

FCC RADIO TEST REPORT

Applicant..... : Miura Systems Ltd

Address..... : Unit 3, Cliveden Office Village, Lancaster Road, Cressex Industrial Estate,
High Wycombe, HP12 3YZ, United Kingdom

Manufacturer..... : Miura Systems Ltd

Address..... : Unit 3, Cliveden Office Village, Lancaster Road, Cressex Industrial Estate,
High Wycombe, HP12 3YZ, United Kingdom

Factory..... : Jabil Vietnam

Address..... : Lot I-8 SaiGon Hitech Park, Long Thanh My ward, Thu Duc city, Ho Chi Minh
city, Vietnam

Product Name..... : Mobile Payment Terminal Device

Brand Name..... : Miura Systems Ltd

Model No. : M010 V3

FCC ID..... : 2AO4FM010-4

Measurement Standard..... : 47 CFR FCC Part 15, Subpart C (Section 15.225)

Receipt Date of Samples.....: February 27, 2024

Date of Tested..... : February 27, 2024 to April 09, 2024

Date of Report..... : May 13, 2024

This report shows that above equipment is technically compliant with the requirements of the standards above.
All test results in this report apply only to the tested sample(s). Without prior written approval of Dongguan
Nore Testing Center Co., Ltd, this report shall not be reproduced except in full.

Prepared by

Rose Hu / Project Engineer

Approved by

Iori Fan / Authorized Signatory

Table of Contents

1. Summary of Test Result.....	4
2. General Description of EUT	5
3. Test Channels and Modes Detail.....	7
4. Configuration of EUT.....	7
5. Modification of EUT	7
6. Description of Support Device.....	7
7. Test Facility and Location	8
8. Applicable Standards and References.....	8
9. Deviations and Abnormalities from Standard Conditions	9
10. Test Conditions	9
11. Measurement Uncertainty	10
12. Sample Calculations	11
13. Test Items and Results	12
13.1 Conducted Emissions Measurement.....	12
13.2 Radiated Spurious Emissions Measurement.....	16
13.3 20dB Occupied Bandwidth.....	28
13.4 Frequency Stability.....	30
13.5 Antenna Requirement	32
14. Test Equipment List.....	33

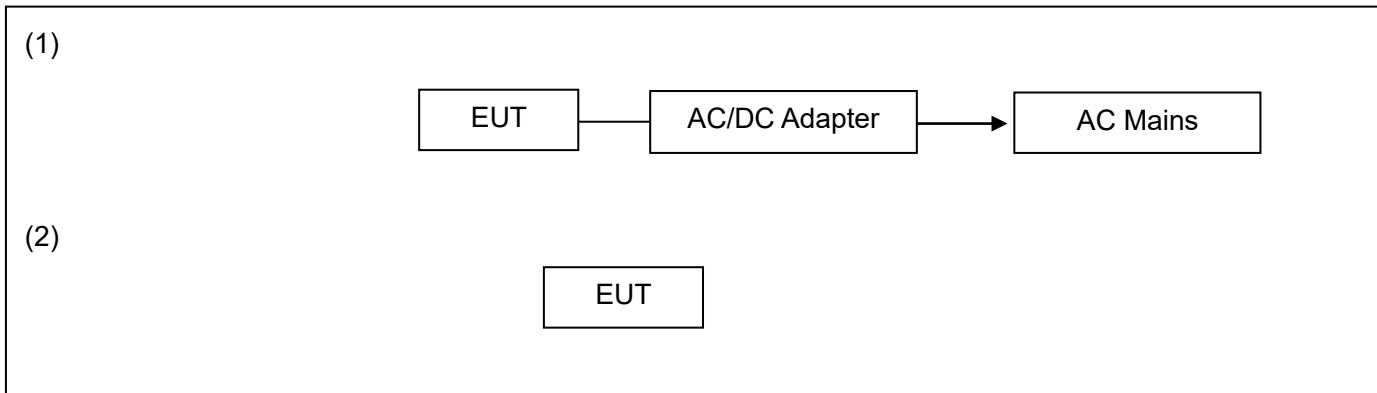
Revision History

1. Summary of Test Result

FCC Rules	Description of Test	Result	Remarks
§15.207 (a)	AC Power Line Conducted Emission	PASS	---
§15.225 & 15.209 & 15.205	Radiated Spurious Emission	PASS	---
§15.225(e)	Frequency Stability	PASS	---
§15.215(c)	20dB Emission Bandwidth Testing	PASS	---
§15.203	Antenna Requirement	PASS	---
Note: The EUT has been tested as an independent unit.			

2. General Description of EUT

Product Information	
Product Name:	Mobile Payment Terminal Device
Main Model Name:	M010 V3
Additional Model Name:	N/A
Model Difference:	N/A
S/N:	051-056926, 051-056930
Brand Name:	Miura Systems Ltd
Hardware Version:	M010-TEST506-V3-4
Software Version:	M000-TESTOS-V9-10b
Firmware Version:	M000-MPI-Vx-yy
Rating:	USB charging input: 5Vdc; Internal li-ion Battery: 3.7Vdc 800mAh
Typical arrangement:	Table-top
I/O Port:	Refer to user manual
Accessories Information	
Adapter:	N/A
Cable:	USB Cable: 1.0m shielded, detachable
Other:	N/A
Additional Information	
Note:	N/A
Remark:	All the information above are provided by the manufacturer. More detailed feature of the EUT please refers to the user manual.


Technical Specification	
Declaring the Frequency:	13.56MHz
Modulation Type:	ASK
Antenna Type:	PCB antenna
Antenna Gain:	0dBi
Number of Channels:	1
Remark:	N/A

3. Test Channels and Modes Detail

Mode	Test Frequency (MHz)	Modulation	Remark
1	TX	13.56MHz	ASK ---

Note: TX mode means that the EUT was programmed to be in continuously transmitting mode.

4. Configuration of EUT

5. Modification of EUT

No modifications are made to the EUT during all test items.

6. Description of Support Device

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Brand	M/N	S/N	Cable Specification	Remarks
1.	Adapter	HUAWEI	HW-050200C01	--	--	Provided by manufacturer

Software	Mode	Power Setting
Test Firmware Programmed	ASK	Default

7. Test Facility and Location

Test Site	:	Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.)
Accreditations and Authorizations	:	<p>The Laboratory has been assessed and proved to be in compliance with CNAS/CL01</p> <p>Listed by CNAS, August 13, 2018</p> <p>The Certificate Registration Number is L5795.</p> <p>The Certificate is valid until August 13, 2024</p> <p>The Laboratory has been assessed and proved to be in compliance with ISO17025</p> <p>Listed by A2LA, November 01, 2017</p> <p>The Certificate Registration Number is 4429.01</p> <p>The Certificate is valid until December 31, 2025</p> <p>Listed by FCC, November 06, 2017</p> <p>Test Firm Registration Number: 907417</p> <p>Listed by Industry Canada, June 08, 2017</p> <p>The Certificate Registration Number. Is 46405-9743A</p> <p>The CAB identifier number: CN0015</p>
Test Site Location	:	Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng District, Dongguan City, Guangdong Province, China

8. Applicable Standards and References

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Test Standards:

47 CFR Part 15, Subpart C, 15.225

ANSI C63.10-2013

References Test Guidance:

N/A

9. Deviations and Abnormalities from Standard Conditions

No additions, deviations and exclusions from the standard.

