WBE01EH

Datasheet

V1.2 2022-07-12

INNOTECH Alexa Connect Kit (ACK) module

www.innotechsmart.com

Revision History

Date	Version	Release notes
2021-7-23	V1.0	First release
2021-8-5	V1.1	Update RF Characteristics
2022-07-12	V1.2	Delete chapter 8 packaging

Contents

<u>1.</u>	MODULE OVERVIEW	1-5
1.1	FEATURES	1-5
1.2	DESCRIPTION	1-5
1.3	APPLICATION:	1-5
<u>2.</u>	BLOCK DIAGRAM	2-6
<u>3.</u>	PIN DEFINITIONS	3-6
3.1	PIN LAYOUT	3-6
3.2	PIN DESCRIPTION	3-7
<u>4.</u>	ELECTRICAL CHARACTERISTICS	4-7
4.1	Absolute Maximum Ratings	4-7
4.2	RECOMMENDED OPERATING CONDITIONS	4-7
4.3	DC CHARACTERISTICS (3.3V, 25°C)	4-7
4.4	CURRENT CONSUMPTION CHARACTERISTICS	4-8
4.5	WI-FI CHARACTERISTICS	4-9
4.5.	1 WI-FI RF STANDARDS	4-9
4.5.	2 WI-FI TRANSMITTER CHARACTERISTICS	4-9
4.5.	3 WI-FI RECEIVER CHARACTERISTICS	4-9
4.6	BLUETOOTH LE CHARACTERISTICS	4-10
4.6.	1 BLUETOOTH LE RECEIVER CHARACTERISTICS	4-10
4.6.	2 BLUETOOTH LE TRANSMITTER CHARACTERISTICS	4-12
<u>5.</u>	MODULE SCHEMATICS	5-15
<u>6.</u>	PHYSICAL DIMENSIONS AND PCB LAND PATTERN	6-16
6.1	Physical Dimensions	6-16
6.2	RECOMMENDED PCB LAND PATTERN	6-17

<u>7.</u>	PRODUCT HANDING	7-18
7.1	STORAGE CONDITION	7-18
7.2	ESD	7-18
7.3	DIP TYPE PRODUCT PASS WAVE SOLDER GRAPH	7-18
8	FCC requirements	7-20
9	IC ID requirements	7-22

1. MODULE OVERVIEW

1.1 Features

MCU

- 32-bit RISC-V single-core processor up to 160 MHz
- 400KB of SRAM
- 384KB of ROM
- 8KB SRAM in RTC

Wi-Fi

- IEEE 802.11b/g/n
- Supports 20 MHz, 40 MHz bandwidth in 2.4 GHz band
- 1T1R mode with data rate up to 150 Mbps
- Wi-Fi Multimedia (WMM)
- TX/RX A-MPDU, RX A-MSDU

Bluetooth®

- Bluetooth LE: Bluetooth 5, Bluetooth mesh
- Advertising extensions
- Multiple advertisement sets
- Channel selection algorithm #2

1.2 Description

The WBE01EH is a module that is based on ESP32-C3FH4. It provides complete Wi-Fi and Bluetooth® functionalities with embedded 32-bit RISC-V single-core processor. The module integrates a 4 MB embedded flash.

At the core of this module is the ESP32 chip, which is a single 2.4 GHz Wi-Fi and Bluetooth combo chip. WBE01EH integrates all peripheral components seamlessly, including a crystal oscillator, flash, filter capacitors and RF matching links in one single package. It is ultra-small in size, with a metal pin antenna, robust performance, and low energy consumption.

WBE01EH is a module for Alexa Connect Kit (ACK), a managed service that makes it easy to integrate Alexa into your products. With WBE01EH and its default firmware, you can connect your devices or system to Alexa and the Internet without worrying about managing cloud services, writing an Alexa Skill, or developing complex networking and security firmware.

