | Signal Generator | Agilent | N5182A | MY49060650 | 2020/10/12 | 2021/10/11 | | | Signal Generator | Agilent | E8257D | MY44320250 | 2020/10/12 | 2021/10/11 | | | Test Equipment Of | Conducted Peak C | utput Power | | | | |-------------------|------------------|-------------|------------|------------|------------| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | Spectrum | R&S | FSP40 | 100817 | 2020/10/12 | 2021/10/11 | | Spectrum | Agilent | N9020A | MY49100060 | 2020/10/12 | 2021/10/11 | Page 12 of65 | Signal Generator | Agilent | N5182A | MY49060650 | 2020/10/12 | 2021/10/11 | |------------------|---------|--------|------------|------------|------------| | Signal Generator | Agilent | E8257D | MY44320250 | 2020/10/12 | 2021/10/11 | | Test Equipment Of I | est Equipment Of Minimum 6dB Bandwidth | | | | | | |---------------------|--|--------|------------|------------|------------|--| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | | Spectrum | R&S | FSP40 | 100817 | 2020/10/12 | 2021/10/11 | | | Spectrum | Agilent | N9020A | MY49100060 | 2020/10/12 | 2021/10/11 | | | Signal Generator | Agilent | N5182A | MY49060650 | 2020/10/12 | 2021/10/11 | | | Signal Generator | Agilent | E8257D | MY44320250 | 2020/10/12 | 2021/10/11 | | | Test Equipment Of | Conducted Emiss | sions at AC Pow | er Line (150kHz-30 | MHz) | | |-------------------|-----------------|-----------------|--------------------|------------|------------| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | Shield room | SKET | 833 | N/A | 2020/11/25 | 2023/11/24 | | Receiver | R&S | ESPI3 | 101082 | 2020/10/12 | 2021/10/11 | | LISN | R&S | ENV216 | 3560.6550.15 | 2020/10/12 | 2021/10/11 | | LISN | AT | AT166-2 | AKK1806000003 | 2020/10/12 | 2021/10/11 | | EMI software | EZ | EZ-EMC | EEMC-3A1 | N/A | N/A | | Test Equipment Of | Conducted Band | nent | ent | | | | |-------------------|----------------|--------|------------|------------|------------|--| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | | Spectrum | R&S | FSP40 | 100817 | 2020/10/12 | 2021/10/11 | | | Spectrum | Agilent | N9020A | MY49100060 | 2020/10/12 | 2021/10/11 | | | Signal Generator | Agilent | N5182A | MY49060650 | 2020/10/12 | 2021/10/11 | | | Signal Generator | Agilent | E8257D | MY44320250 | 2020/10/12 | 2021/10/11 | | Page 13 of 65 ### 1 RADIATED SPURIOUS EMISSIONS | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |------------------------|---| | Test Method | ANSI C63.10 (2013) Section 6.4,6.5,6.6 | | Test Mode (Pre-Scan) | TX mode (SE) below 1G;TX mode (SE) Above 1G | | Test Mode (Final Test) | TX mode (SE) below 1G;TX mode (SE) Above 1G | | Tester | Jozu | | Temperature | 25 ℃ | | Humidity | 60% | ### 1.1 LIMITS | Frequency(MHz) | Field | Measurement | |----------------|----------------------------|------------------| | | strength(microvolts/meter) | distance(meters) | | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. ### 1.2 BLOCK DIAGRAM OF TEST SETUP ### 1.3 PROCEDURE - a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Page 15 of 65 - h. Test the EUT in the lowest channel, the middle channel, the Highest channel. - i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - j. Repeat above procedures until all frequencies measured was complete. ### Remark - 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report. - 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor- Preamplifier Factor - 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown. - 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. Humidity: ### 1.4 TEST DATA # [TestMode: TX mode (SE) below 1G]; [Polarity: Horizontal] ### **Radiated Emission Measurement** Site Limit: FCC Part15 Class B **EUT: Smart watches** M/N: W35 Mode: BT mode Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|------|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 48.3318 | 0.82 | 23.82 | 24.64 | 40.00 | -15.36 | QP | | | | | 2 | | 77.0503 | 0.32 | 20.17 | 20.49 | 40.00 | -19.51 | QP | | | | | 3 | | 130.8369 | -1.15 | 22.99 | 21.84 | 43.50 | -21.66 | QP | | | | | 4 | TE | 237.4758 | 1.90 | 22.77 | 24.67 | 46.00 | -21.33 | QP | | | | | 5 | 1.11 | 411.8240 | 0.97 | 27.69 | 28.66 | 46.00 | -17.34 | QP | | | | | 6 | * | 627.2738 | 1.34 | 31.87 | 33.21 | 46.00 | -12.79 | QP | | | | Power: Distance: 3m *:Maximum data x:Over limit !:over margin (Reference Only # [TestMode: TX mode (SE) below 1G]; [Polarity: Vertical] ### **Radiated Emission Measurement** Power: Distance: 3m Site Limit: FCC Part15 Class B **EUT: Smart watches** Freq. MHz 49.1865 87.1115 158.6675 281.9945 437,1197 607.7866 Reading dBuV 3.08 2.15 0.92 0.59 0.64 1.79 Level Correct Factor 23.80 19.32 23.19 23.68 27.95 31.72 24.27 28.59 33.51 M/N: W35 Mode: BT mode Note: No. Mk. 1 2 3 4 5 | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |------------------|--------|--------|----------|-------------------|-----------------|---------| | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 26.88 | 40.00 | -13.12 | QP | | | | | 21.47 | 40.00 | -18.53 | QP | | | | | 24.11 | 43.50 | -19.39 | QP | | | | | | | | | | | | QP QP QP -21.73 -17.41 -12.49 Humidity: | *:Maximum data | x:Over limit | !:over margin | (Reference Only | |----------------|--------------|---------------|-----------------| 46.00 46.00 46.00 # [TestMode: TX Low channel]; [Polarity: Horizontal] Radiated Emission Measurement Site Limit: FCC Part15 (PK) **EUT: Smart watches** M/N: W35 Mode: TX-L Note: Polarization: Horizontal Temperature: Humidity: Power: Distance: 3m | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 4804.000 | 52.88 | -4.52 | 48.36 | 74.00 | -25.64 | peak | | | | | 2 | | 7206.000 | 50.77 | -2.27 | 48.50 | 74.00 | -25.50 | peak | | | | | 3 | * | 9608.000 | 50.12 | 0.81 | 50.93 | 74.00 | -23.07 | peak | | | | *:Maximum data Reference Only x:Over limit !:over margin [TestMode: TX Low channel]; [Polarity: Vertical] Radiated Emission Measurement Site Limit: FCC Part15 (PK) **EUT: Smart watches** M/N: W35 Mode: TX-L Note: Polarization: Vertical Temperature: Humidity: Power: Distance: 3m | MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree Common 1 4804.000 52.76 -4.52 48.24 74.00 -25.76 peak | No. | |---|-----| | 1 4804 000 52 76 4.52 48 24 74 00 25 76 peak | | | 1 4004.000 52.70 -4.52 40.24 74.00 -25.70 peak | 1 | | 2 7206.000 52.75 -2.02 50.73 74.00 -23.27 peak | 2 | | 3 * 9608.000 50.22 0.62 50.84 74.00 -23.16 peak | 3 | *:Maximum data Reference Only x:Over limit !:over margin # [TestMode: TX middle channel]; [Polarity: Horizontal] Radiated Emission Measurement Site Limit: FCC Part15 (PK) **EUT: Smart watches** M/N: W35 Mode: TX-M Note: Polarization: Horizontal Temperature: Humidity: Power: Distance: 3m | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 4882.000 | 52.89 | -5.07 | 47.82 | 74.00 | -26.18 | peak | | | | | 2 | | 7323.000 | 50.17 | -1.34 | 48.83 | 74.00 | -25.17 | peak | | | | | 3 | * | 9764.000 | 48.26 | 0.94 | 49.20 | 74.00 | -24.80 | peak | | | | *:Maximum data Reference Only x:Over limit !:over margin [TestMode: TX middle channel]; [Polarity: Vertical] Radiated Emission Measurement Site Limit: FCC Part15 (PK) **EUT: Smart watches** M/N: W35 Mode: TX-M Note: Polarization: Vertical Temperature: Humidity: Power: Distance: 3m | No. Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |--------|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | 4882.000 | 51.21 | -5.07 | 46.14 | 74.00 | -27.86 | peak | | | | | 2 | 7323.000 | 51.20 | -1.48 | 49.72 | 74.00 | -24.28 | peak | | | | | 3 * | 9764 000 | 49.05 | 0.91 | 49.96 | 74.00 | -24 04 | neak | | | | *:Maximum data Reference Only x:Over limit !:over margin Humidity: # [TestMode: TX high channel]; [Polarity: Horizontal] Radiated Emission Measurement Site Limit: FCC Part15 (PK) **EUT: Smart watches** M/N: W35 Mode: TX-H Note: Polarization: Horizontal Power: Distance: 3m | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 4960.000 | 52.43 | -4.84 | 47.59 | 74.00 | -26.41 | peak | | | | | 2 | * | 7440.000 | 50.24 | -0.56 | 49.68 | 74.00 | -24.32 | peak | | | | | 3 | | 9920.000 | 47.45 | 1.30 | 48.75 | 74.00 | -25.25 | peak | | | | | | | | | | | | | | | | | *:Maximum data Reference Only x:Over limit !:over margin Humidity: [TestMode: TX high channel]; [Polarity: Vertical] Radiated Emission Measurement Site Limit: FCC Part15 (PK) **EUT: Smart watches** M/N: W35 Mode: TX-H Note: Polarization: Vertical Power: Distance: 3m | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | Table
Degree | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | | 4960.000 | 52.12 | -4.84 | 47.28 | 74.00 | -26.72 | peak | | | | | 2 | * | 7440.000 | 51.57 | -1.07 | 50.50 | 74.00 | -23.50 | peak | | | | | 3 | | 9920.000 | 47.40 | 1.42 | 48.82 | 74.00 | -25.18 | peak | | | | *:Maximum data Reference Only x:Over limit !:over margin Page 24 of 65 ### 2 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |------------------------|-----------------------------------| | Test Method | ANSI C63.10 (2013) Section 6.10.5 | | Test Mode (Pre-Scan) | TX | | Test Mode (Final Test) | TX | | Tester | Jozu | | Temperature | 25 ℃ | | Humidity | 60% | ### 2.1 LIMITS | Frequency(MHz) | Field strength(microvolts/meter) | Measurement distance(meters) | |----------------|----------------------------------|------------------------------| | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. ### 2.2 BLOCK DIAGRAM OF TEST SETUP ### 2.3 PROCEDURE - a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Page 26 of65 h. Test the EUT in the lowest channel, the middle channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. ### 2.4 TEST DATA ### [TestMode: TX Low channel]; [Polarity: Horizontal] ### Radiated Emission Measurement Distance: 3m Site Limit: FCC Part15 (PK) Freq. MHz 2310.000 2390.000 Reading dBuV 56.66 57.17 Level Correct Factor dB -14.01 -13.62 43.55 74.00 **EUT: Smart watches** M/N: W35 Mode: TX-L Note: No. Mk. |) | 2357.00 | 2366.40 | 2375.80 | 2385.20 | 240 | |---|--------------|---------|---------|-----------|------| | | Polarization | : Horiz | zontal | Temperati | ıre: | | | Power: | | | Humidity: | % | Measure-Antenna Table Limit Over ment Height Degree dBuV/m dBuV/m dB Detector Comment degree 42.65 74.00 -31.35 peak peak -30.45 *:Maximum data x:Over limit !:over margin (Reference Only [TestMode: TX Low channel]; [Polarity: Vertical] Radiated Emission Measurement Limit: FCC Part15 (PK) **EUT: Smart watches** M/N: W35 Mode: TX-L Note: Site Polarization: Vertical Temperature: Humidity: Power: Distance: 3m | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | 77 -1737 | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|----------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 2310.000 | 57.89 | -14.30 | 43.59 | 74.00 | -30.41 | peak | | | | | 2 | - 7 | 2390.000 | 56.80 | -13.95 | 42.85 | 74.00 | -31.15 | peak | | | | *:Maximum data x:Over limit !:over margin Reference Only [TestMode: TX high channel]; [Polarity: Horizontal] Radiated Emission Measurement Site Limit: FCC Part15 (PK) **EUT: Smart watches** M/N: W35 Mode: TX-H Note: Polarization: Horizontal Power: Temperature: Humidity: Distance: 3m | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|--------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 2483.500 | 62.52 | -13.11 | 49.41 | 74.00 | -24.59 | peak | | | | | 2 | | 2500.000 | 56.81 | -13.02 | 43.79 | 74.00 | -30.21 | peak | - | | | *:Maximum data Reference Only x:Over limit !:over margin [TestMode: TX high channel]; [Polarity: Vertical] Radiated Emission Measurement Site Limit: FCC Part15 (PK) **EUT: Smart watches** M/N: W35 Mode: TX-H Note: Polarization: Vertical Power: Humidity: Distance: 3m | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | Antenna
Height | 77 -1-139 | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | cm | degree | Comment | | 1 | * | 2483.500 | 62.02 | -13.50 | 48.52 | 74.00 | -25.48 | peak | | | | | 2 | | 2500.000 | 56.37 | -13.42 | 42.95 | 74.00 | -31.05 | peak | | | | *:Maximum data Reference Only x:Over limit !:over margin Page 31 of 65 ### 3 CONDUCTED SPURIOUS EMISSIONS | Test Standard | 47 CFR Part 15, Subpart C 15.247 | | | | | |------------------------|--|--|--|--|--| | Test Method | ANSI C63.10 (2013) Section 7.8.6 & Section 11.11 | | | | | | Test Mode (Pre-Scan) | TX | | | | | | Test Mode (Final Test) | TX | | | | | | Tester | Jozu | | | | | | Temperature | 25℃ | | | | | | Humidity | 60% | | | | | ### 3.1 LIMITS Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). ### 3.2 BLOCK DIAGRAM OF TEST SETUP Page 32 of 65 ### 3.3 TEST DATA Pass: Please Refer To Appendix: Appendix1 For Details 4 POWER SPECTRUM DENSITY | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |------------------------|------------------------------------| | Test Method | ANSI C63.10 (2013) Section 11.10.2 | | Test Mode (Pre-Scan) | TX | | Test Mode (Final Test) | TX | | Tester | Jozu | | Temperature | 25 ℃ | | Humidity | 60% | ### 4.1 LIMITS **Limit:** | ≤8dBm in any 3 kHz band during any time interval of continuous transmission ### 4.2 BLOCK DIAGRAM OF TEST SETUP ### 4.3 TEST DATA Pass: Please Refer To Appendix: Appendix1 For Details 5 CONDUCTED PEAK OUTPUT POWER | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |------------------------|----------------------------------| | Test Method | ANSI C63.10 (2013) Section 7.8.5 | | Test Mode (Pre-Scan) | TX | | Test Mode (Final Test) | TX | | Tester | Jozu | | Temperature | 25 ℃ | | Humidity | 60% | ### 5.1 LIMITS | Frequency range(MHz) | Output power of the intentional radiator(watt) | | | | |----------------------|--|--|--|--| | | 1 for ≥50 hopping channels | | | | | 902-928 | 0.25 for 25≤ hopping channels <50 | | | | | | 1 for digital modulation | | | | | | 1 for ≥75 non-overlapping hopping channels | | | | | 2400-2483.5 | 0.125 for all other frequency hopping systems | | | | | | 1 for digital modulation | | | | | 5725 5050 | 1 for frequency hopping systems and digital | | | | | 5725-5850 | modulation | | | | ### 5.2 BLOCK DIAGRAM OF TEST SETUP Report No.: BLA-EMC-202012-A4703 Page 35 of65 ### 5.3 **TEST DATA** Pass: Please Refer To Appendix: Appendix1 For Details ### 6 MINIMUM 6DB BANDWIDTH | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |------------------------|-----------------------------------| | Test Method | ANSI C63.10 (2013) Section 11.8.1 | | Test Mode (Pre-Scan) | TX | | Test Mode (Final Test) | TX | | Tester | Jozu | | Temperature | 25℃ | | Humidity | 60% | ### 6.1 LIMITS | Limit: | ≥500 kHz | |--------|----------| |--------|----------| ### 6.2 BLOCK DIAGRAM OF TEST SETUP ### 6.3 TEST DATA Pass: Please Refer To Appendix: Appendix1 For Details Page 37 of 65 #### 7 ANTENNA REQUIREMENT | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |---------------|----------------------------------| | Test Method | N/A | #### 7.1 CONCLUSION ### Standard Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. #### **EUT Antenna:** The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi. ### 8 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ) | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |------------------------|----------------------------------| | Test Method | ANSI C63.10 (2013) Section 6.2 | | Test Mode (Pre-Scan) | TX | | Test Mode (Final Test) | TX | | Tester | Jozu | | Temperature | 25 ℃ | | Humidity | 60% | #### 8.1 LIMITS | Frequency of | Conducted limit(dBµV) | | | | | | | |---|-----------------------|-----------|--|--|--|--|--| | emission(MHz) | Quasi-peak | Average | | | | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | | | | 0.5-5 | 56 | 46 | | | | | | | 5-30 | 60 | 50 | | | | | | | *Decreases with the logarithm of the frequency. | | | | | | | | #### 8.2 BLOCK DIAGRAM OF TEST SETUP E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m #### 8.3 PROCEDURE - 1) The mains terminal disturbance voltage test was conducted in a shielded room. - 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50?H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. Page 39 of65 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, - 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. - 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. Remark: LISN=Read Level+ Cable Loss+ LISN Factor #### **TEST DATA** 8.4 [TestMode: TX]; [Line: Line] Power:120V60Hz Limit: FCC Class B Conduction(QP) EUT: Smart watches M/N: W35 Mode: BT mode Note: Site | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | | 0.1940 | 32.65 | 0.07 | 32.72 | 63.86 | -31.14 | QP | | | 2 | | 0.1940 | 26.66 | 0.07 | 26.73 | 53.86 | -27.13 | AVG | | | 3 | | 0.5060 | 38.11 | 0.08 | 38.19 | 56.00 | -17.81 | QP | | | 4 | * | 0.5060 | 36.47 | 0.08 | 36.55 | 46.00 | -9.45 | AVG | | | 5 | | 1.4180 | 31.54 | 0.11 | 31.65 | 56.00 | -24.35 | QP | | | 6 | | 1.4180 | 26.56 | 0.11 | 26.67 | 46.00 | -19.33 | AVG | | | 7 | | 4.2738 | 27.85 | 0.10 | 27.95 | 56.00 | -28.05 | QP | | | 8 | | 4.2738 | 21.45 | 0.10 | 21.55 | 46.00 | -24.45 | AVG | | | 9 | | 8.4779 | 17.54 | 0.12 | 17.66 | 60.00 | -42.34 | QP | | | 10 | | 8.4779 | 10.03 | 0.12 | 10.15 | 50.00 | -39.85 | AVG | | | 11 | | 26.1100 | 14.93 | 0.19 | 15.12 | 60.00 | -44.88 | QP | | | 12 | | 26.1100 | 8.24 | 0.19 | 8.43 | 50.00 | -41.57 | AVG | | | | | | | | | | | | | *:Maximum data x:Over limit !:over margin (Reference Only **Test Result: Pass** Humidity: [TestMode: TX]; [Line: Neutral] Power:120V60Hz Limit: FCC Class B Conduction(QP) EUT: Smart watches M/N: W35 Mode: BT mode Note: Site | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | | 0.1780 | 22.61 | 9.88 | 32.49 | 64.58 | -32.09 | QP | | | 2 | | 0.1780 | 16.30 | 9.88 | 26.18 | 54.58 | -28.40 | AVG | | | 3 | | 0.5580 | 22.64 | 9.73 | 32.37 | 56.00 | -23.63 | QP | | | 4 | * | 0.5580 | 15.67 | 9.73 | 25.40 | 46.00 | -20.60 | AVG | | | 5 | | 1.3860 | 20.09 | 9.83 | 29.92 | 56.00 | -26.08 | QP | | | 6 | | 1.3860 | 14.02 | 9.83 | 23.85 | 46.00 | -22.15 | AVG | | | 7 | | 2.4580 | 18.05 | 9.86 | 27.91 | 56.00 | -28.09 | QP | | | 8 | | 2.4580 | 9.25 | 9.86 | 19.11 | 46.00 | -26.89 | AVG | | | 9 | | 4.6500 | 18.13 | 9.89 | 28.02 | 56.00 | -27.98 | QP | | | 10 | | 4.6500 | 6.33 | 9.89 | 16.22 | 46.00 | -29.78 | AVG | | | 11 | | 26.8860 | 5.23 | 10.04 | 15.27 | 60.00 | -44.73 | QP | | | 12 | | 26.8860 | -1.90 | 10.04 | 8.14 | 50.00 | -41.86 | AVG | | | _ | | | | | | | | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only **Test Result: Pass** Page 42 of 65 #### 9 CONDUCTED BAND EDGES MEASUREMENT | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |------------------------|--| | Test Method | ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2 | | Test Mode (Pre-Scan) | TX | | Test Mode (Final Test) | TX | | Tester | Jozu | | Temperature | 25 ℃ | | Humidity | 60% | #### 9.1 LIMITS Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). #### 9.2 BLOCK DIAGRAM OF TEST SETUP Page 43 of 65 #### 9.3 TEST DATA Pass: Please Refer To Appendix: Appendix1 For Details Page 44 of65 # 10 APPENDIX 10.1 APPENDIX: DTS BANDWIDTH | TestMode | Antenna | Channel | DTS BW [MHz] | FL[MHz] | FH[MHz] | Limit[MHz] | Verdict | |----------|---------|---------|--------------|----------|----------|------------|---------| | | | 2402 | 0.660 | 2401.672 | 2402.332 | >=0.5 | PASS | | BLE | Ant1 | 2442 | 0.668 | 2441.664 | 2442.332 | >=0.5 | PASS | | | | 2480 | 0.728 | 2479.608 | 2480.336 | >=0.5 | PASS | Page 46 of65 ### 10.2APPENDIX: OCCUPIED CHANNEL BANDWIDTH | TestMode | Antenna | Channel | OCB [MHz] | FL[MHz] | FH[MHz] | Limit[MHz] | Verdict | |----------|---------|---------|-----------|----------|----------|------------|---------| | | | 2402 | 1.0376 | 2401.506 | 2402.544 | | PASS | | BLE | Ant1 | 2442 | 1.1514 | 2441.497 | 2442.648 | | PASS | | | | 2480 | 1.2439 | 2479.488 | 2480.732 | | PASS | Page 48 of 65 ### 10.3 APPENDIX: MAXIMUM CONDUCTED OUTPUT POWER | TestMode | Antenna | Channel | Result[dBm] | Limit[dBm] | Verdict | |----------|---------|---------|-------------|------------|---------| | | | 2402 | -1.24 | <=30 | PASS | | BLE | Ant1 | 2442 | -2.49 | <=30 | PASS | | | | 2480 | -3.03 | <=30 | PASS | Page 50 of65 ### 10.4APPENDIX: MAXIMUM POWER SPECTRAL DENSITY | TestMode | Antenna | Channel | Result[dBm/3-100kHz] | Limit[dBm/3kHz] | Verdict | |----------|---------|---------|----------------------|-----------------|---------| | | | 2402 | -10.9 | <=8 | PASS | | BLE | Ant1 | 2442 | -12.34 | <=8 | PASS | | | | 2480 | -12.3 | <=8 | PASS | #### 10.5 APPENDIX E: BAND EDGE MEASUREMENTS #### **Test Result** | TestMode | Antenna | ChName | Channel | RefLevel[dBm] | Result[dBm] | Limit[dBm] | Verdict | |-----------|---------|--------|---------|---------------|-------------|------------|---------| | DI E A-14 | Ant1 | Low | 2402 | -1.74 | -56.72 | <=-21.74 | PASS | | BLE | Ant1 | High | 2480 | -3.55 | -56.42 | <=-23.55 | PASS | Page 53 of 65 ### 10.6 APPENDIX: CONDUCTED SPURIOUS EMISSION | TestMode | Antenna | Channel | FreqRange
[MHz] | RefLevel
[dBm] | Result[dBm] | Limit[dBm] | Verdict | |----------|---------|---------|--------------------|-------------------|-------------|------------|---------| | | | | Reference | -1.78 | -1.78 | | PASS | | | | 2402 | 30~1000 | 30~1000 | -67.997 | <=-31.779 | PASS | | | | | 1000~26500 | 1000~26500 | -54.49 | <=-31.779 | PASS | | | | 2442 | Reference | -3.14 | -3.14 | | PASS | | BLE | Ant1 | | 30~1000 | 30~1000 | -67.579 | <=-33.135 | PASS | | | | | 1000~26500 | 1000~26500 | -54.61 | <=-33.135 | PASS | | | | | Reference | -3.58 | -3.58 | | PASS | | | | 2480 | 30~1000 | 30~1000 | -67.716 | <=-33.583 | PASS | | | | | 1000~26500 | 1000~26500 | -54.856 | <=-33.583 | PASS | # **APPENDIX A: PHOTOGRAPHS OF TEST SETUP** # **APPENDIX B: PHOTOGRAPHS OF EUT** #### ----END OF REPORT---- The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.