10. Test Conditions

No.	Test Item	Test Mode	Test Voltage	Tested by	Remarks
1.	AC Power Conducted Emission	1	AC 120V 60Hz	Sean	See note 1
2.	Radiated Emission	1	AC 120V 60Hz DC 3.7V	Sean	See note 1
3.	Frequency Stability	1	DC 3.7V	Sean	See note 1
4.	20dB Emission Bandwidth Testing	1	DC 3.7V	Sean	See note 1
5.	Antenna Requirement	---	---	Sean	See note 1

Note:

1. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35°C, 30~70%, 86~106kPa
2. AC 120V 60Hz was the input voltage of Adapter; DC 3.7V was the voltage of internal li-ion battery.
3. As the EUT can be operated multiple positions, all X,Y,Z axis were considered during the test and only the worst case Z was recorded.
4. Only the worst case was recorded in the report.
5. Sample 051-0569630 used for Radiated Emission, 20dB Emission Bandwidth and AC Power Conducted Emission test, and 051-056926 used for Frequency Stability test.

11. Measurement Uncertainty

No.	Test Item	Frequency	Uncertainty	Remarks
1.	Conducted Emission	150KHz ~ 30MHz	±2.52 dB	---
2.	Radiated Emission Test	9kHz ~ 30MHz	±5.66 dB	---
		30MHz ~ 1GHz	±5.66 dB	---
		1GHz ~ 18GHz	±5.19 dB	---
		18GHz ~ 40GHz	±5.19 dB	---
		10Hz ~ 40GHz	±0.78 dB	---
3.	Conducted Spurious Emissions	10Hz ~ 40GHz	±1.18 dB	---
4.	RF Output Power	10Hz ~ 40GHz	±1.06 dB	---
5.	Power Spectral Density	10Hz ~ 40GHz	±0.72%	---
6.	Occupied Channel Bandwidth	---	---	---

Note:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.
2. The measurement uncertainty levels above are estimated and calculated according to CISPR 16-4-2.
3. The conformity assessment statement in this report is based solely on the test results, measurement uncertainty is excluded.

12. Sample Calculations

Conducted Emission						
Freq. (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Over (dB)	Detector
0.4859	31.15	10.57	41.72	56.24	-14.52	QP

Where,

Freq. = Emission frequency in MHz
 Reading Level = Spectrum Analyzer/Receiver Reading
 Corrector Factor = Insertion loss of LISN + Cable Loss + RF Switching Unit attenuation
 Measurement = Reading + Corrector Factor
 Limit = Limit stated in standard
 Margin = Measurement - Limit
 Detector = Reading for Quasi-Peak / Average / Peak

Radiated Spurious Emissions						
Freq. (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
433.5200	30.91	-3.81	27.10	46.00	-18.90	QP

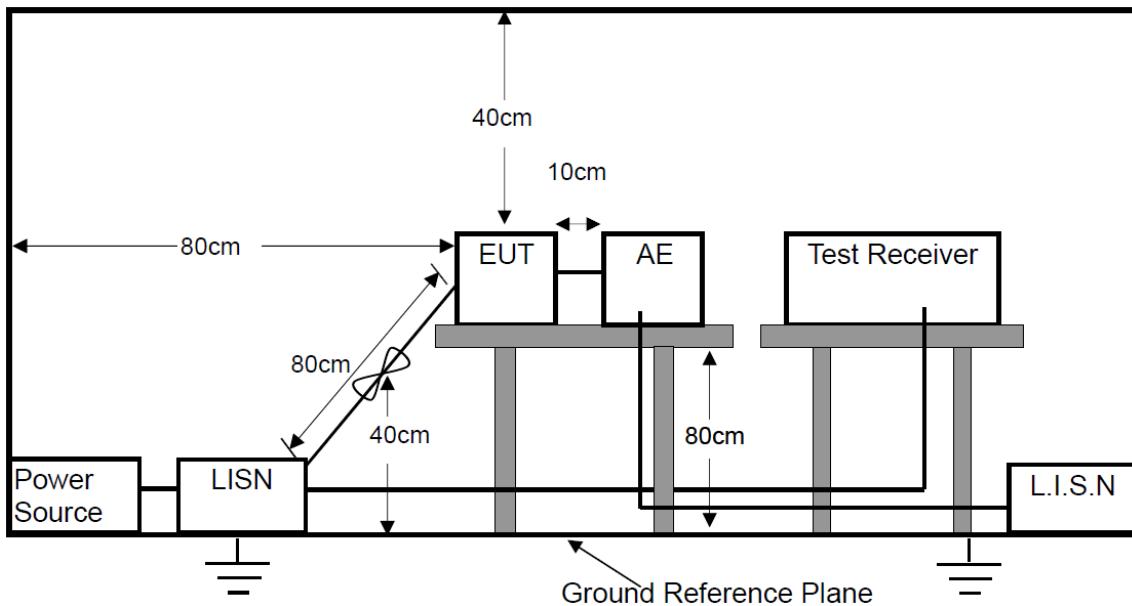
Where,

Freq. = Emission frequency in MHz
 Reading Level = Spectrum Analyzer/Receiver Reading
 Corrector Factor = Antenna Factor + Cable Loss - Pre-amplifier
 Measurement = Reading + Corrector Factor
 Limit = Limit stated in standard
 Over = Margin, which calculated by Measurement - Limit
 Detector = Reading for Quasi-Peak / Average / Peak

Note: For all conducted test items, the spectrum analyzer offset or transducer is derived from RF cable loss and attenuator factor. The offset or transducer is equal to the RF cable loss plus attenuator factor.