1.3 Application:

• LED Light Bulbs

Hardware

- Interfaces: 1 × UART (Connection to the host), 1
 × I²C, 5 × PWMs, 1 × ADC
- 40 MHz crystal oscillator
- 4 MB Embedded Flash
- Operating voltage/Power supply: 3.0 ~ 3.6 V
- Operating temperature range: -40 ~ 105 °C
- Dimensions: 18.5 × 18.5 mm

Certification

- Bluetooth certification: BQB
- RF certification:
 - FCC
- REACH/RoHS compliance

CONFIDENTIAL

Figure 1: WBE01EH Block Diagram

3. PIN DEFINITIONS

3.1 Pin Layout

S INNOTECH

3.2 Pin Description

Name	No.	Туре	Function
VDD_3V3	1	Р	Power supply (3.0-3.6V)
GND	2	Р	Ground
PWM1	3	I/O	PWM output1, GPIO4
PWM2/SDA	4	I/O	PWM output2, GPIO5 I2C data line
PWM3/SCL	5	I/O	PWM Output3, GPIO6 I2C clock line
PWM4	6	I/O	PWM Output4, GPIO7
PWM5	7	I/O	PWM Output5, GPIO10
TXD	8	I/O	UART TX, connect to host RX, GPIO18
RXD	9	I/O	UART RX, connect to host TX, GPIO19
ADC1	10	I/O	ADC input, GPIO3

Table 1: Pin Definitions

4. ELECTRICAL CHARACTERISTICS

4.1 Absolute Maximum Ratings

Stresses beyond the absolute maximum ratings listed in the table below may cause permanent damage to the device. These are stress ratings only, and do not refer to the functional operation of the device that the recommended operating conditions.

Table 2: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VDD_3V3	Power supply voltage	-0.3	3.6	V
T _{store}	Storage temperature	-40	105	°C

4.2 Recommended Operating Conditions

Table 3: Recommended Operating Conditions

Symbol	Parameter	Min	Туре	Max	Unit
VDD_3V3	Power supply voltage	3.0	3.3	3.6	V
Ivdd	Current delivered by external power supply	0.5			A
TA	Operating temperature	-40		105	°C
Humidity	Humidity condition			85	%RH

4.3 DC Characteristics (3.3V, 25°C)

Table 4: DC Characteristics (3.3V, 25°C)

Symbol	Parameter	Min	Туре	Max	Unit
CIN	Pin capacitance	-	2	-	рF
VIN	High-level input voltage	0.75*VDD	-	VDD+0.3	V
VIL	Low-level input voltage	-0.3	-	0.25*VDD	V
Ін	Hight-level input current	-	-	50	nA
lı.	Low-level input current	-	-	50	nA
Voн	High-level output voltage	0.8VDD	-	-	V
Vol	Low-level output voltage	-	-	0.1*VDD	V
Іон	High-level source current (VDD =3.3V, $V_{OH} \ge 2.64V$, PAD_DRIVER = 3)	-	40	-	mA
Iol	Low-level sink current (VDD = 3.3V, VOL = 0.495V, PAD_DRIVER = 3)	-	28	-	mA
Rpu	Resistance of internal pull-up resistor	-	45	-	kΩ
Rpd	Resistance of internal pull-down resistor	-	45	-	kΩ
VIL_nRST	Low-level input voltage of CHIP_PU to power off the chip	-0.3	-	0.25 × VDD	V

4.4 Current Consumption Characteristics

With the use of advanced power-management technologies, ESP32 can switch between different modes.

Work mode	Descrip	otion	Peak(mA)
Active	ΤX	802.11b, 20 MHz, 1 Mbps, @21 dBm	350 pending
(RF working)		802.11g, 20 MHz, 54 Mbps, @19 dBm	295 pending
802.11n, 20 MHz, MCS7, 802.11n, 40 MHz, MCS7,		802.11n, 20 MHz, MCS7, @18.5 dBm	290 pending
		802.11n, 40 MHz, MCS7, @18.5 dBm	290 pending
	RX	802.11b/g/n, HT20	82 pending
		802.11n, HT40	84 pending
Note:			

Table 5: Current Consumption Characteristics

Note:

• The current consumption measurements are taken with a 3.3 V supply at 25 °C of ambient temperature at the RF port. All transmitters' measurements are based on a 100% duty cycle.

• The current consumption figures for in RX mode are for cases when the peripherals are disabled and the CPU idle.

Table 6: Current Consumption De on Work Modes

Work mode	Description		Current consumption (Type)	Unit
Modem-sleep	The CPU is	160 MHz	20	mA
	Powered on	80 MHz	15	mA
Light-sleep	-		130	μΑ
Deep-sleep	RTC timer + RTC memory		5	μΑ
Power off	CHIP_PU is set to low level, the chip is powered off.		1	μA

Note:

• The current consumption figures in Modem-sleep mode are for cases where the CPU is powered on and the cache idle.

• When Wi-Fi is enabled, the chip switches between Active and Modem-sleep modes. Therefore, current consumption changes accordingly.

In practice, software can adjust CPU's frequency according to CPU load to reduce current consumption.

4.5 Wi-Fi Characteristics

4.5.1 Wi-Fi RF Standards

Name		Description	
Center frequency range of operating channel		2412 ~ 2484 MHz	
Wi-Fi wireless standard		IEEE 802.11b/g/n	
Data rate	20 MHz	11b: 1, 2, 5.5 and 11 Mbps	
		11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps	
		11n: MCS0-7, 72.2 Mbps (Max)	
	40 MHz	11n: MCS0-7, 150 Mbps (Max)	
Antenna type		Metal pin antenna	
Note:			

Table 7: Wi-Fi RF Standards

Note:

Device should operate in the center frequency range allocated by regional regulatory authorities. Target center frequency range is configurable by software.

4.5.2 Wi-Fi Transmitter Characteristics

Table 8: TX Power with Spectral Mask and EVM Meeting 802.11 Standards

Rate	Туре	Unit				
11b, 1 Mbps	17.1	dBm				
11g, 6 Mbps	18.5					
11n, HT20, MCS0	17.8					
11n, HT40, MCS0	17.2					
Note:						
	11b, 1 Mbps 11g, 6 Mbps 11n, HT20, MCS0 11n, HT40, MCS0	Nate Type 11b, 1 Mbps 17.1 11g, 6 Mbps 18.5 11n, HT20, MCS0 17.8 11n, HT40, MCS0 17.2				

Target TX power is configurable based on device or certification requirements.

4.5.3 Wi-Fi Receiver Characteristics

Table 9: Wi-Fi Receiver Characteristics

Parameter	Rate	Туре	Unit
RX Sensitivity	1 Mbps	-97.6	dBm
	2 Mbps	-96.0	
	5.5 Mbps	-93.0	
	11 Mbps	-88.4	

Parameter	Rate	Туре	Unit
	6 Mbps	-92.6	
	9 Mbps	-91.8	
	12 Mbps	-90.0	
	18 Mbps	-88.0	
	24 Mbps	-85.0	
	36 Mbps	-81.0	
	48 Mbps	-77.0	
	54 Mbps	-76.0	
	11n, HT20, MCS0	-92.6	
	11n, HT20, MCS1	-90.0	
	11n, HT20, MCS2	-88.0	
	11n, HT20, MCS3	-84.4	
	11n, HT20, MCS4	-81.0	
	11n, HT20, MCS5	-77.0	
	11n, HT20, MCS6	-75.6	
	11n, HT20, MCS7	-74.2	
	11n, HT40, MCS0	-90.0	
	11n, HT40, MCS1	-87.0	
	11n, HT40, MCS2	-84.8	
	11n, HT40, MCS3	-81.8	
	11n, HT40, MCS4	-78.0	
	11n, HT40, MCS5	-74.0	
	11n, HT40, MCS6	-72.6	
	11n, HT40, MCS7	-71.2	
RX Maximum Input Level	11b, 1 Mbps	5	dBm
	11b, 11 Mbps	5	
	11g, 6 Mbps	5	
	11g, 54 Mbps	0	
	11n, HT20, MCS0	5	
	11n, HT20, MCS7	0	
	11n, HT40, MCS0	5	
	11n, HT40, MCS7	0	
Adjacent Channel	11b, 1 Mbps	35	dB
Rejection	11b, 11 Mbps	35	
	11b, 6 Mbps	31	
	11g, 54 Mbps	14	
	11n, HT20, MCS0	31	
	11n, HT20, MCS7	13	
	11n, HT40, MCS0	19	
	11n, HT40, MCS7	8	