13. Test Items and Results

13.1 Conducted Emissions Measurement

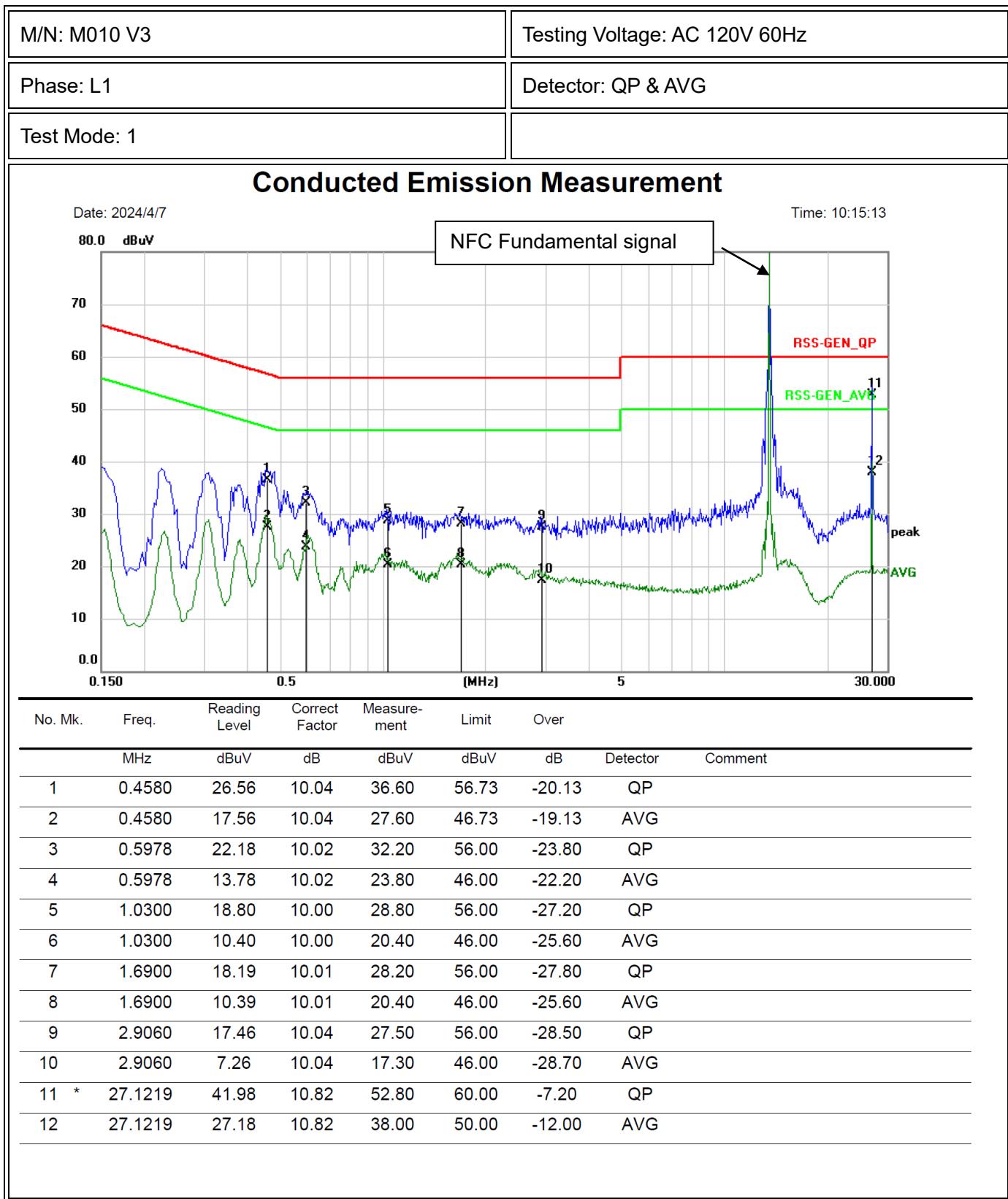

LIMIT

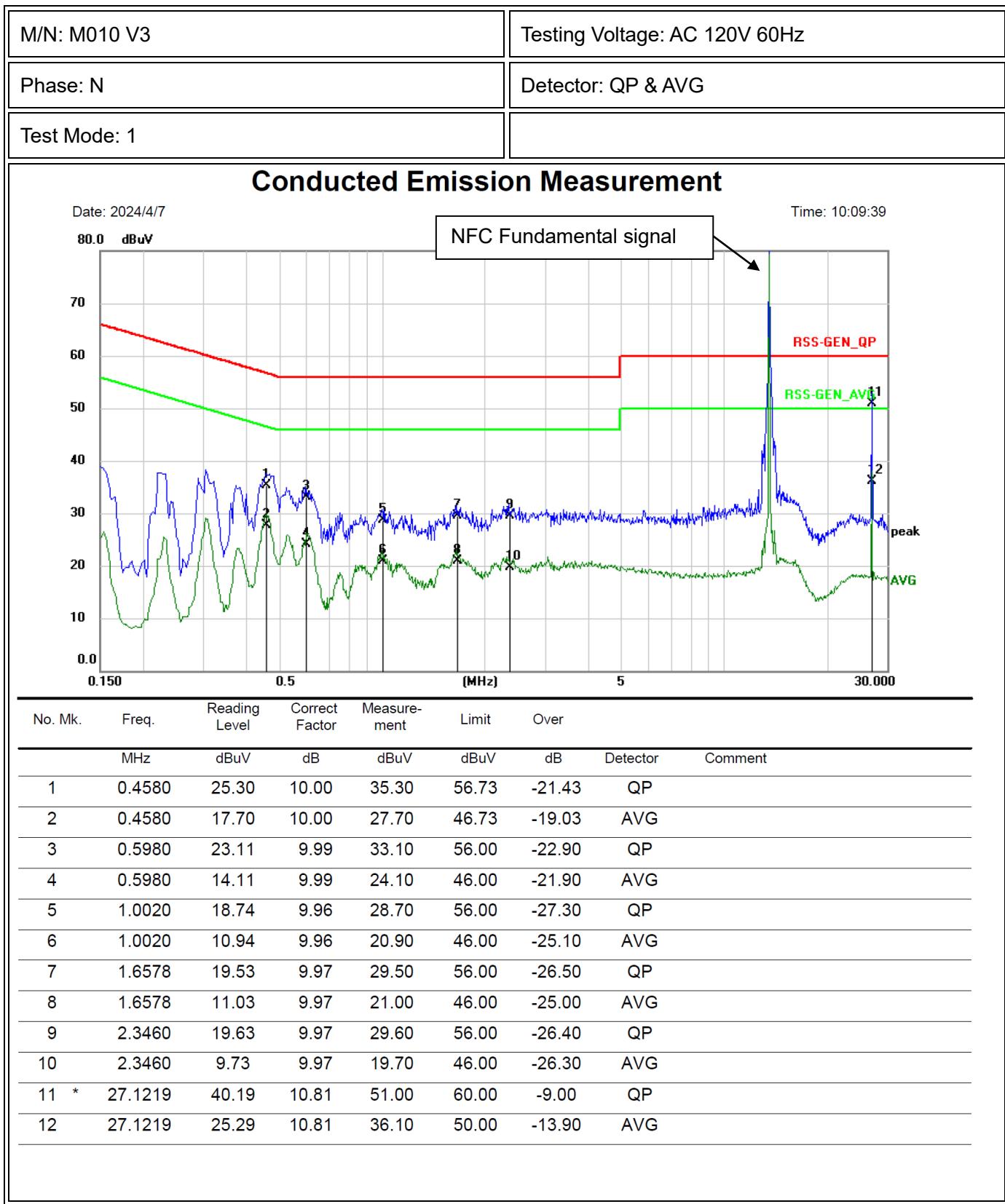
According to the requirements of FCC PART 15.207, the limits are as follows:

Frequency (MHz)	Quasi-peak	Average
0.15 to 0.5	66 to 56	56 to 46
0.5 to 5	56	46
5 to 30	60	50

Note: 1. If the limits for the average detector are met when using the quasi-peak detector, then the limits for the measurements with the average detector are considered to be met.
2. The lower limit shall apply at the transition frequencies.
3. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

BLOCK DIAGRAM OF TEST SETUP


TEST PROCEDURES


- a. The EUT was placed on a wooden table 0.8m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface.
- b. All I/O cables and support devices were positioned as per ANSI C63.10.
- c. Connect mains power port of the EUT to a line impedance stabilization network (LISN).
- d. Connect all support devices to the other LISN and AAN, if needed.
- e. Scan the frequency range from 150KHz to 30MHz at both sides of AC line for maximum conducted interference checking and record the test data.

TEST RESULTS

PASS

Please refer to the following pages.