4.6 Bluetooth LE Characteristics

4.6.1 Bluetooth LE Receiver Characteristics

Table 10: Bluetooth Receiver Characteristics – Bluetooth LE 1 Mbps

Parameter	Conditions	Min	Туре	Max	Unit
Sensitivity @30.8% BER	-	-	-96	-	dBm
Maximum received signal @30.8% BER	-	-	10	-	dBm
Co-channel C/I	-	-	8	-	dB
Adjacent channel selectivity C/I	F=F0 + 1 MHz	-	-4	-	dB
	F=F0 - 1 MHz	-	-3	-	dB
	F=F0 + 2 MHz	-	-32	-	dB
	F=F0 - 2 MHz	-	-36	-	dB
	$F \ge F0 + 3 \text{ MHz}^{(1)}$	-	-	-	dB
	$F \leq FO - 3 MHz$	-	-39	-	dB
Image frequency	-	-	-29	-	dB
Adjacent channel to image frequency	F=Fimage +1MHz	-	-38	-	dB
	F=Fimage –1MHz	-	-34	-	dB
Out-of-band blocking performance	30 MHz ~ 2000 MHz	-	-9	-	dBm
	2000 MHz ~ 2400 MHz	-	-18	-	dBm
	2500 MHz ~ 3000 MHz	-	-16	-	dBm
	3000 MHz ~ 12.5 GHz	-	-6	-	dBm
Intermodulation	-	-	-44	-	dBm

¹ Refer to the value of Adjacent channel to image frequency when $F = F_{image} - 1 MHz$.

Parameter	Conditions	Min	Туре	Max	Unit
Sensitivity @30.8% BER	-	-	-93	-	dBm
Maximum received signal @30.8% BER	-	-	0	-	dBm
Co-channel C/I	-	-	10	-	dB
Adjacent channel selectivity C/I	F=F0 + 2 MHz	-	-7	-	dB
	F=F0 – 2 MHz	-	-7	-	dB
	F=FO + 4 MHz	-	-	-	dB
	F=F0 - 4 MHz	-	-34	-	dB
	$F \ge F0 + 6 MHz^{(1)}$	-	-39	-	dB
	$F \leq F0 - 6 MHz$	-	-39	-	dB
Image frequency	-	-	-27	-	dB
Adjacent channel to image frequency	F=Fimage +2MHz	-	-39	-	dB
	F=Fimage –2MHz	-	-	-	dB
Out-of-band blocking performance	30 MHz ~ 2000 MHz	-	-17	-	dBm
	2000 MHz ~ 2400 MHz	-	-19	-	dBm
	2500 MHz ~ 3000 MHz	-	-16	-	dBm
	3000 MHz ~ 12.5 GHz	-	-22	-	dBm
Intermodulation	-	-	-40	-	dBm

¹ Refer to the value of Image frequency ² Refer to the value of Adjacent channel to image frequency when F = F0 + 2 MHz.

4.6.2 Bluetooth LE Transmitter Characteristics

Parameter	Min	Туре	Max	Unit
RF transmit power	-	0	-	dBm
Gain control step	-	3	-	dB
RF power control range	-	-	10.34	dBm