13.2 Radiated Spurious Emissions Measurement

LIMIT

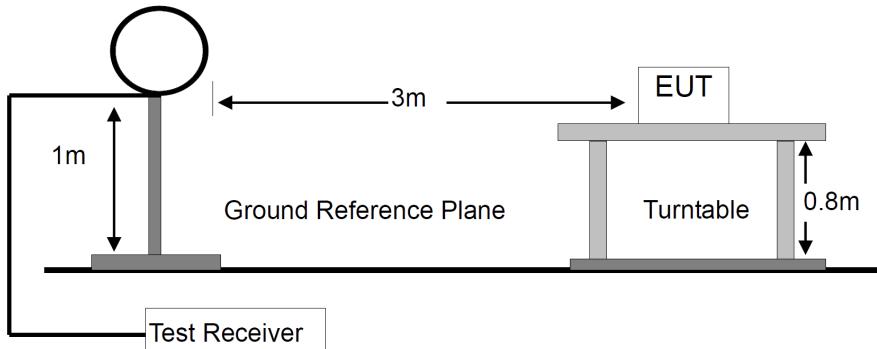
Frequency range MHz	Distance Meters	Field Strengths Limit (15.209)
		$\mu\text{V/m}$
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30	30	30
30 ~ 88	3	100
88 ~ 216	3	150
216 ~ 960	3	200
Above 960	3	500

Remark: (1) Emission level (dB) $\mu\text{V} = 20 \log$ Emission level $\mu\text{V/m}$

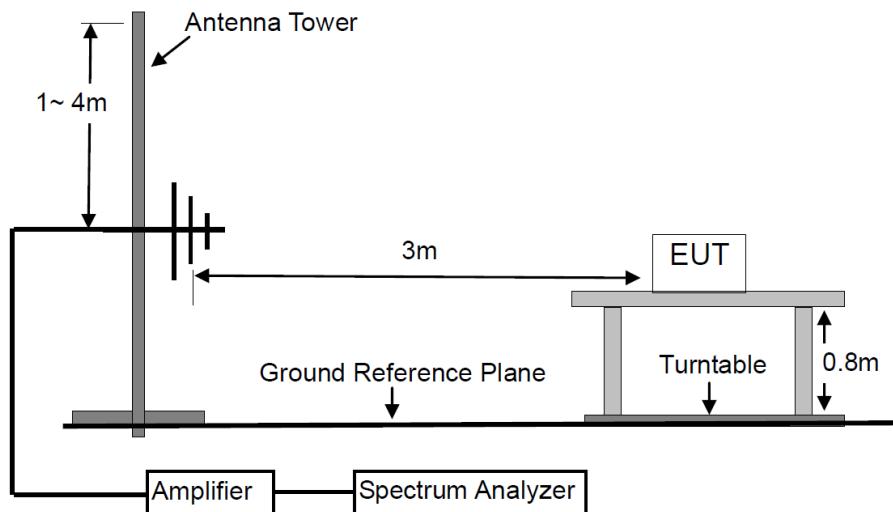
(2) The smaller limit shall apply at the cross point between two frequency bands.

(3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

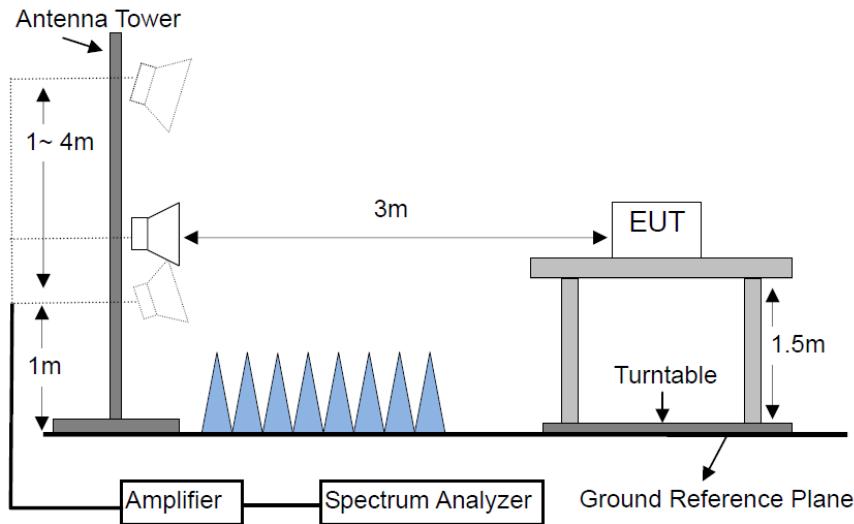
(4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.


(5) §15.247(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209.

According to 15.225, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:


- (a) The field strength of any emissions within the band 13. 553-13.567MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410-13.553MHz and 13.567-13.710MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13410 MHz and 13.710-14.010MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110-14.010MHz band shall not exceed the general radiated emission limits in 15.209.

BLOCK DIAGRAM OF TEST SETUP


For Radiated Emission below 30MHz

For Radiated Emission 30-1000MHz

For Radiated Emission Above 1000MHz.

TEST PROCEDURES

- Below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room.
- For the radiated emission test above 1GHz:

The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.
- g. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and packet type.

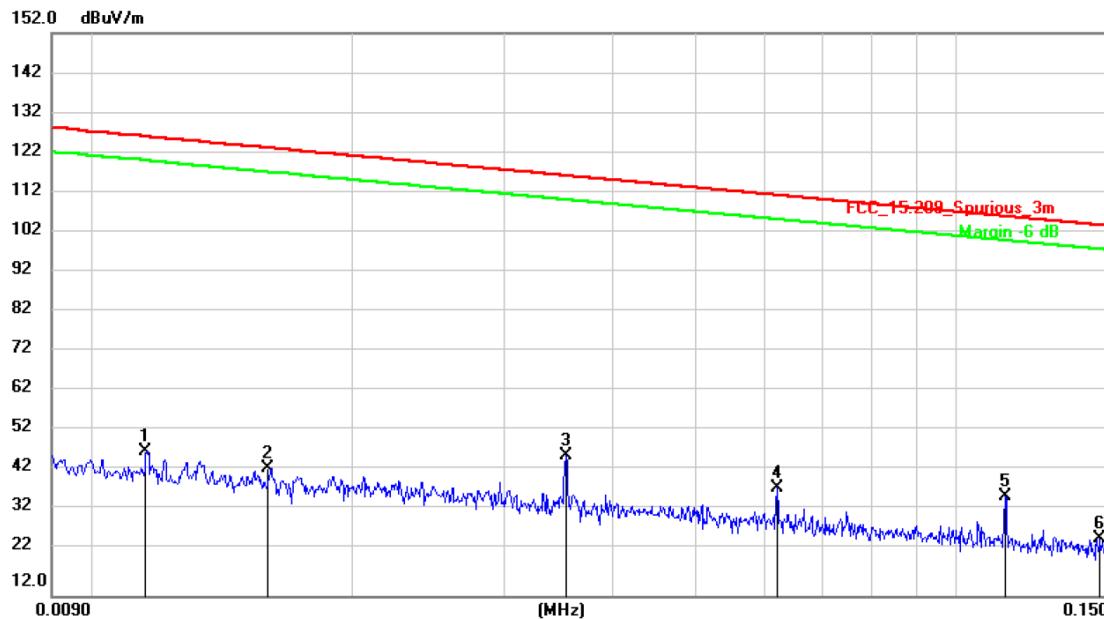
The worst case was found when the EUT was positioned on Z axis for radiated emission.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Band (MHz)	Detector	Resolution Bandwidth	Video Bandwidth
0.009~0.15	QP & AVG	200Hz	1KHz
0.15 -30	QP & AVG	9KHz	30KHz
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	3 MHz
	Average	1 MHz	10 Hz

TEST RESULTS

PASS


Please refer to the following pages.