Table 14: Bluetooth LE Transmitter Characteristics – General

Table 15: Bluetooth Transmitter Characteristics – Bluetooth LE 1 Mbps

Parameter	Conditions	Min	Туре	Max	Unit
In-band emissions	$F = F0 \pm 2 MHz$	-	-37.62	-	dBm
	$F = F0 \pm 3 MHz$	-	-41.95	-	dB
	$F = F0 \pm > 3 MHz$	-	-44.48	-	dBm
Modulation characteristics	Δ f1 _{avg}	-	245.00	-	KHz
	$\Delta f2_{max}$	-	208.00	-	KHz
	Δ f2 _{avg} / Δ f1 _{avg}	-	0.93	-	-
Carrier frequency offset	-	-	-9.00	-	KHz
Carrier frequency drift	f0 — fn n=2, 3, 4,k	-	1.17	-	kHz
	f1 - f0	-	0.30	-	KHz
	fn — fn—5 _{n=6, 7, 8,k}	-	4.90	-	kHz

Table 16: Bluetooth Transmitter Characteristics – Bluetooth LE 2 Mbps

Parameter	Conditions	Min	Туре	Max	Unit
In-band emissions	$F = F0 \pm 4 MHz$	-	-43.55	-	dBm
	$F = F0 \pm 5 MHz$	-	-45.26	-	dB
	$F = F0 \pm > 5 MHz$	-	-47.00	-	dBm
Modulation characteristics	Δ fl _{avg}	-	497.00	-	KHz
	$\Delta f2_{max}$	-	398.00	-	KHz
	Δ f2 _{avg} / Δ f1 _{avg}	-	0.95	-	_
Carrier frequency offset	-	-	-9.00	-	KHz
Carrier frequency drift	f0 — fn _{n=2, 3, 4,k}	-	0.46	-	kHz
	f1 - f0	-	0.70	-	KHz
	fn - fn-5 _{n=6, 7, 8,k}	-	6.80	-	kHz

Table 17: Bluetooth Transmitter Characteristics – Bluetooth LE 125 Kbps

Table 18: Bluetooth Transmitter Characteristics – Bluetooth LE 500 Kbps

5. MODULE SCHEMATICS

This is the reference design of the module.

CONFIDENTIAL

Figure 3: WBE01HE Module Schematics

S INNOTECH

6. PHYSICAL DIMENSIONS AND PCB LAND PATTERN

6.1 Physical Dimensions

Figure 4: Physical Dimensions

6.2 Recommended PCB Land Pattern

Figure 5: Recommended PCB Land Pattern

7. PRODUCT HANDING

7.1 Storage Condition

The products sealed in Moisture Barrier Bag (MBB) should be stored in a noncondensing atmospheric environment of < 40 $^{\circ}$ C/90% RH.

The module is rated at moisture sensitivity level (MSL) 3.

After unpacking, the module must be soldered within 168 hours with factory conditions 25 ± 5 °C and 60% RH. The module needs to be baked if the above conditions are not met.

7.2 ESD

- Human body model (HBM): 2000 V
- Charged-device model (CDM): 500 V
- Air discharge: 6000 V
- Contact discharge: 4000 V

7.3 DIP Type Product Pass Wave Solder Graph

DIP Type Product Pass Wavesolder Graph

Figure 6: DIP Type Product Pass Wave Solder Graph

Table 19: Bluetooth Transmitter Characteristics – Bluetooth LE 500 Kbps

Suggestions for wave soldering fur curve	nace temperature	Manual soldering temperature recommendations			
pre-heat temperature	80-130°C	Welding temperature	360°C±20°C		
Preheat time	75-100S	Welding time	< 3S/point		
Peak contact time	3-5S	N/A	N/A		
Tin tank temperature	260±5°C	N/A	N/A		
Ramp rate	≤2°C/S	N/A	N/A		
Cooling slope	≤6°C/S	N/A	N/A		

8 Requirement of FCC KDB 996369 D03 for module certification:

8.1 List of applicable FCC rules: The module complies with FCC Part 15.247,

8.2 Summarize the specific operational use conditions:

The module has been certified for Fix/Mobile applications. The host product operating conditions must be such that there is a minimum separation distance of 20 cm (or possibly greater than 20 cm) between the antenna radiating structures and nearby persons. The host manufacturer is obligated to confirm the use conditions of the host product to ensure that distance specified in the instructions is met. In this case the host product is classified as either a mobile device or a fixed device for RF exposure purposes. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

8.3 Limited module procedures: Not applicable.

8.4 Trace antenna designs: Not applicable.

8.5 RF exposure considerations:

This equipment complies with FCC's RF radiation exposure limits set forth for an uncontrolled environment. The antenna(s) used for this transmitter must be installed and operated to provide a separation distance of at least 20 cm from all persons and must not be collocated or operating in conjunction with any other antenna or transmitter. Installers must ensure that 20cm separation distance will be maintained between the device and users.