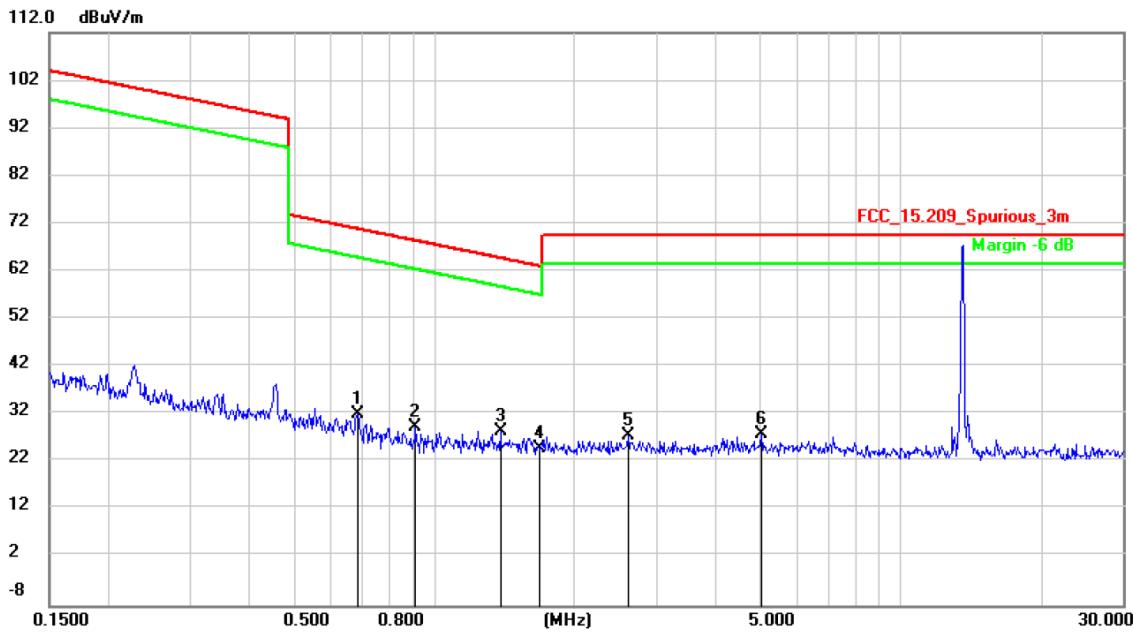
M/N: M010 V3	Testing Voltage: AC 120V 60Hz
Polarization: Horizontal	Detector: QP & AVG
Test Mode: TX	Distance: 3m

Radiated Emission Measurement

Date: 2024/3/18

Time: 17:30:40

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		0.0115	28.23	19.67	47.90	126.21	-78.31	peak	
2		0.0160	23.49	20.09	43.58	123.36	-79.78	peak	
3		0.0354	26.22	20.54	46.76	116.50	-69.74	peak	
4		0.0621	18.15	20.54	38.69	111.64	-72.95	peak	
5	*	0.1141	16.16	20.53	36.69	106.39	-69.70	peak	
6		0.1470	5.55	20.52	26.07	104.20	-78.13	peak	


Note: The measured peak emission levels are lower than the allowable Quasi-Peak and AVG limits, thus, the Quasi-Peak and AVG emission levels are considered compliance with the limits.

M/N: M010 V3	Testing Voltage: AC 120V 60Hz
Polarization: Horizontal	Detector: QP & AVG
Test Mode: TX	Distance: 3m

Radiated Emission Measurement

Date: 2024/3/18

Time: 17:23:25

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		0.6862	11.53	20.41	31.94	70.87	-38.93	peak	
2		0.9133	8.84	20.40	29.24	68.39	-39.15	peak	
3	*	1.3884	7.96	20.40	28.36	64.75	-36.39	peak	
4		1.6891	4.36	20.40	24.76	63.05	-38.29	peak	
5		2.6082	7.06	20.40	27.46	69.50	-42.04	peak	
6		5.0312	7.29	20.44	27.73	69.50	-41.77	peak	


Note: The measured peak emission levels are lower than the allowable Quasi-Peak and AVG limits, thus, the Quasi-Peak and AVG emission levels are considered compliance with the limits.

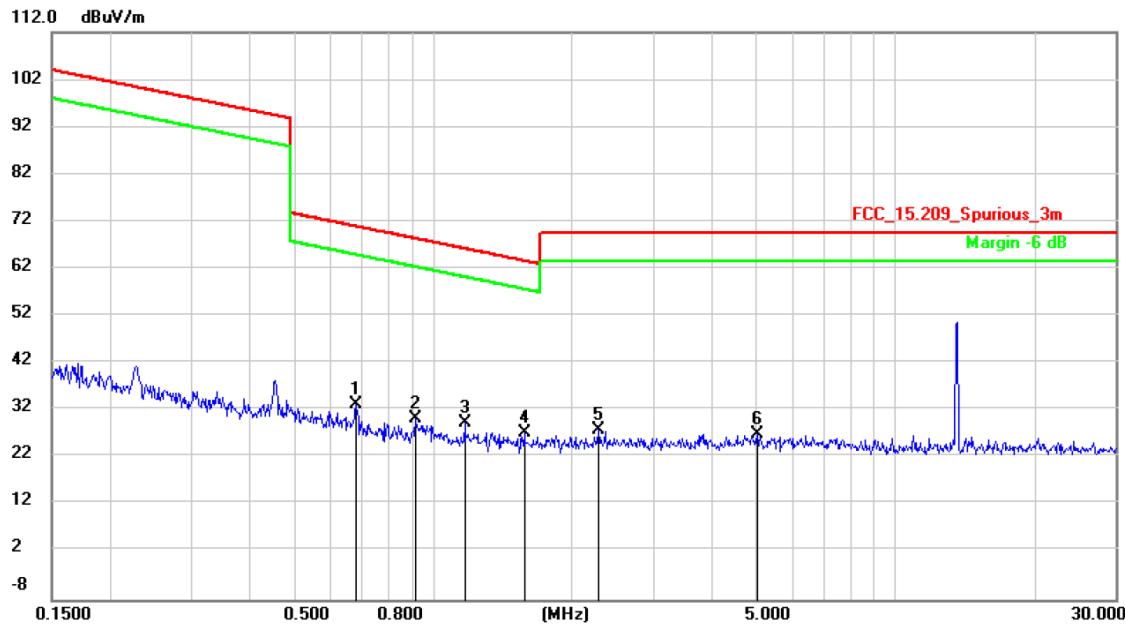
M/N: M010 V3	Testing Voltage: AC 120V 60Hz
Polarization: Vertical	Detector: QP & AVG
Test Mode: TX	Distance: 3m

Radiated Emission Measurement

Date: 2024/3/18

Time: 17:36:13

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		0.0156	33.46	20.05	53.51	123.57	-70.06	peak	
2		0.0311	25.25	20.51	45.76	117.62	-71.86	peak	
3		0.0354	25.83	20.54	46.37	116.50	-70.13	peak	
4		0.0620	15.63	20.53	36.16	111.66	-75.50	peak	
5	*	0.1141	16.60	20.53	37.13	106.39	-69.26	peak	
6		0.1462	3.88	20.53	24.41	104.25	-79.84	peak	


Note: The measured peak emission levels are lower than the allowable Quasi-Peak and AVG limits, thus, the Quasi-Peak and AVG emission levels are considered compliance with the limits.

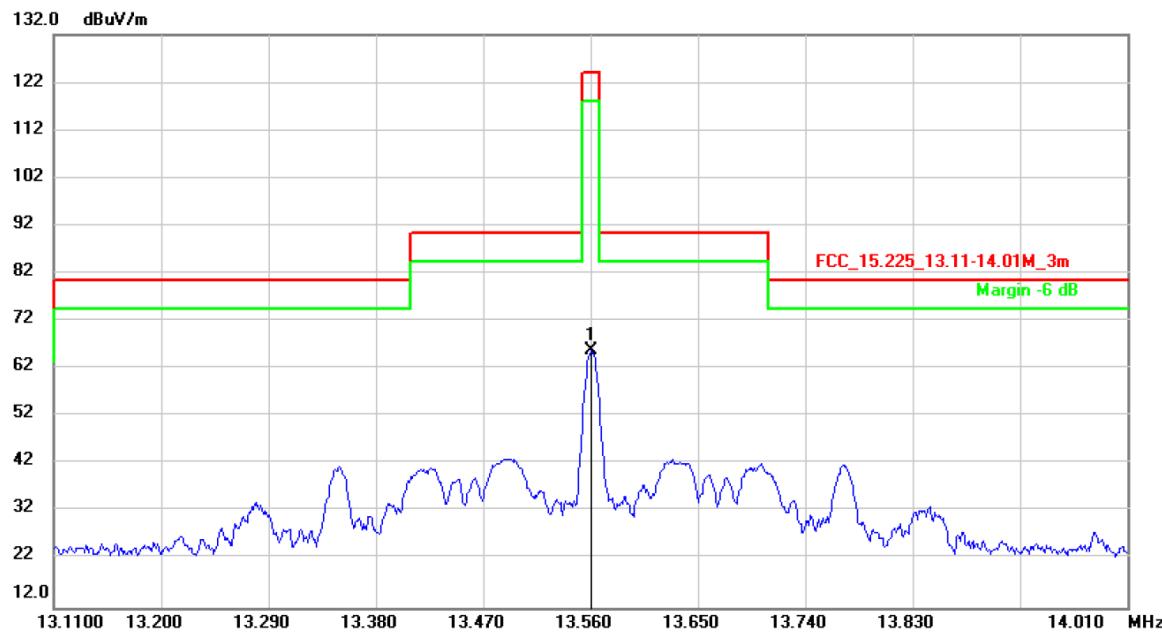
M/N: M010 V3	Testing Voltage: AC 120V 60Hz
Polarization: Vertical	Detector: QP & AVG
Test Mode: TX	Distance: 3m

Radiated Emission Measurement

Date: 2024/3/18

Time: 17:42:39

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB	Detector	Comment
1		0.6826	12.74	20.43	33.17	70.92	-37.75	peak
2		0.9183	9.75	20.40	30.15	68.34	-38.19	peak
3		1.1719	8.87	20.40	29.27	66.23	-36.96	peak
4	*	1.5766	6.77	20.40	27.17	63.65	-36.48	peak
5		2.2845	7.35	20.40	27.75	69.50	-41.75	peak
6		5.0312	6.55	20.44	26.99	69.50	-42.51	peak

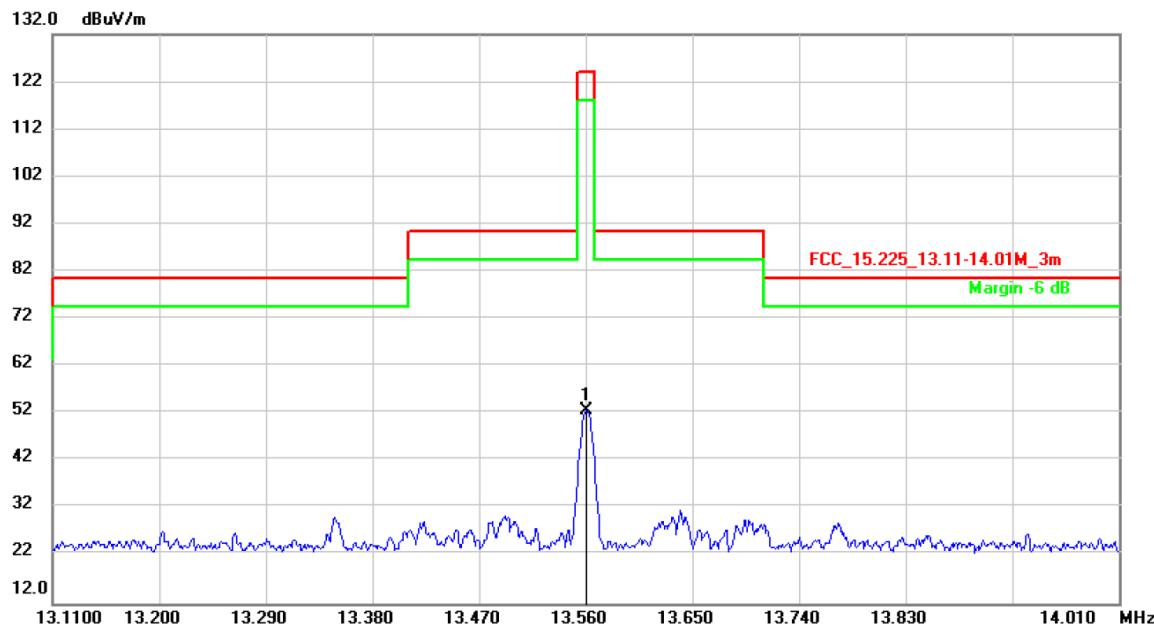

Note: The measured peak emission levels are lower than the allowable Quasi-Peak and AVG limits, thus, the Quasi-Peak and AVG emission levels are considered compliance with the limits.

M/N: M010 V3	Testing Voltage: AC 120V 60Hz
Polarization: Horizontal	Detector: QP
Test Mode: TX	Distance: 3m