Note: the OEM product manuals must include a statement in order to alert the users of FCC RF exposure compliance.

8.6 Antennas:

Туре	Gain	Impedance	Application	Min Separation
Wire	1.66 dBi	50Ω	Fixed	20 cm
Antenna				

The antenna is permanently attached, can't be replaced.

8.7 Label and compliance information:

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions:

(1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

NOTE: The manufacturer is not responsible for any radio or TV interference caused by unauthorized modifications or changes to this equipment. Such modifications or changes could void the user's authority to operate the equipment.

Warning: Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.

However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.

- Increase the separation between the equipment and receiver.

-Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

-Consult the dealer or an experienced radio/TV technician for help.

The system integrator must place an exterior label on the outside of the final product housing the WBE01EH Module. Below is the contents that must be included on this label.

OEM Labeling Requirements:

NOTICE: The OEM must make sure that FCC labeling requirements are met. This includes a clearly visible exterior label on the outside of the final product housing that displays the contents shown in below:

Model : WBE01EH Contains FCC ID: 2AO4G-WBE01EH

8.8 Information on test modes and additional testing requirements:

When testing host product, the host manufacture should follow FCC KDB Publication 996369 D04 Module Integration Guide for testing the host products. The host manufacturer may operate their product during the measurements. In setting up the configurations, if the pairing and call box options for testing does not work, then the host product manufacturer should coordinate with the module manufacturer for access to test mode software. For wireless LAN, the product under test is set into a link/association with a partnering WLAN device, as per the normal intended use of the product. To ease testing, the product under test is set to transmit at a high duty cycle, such as by sending a file or streaming some media content. Alternatively, a Wi-Fi test set may be used. Simultaneously transmitting modules installed in the host should be all active.

8.9 Additional testing, Part 15 Subpart B disclaimer:

The modular transmitter is only FCC authorized for the specific rule parts (FCC Part 15.247) list on the grant, and that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. The final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed when contains digital circuity

9 Requirement of IC ID:

This device contains licence-exempt transmitter(s)/receiver(s) that comply with Innovation, Science and Economic Development Canada's licence-exempt RSS(s). Operation is subject to the following two conditions: (1) This device may not cause interference. (2) This device must accept any interference, including interference that may cause undesired operation of the device.

L'émetteur/récepteur exempt de licence contenu dans le présent appareil est conforme aux CNR d'Innovation, Sciences et Développement économique Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : 1) L'appareil ne doit pas produire de brouillage; 2) L'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

This equipment complies with FCC's and IC's RF radiation exposure limits set forth for an uncontrolled environment. The antenna(s) used for this transmitter must be installed and operated to provide a separation distance of at least 20 cm from all persons and must not be collocated or operating in conjunction with any other antenna or transmitter. Installers must ensure that 20cm separation distance will be maintained between the device (excluding its handset) and users.

Cet appareil est conforme aux limites d'exposition au rayonnement RF stipulées par la FCC et l'IC pour une utilisation dans un environnement non contrôlé. Les antennes utilisées pour cet émetteur doivent être installées et doivent fonctionner à au moins 20 cm de distance des utilisateurs et ne doivent pas être placées près d'autres antennes ou émetteurs ou fonctionner avec ceux-ci. Les installateurs doivent s'assurer qu'une distance de 20 cm sépare l'appareil (à l'exception du combiné) des utilisateurs.

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY'S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON- INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners and are hereby acknowledged.

Copyright © 2021 Jiangxi INNOTECH Technology Co., LTD All rights reserved.