Radiated Emission Measurement

Date: 2024/3/17

Time: 3:20:56

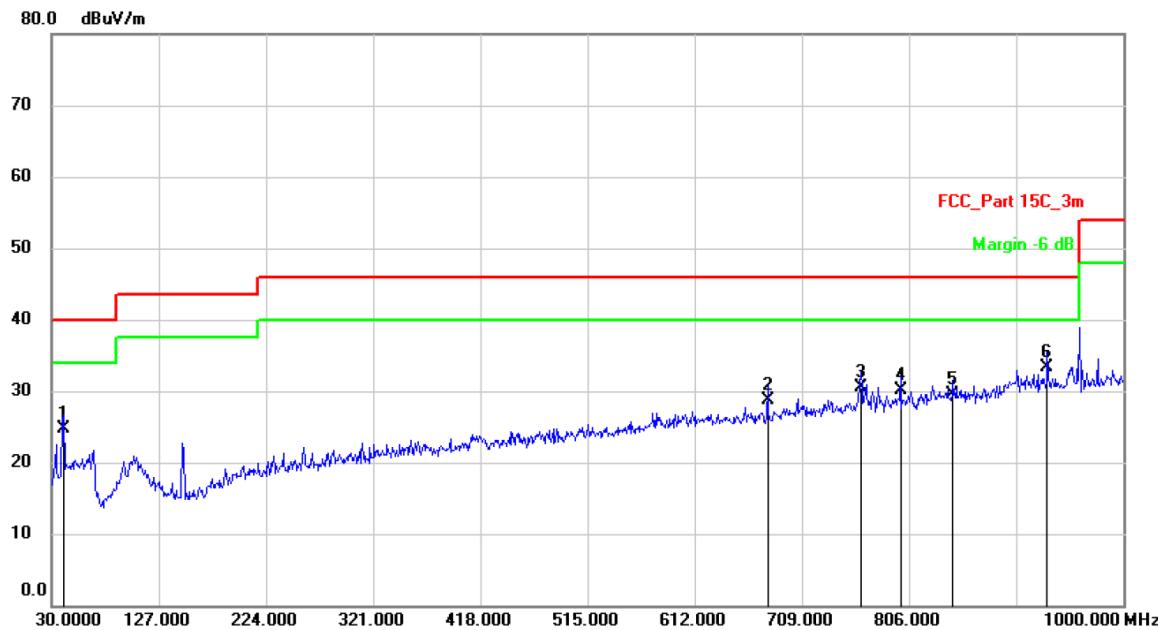

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB	Detector	Comment
1	*	13.5609	45.14	20.56	65.70	124.00	-58.30	peak

M/N: M010 V3	Testing Voltage: AC 120V 60Hz
Polarization: Vertical	Detector: QP
Test Mode: TX	Distance: 3m

Radiated Emission Measurement

Date: 2024/3/17

Time: 3:14:51

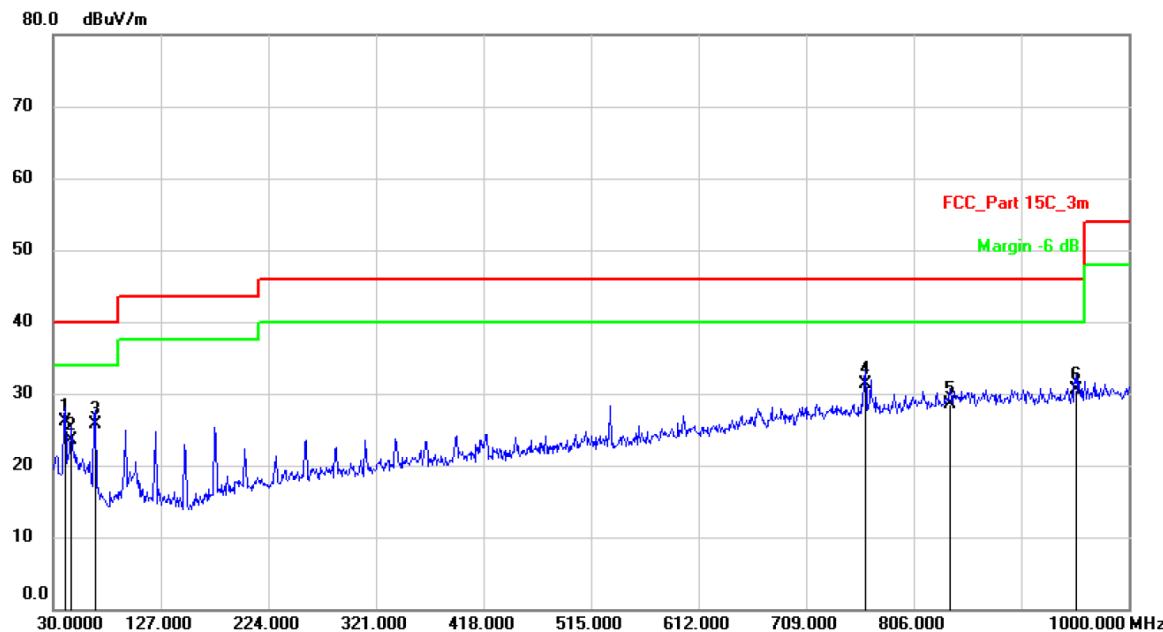

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB	Detector	Comment
1	*	13.5609	32.16	20.56	52.72	124.00	-71.28	peak

M/N: M010 V3	Testing Voltage: AC 120V 60Hz
Polarization: Horizontal	Detector: QP
Test Mode: TX	Distance: 3m

Radiated Emission Measurement

Date: 2024/3/18

Time: 17:49:39


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		40.6699	32.54	-7.84	24.70	40.00	-15.30	QP	
2		677.9600	26.91	1.79	28.70	46.00	-17.30	QP	
3		762.3500	27.34	3.26	30.60	46.00	-15.40	QP	
4		798.2400	26.18	3.92	30.10	46.00	-15.90	QP	
5		845.7700	24.78	4.72	29.50	46.00	-16.50	QP	
6	*	931.1300	27.16	6.24	33.40	46.00	-12.60	QP	

M/N: M010 V3	Testing Voltage: AC 120V 60Hz
Polarization: Vertical	Detector: QP
Test Mode: TX	Distance: 3m

Radiated Emission Measurement

Date: 2024/3/18

Time: 17:55:41

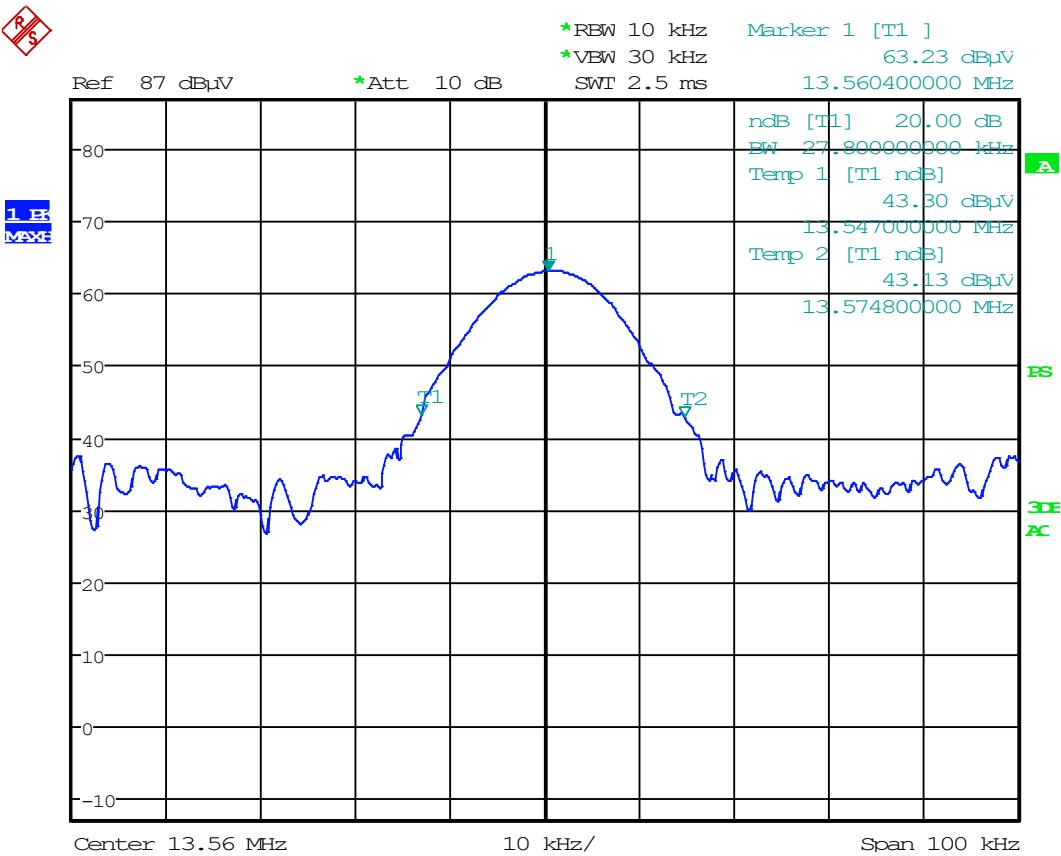
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	40.6699	33.94	-7.84	26.10	40.00	-13.90	QP	
2		46.4900	30.96	-7.46	23.50	40.00	-16.50	QP	
3		67.8300	35.76	-10.06	25.70	40.00	-14.30	QP	
4		762.3500	28.04	3.26	31.30	46.00	-14.70	QP	
5		838.9800	23.98	4.62	28.60	46.00	-17.40	QP	
6		952.4700	25.51	5.09	30.60	46.00	-15.40	QP	

13.3 20dB Occupied Bandwidth

LIMIT

According to 15.215 (C), Intentional radiators operating under the alternative provisions to the general emission limits, as contained in 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

BLOCK DIAGRAM OF TEST SETUP


TEST PROCEDURES

1. The output port (antenna) from the transmitter was connected to an attenuator and then to the input of the RF Spectrum analyzer.
2. Spectrum analyzer set the corresponding parameters for measurement and record the tested data

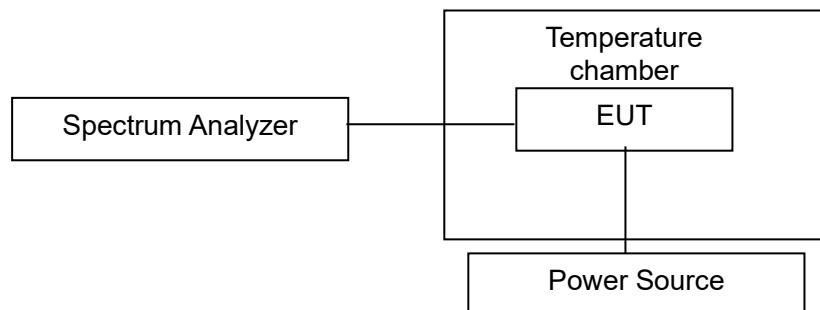
TEST RESULTS

PASS

Please refer to the following table.

Frequency (MHz)	20 dB Bandwidth (KHz)	Result
13.56	27.80	PASS
Test Photo		
<p>Ref 87 dB_uV *Att 10 dB *RBW 10 kHz *VBW 30 kHz SWI 2.5 ms</p> <p>Marker 1 [T1] 63.23 dB_uV 13.560400000 MHz</p> <p>Temp 1 [T1 dB] 43.30 dB_uV 13.547000000 MHz</p> <p>Temp 2 [T1 dB] 43.13 dB_uV 13.574800000 MHz</p> <p>1 dB MAX</p> <p>A</p> <p>RS</p> <p>3DE</p> <p>AC</p>		
Center 13.56 MHz	10 kHz/	Span 100 kHz

20


Date: 17.MAR.2024 01:26:24

13.4 Frequency Stability

LIMIT

15.225 (e) The frequency tolerance of the carrier signal shall be maintained within 0.01 % of the operating frequency over a temperature variation of -20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- The EUT was placed inside the environmental test chamber and powered by Power source.
- Turn the EUT on and couple its output to a spectrum analyzer.
- Turn the EUT off and set the chamber to the highest temperature specified.
- Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- The chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

Note: The EUT set at un-modulation mode during frequency stability test.

TEST RESULTS

PASS

Please refer to the following table.

Frequency (MHZ)	Temperature (°C)	Power Supplied (Vdc)	Measurement Frequency (MHZ)	Frequency Error (%)	Limit	Test Result
13.56	-20	3.7	13.5606	0.00442%	±0.01%	Pass
	-10		13.5607	0.00516%	±0.01%	Pass
	0		13.5607	0.00516%	±0.01%	Pass
	10		13.5605	0.00369%	±0.01%	Pass
	20		13.5606	0.00442%	±0.01%	Pass
	30		13.5607	0.00516%	±0.01%	Pass
	40		13.5607	0.00516%	±0.01%	Pass
	50		13.5608	0.00590%	±0.01%	Pass
	20	3.4	13.5606	0.00442%	±0.01%	Pass
	20	4.3	13.5606	0.00442%	±0.01%	Pass

Remark: The rating range of the EUT is between 3.4Vdc to 4.3Vdc.

13.5 Antenna Requirement

STANDARD APPLICABLE

According to of FCC part 15C section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

ANTENNA CONNECTED CONSTRUCTION

The antenna is PCB antenna that no antenna other than furnished by the responsible party shall be used with the device, and the best case gain of the antenna is 0dBi, therefore, the antenna is consider meet the requirement.

14. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	The time before last Cal.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI7	100837	Mar. 13, 2023	Mar. 12, 2024	1 Year
2.	Antenna	Schwarzbeck	VULB9162	9162-010	Mar. 24, 2022	Mar. 23, 2024	2 Year
3.	Spectrum Analyzer	Keysight	N9020A	MY54200831	Mar. 13, 2023	Mar. 12, 2024	1 Year
4.	Spectrum Analyzer	Keysight	N9010B	MY62170254	Aug. 08, 2022	Aug. 07, 2023	1 Year
5.	Horn Antenna+Pre-Amplifier	COM-POWER	AH-840	10100020	Mar. 24, 2022	Mar. 23, 2024	2 Year
6.	Power Sensor	DARE	RPR3006W	15I00041SN064	Mar. 13, 2023	Mar. 12, 2024	1 Year
7.	Horn Antenna	COM-Power	AH-118	071078	Mar. 24, 2022	Mar. 23, 2024	2 Year
8.	Pre-Amplifier	HP	HP 8449B	3008A00964	Mar. 13, 2023	Mar. 12, 2024	1 Year
9.	Pre-Amplifier	HP	HP 8447D	1145A00203	Mar. 13, 2023	Mar. 12, 2024	1 Year
10.	Loop Antenna	Schwarzbeck	FMZB 1513	1513-272	Mar. 24, 2022	Mar. 23, 2024	2 Year
11.	Test Receiver	Rohde & Schwarz	ESCI	101152	Mar. 13, 2023	Mar. 12, 2024	1 Year
12.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Mar. 13, 2023	Mar. 12, 2024	1 Year
13.	L.I.S.N	Rohde & Schwarz	ESH2-Z5	893606/014	Mar. 13, 2023	Mar. 12, 2024	1 Year
14.	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Mar. 13, 2023	Mar. 12, 2024	1 Year
15.	Temperature & Humidity Chamber	WANSHUN	SS-HWHS-80	N/A	Mar. 13, 2023	Mar. 12, 2024	1 Year
16.	DC Source	Maynuo	MY8811	N/A	Mar. 13, 2023	Mar. 12, 2024	1 Year
17.	Temporary antenna connector	TESCOM	SS402	N/A	N/A	N/A	N/A
18.	Chamber	SAEMC	9*7*7m	N/A	Apr. 22, 2021	Apr. 21, 2023	2 Year
19.	Test Software	EZ	EZ EMC NTC-3A1.1	N/A	N/A	N/A	N/A

Note: For photographs of EUT and measurement, please refer to appendix in separate documents.

---End---