

Global United Technology Services Co., Ltd.

Report No.: GTSL202106000045F01

TEST REPORT

Applicant: Shenzhen Kingstar industrial Co., Ltd

Address of Applicant: Room 211, Min Le technology Building Meiban Road, LongHua

District, Shenzhen, China

Manufacturer: Shenzhen Kingstar industrial Co., Ltd

Address of Room 211, Min Le technology Building Meiban Road, LongHua

District, Shenzhen, China Manufacturer:

Equipment Under Test (EUT)

Product Name: Mini speaker

Model No.: 161733

FCC ID: 2AO47-161733

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: May 31, 2021

Date of Test: May 31, 2021- June 08, 2021

Date of report issued: June 08, 2021

PASS * Test Result:

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	June 08, 2021	Original
17777		

Tested/ Prepared By	Jamelly	Date:	June 08, 2021
4.4.4.4.5.	Project Engineer		
Check By:	(Johnson Lust	Date:	June 08, 2021
	Poviower		

3 Contents

			Page
2	VEI	RSION	2
3	СО	NTENTS	3
4		ST SUMMARY	
5	GE	NERAL INFORMATION	
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	Test mode	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6 5.7	TEST FACILITY TEST LOCATION	
	5.8	Additional Instructions	
6		ST INSTRUMENTS LIST	
7		ST RESULTS AND MEASUREMENT DATA	
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	The state of the s
	7.3	CONDUCTED PEAK OUTPUT POWER	14
	7.4	20dB Emission Bandwidth	15
	7.5	FREQUENCIES SEPARATION	
	7.6	HOPPING CHANNEL NUMBER	
	7.7	DWELL TIME	
	7.8 7.9	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	7.9		
	7.9.		
	7.10	Spurious Emission.	
	7.10		
	7.10	0.2 Radiated Emission Method	37
8	TES	ST SETUP PHOTO	45
a	FIL	T CONSTRUCTIONAL DETAILS	15

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207(a)	Pass
Maximum peak conducted output power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	30MHz-200MHz 3.8039dB		(1)	
Radiated Emission	200MHz-1GHz	3.9679dB	(1)	
Radiated Emission	1GHz-18GHz	4.29dB	(1)	
Radiated Emission	18GHz-40GHz	3.30dB	(1)	
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)	

5 General Information

5.1 General Description of EUT

Product Name:	Mini speaker
Model No.:	161733
S/N:	N/A
Test sample(s) ID:	GTSL202106000045-1
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π /4-DQPSK
Antenna Type:	PCB Antenna
Antenna gain:	-0.68dBi
Power supply:	DC 3.7V From Battery and DC 5V From External Circuit
Adapter Information (auxiliary test equipment supplied by test Lab)	Mode: CD122 Input: AC100-240V, 50/60Hz, 500mA Output: DC 5V, 2A

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 5 of 45

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz	
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz	
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz	
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz	
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz	
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz	
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz	
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz	
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz	
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz	
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz	
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz	
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz	
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz	
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz	
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz	
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz	
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz	
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz	
20	2421MHz	40	2441MHz	60	2461MHz		111	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

6 Test Instruments list

Radi	ated Emission:			7 7 7	2 2 5 5	2 8 5
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021
7	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021

Cond	ucted Emission			1 1 1	111	
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 25 2020	June. 24 2021

RF C	onducted Test:	7 7 7 7				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021
9	Power Sensor	Agilent	E9300A	GTS589	June. 25 2020	June. 24 2021
10	Spectrum analyzer	Agilent	N9020A	GTS591	June. 25 2020	June. 24 2021

Gene	General used equipment:						
Item	Test Equipment	quipment Manufacturer Model No. Inventory No.		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021	
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021	

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

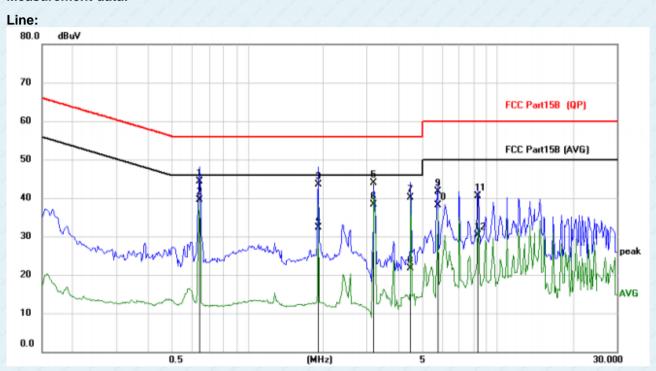
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

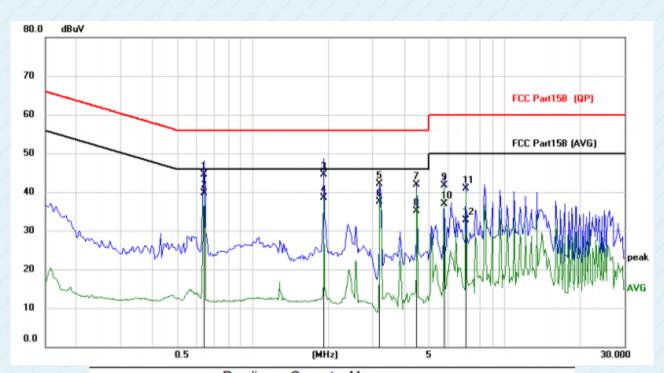
E.U.T Antenna:

The antenna is PCB Antenna, the best case gain of the is -0.68dBi, reference to the appendix II for details


7.2 Conducted Emissions

	Test Requirement:	FCC Part15 C Section 15.207					
6	Test Method:	ANSI C63.10:2013					
8	Test Frequency Range:	150KHz to 30MHz					
	Class / Severity:	Class B				1 11 11	1 1 1
	Receiver setup:	RBW=9KHz,	VBW=30KH	z, Sweep tin	ne=auto		
	Limit:	To a second	(NALL	S 2	Limit	(dBuV)	
		Frequenc	y range (MHz	Qu	asi-peak	Aver	age
			15-0.5	6	6 to 56*	56 to	
			0.5-5		56	46	
8			5-30	rithm of the	60	50	
	Test setup:	Decreases	with the loga		rrequericy.		7 7 7
	Test procedure:	LISN AC power Equipment Remark E.U.T EMI Receiver Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment.					
		 The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
6	Test Instruments:	Refer to section 6.0 for details					
	Test mode:	Refer to section 5.2 for details					
	Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
	Test voltage:	AC 120V, 60Hz					
	Test results:	Pass		1 1 1			

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Measurement data:

	No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
ľ		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
ľ	1	0.6414	33.45	10.92	44.37	56.00	-11.63	QP
	2 *	0.6414	28.63	10.92	39.55	46.00	-6.45	AVG
	3	1.9167	32.56	10.96	43.52	56.00	-12.48	QP
ľ	4	1.9167	21.36	10.96	32.32	46.00	-13.68	AVG
ľ	5	3.2028	32.84	11.02	43.86	56.00	-12.14	QP
ľ	6	3.2028	27.29	11.02	38.31	46.00	-7.69	AVG
ľ	7	4.4780	29.09	11.08	40.17	56.00	-15.83	QP
ľ	8	4.4780	10.71	11.08	21.79	46.00	-24.21	AVG
ľ	9	5.7651	30.54	11.14	41.68	60.00	-18.32	QP
	10	5.7651	26.89	11.14	38.03	50.00	-11.97	AVG
ľ	11	8.3352	29.18	11.27	40.45	60.00	-19.55	QP
ľ	12	8.3352	19.13	11.27	30.40	50.00	-19.60	AVG

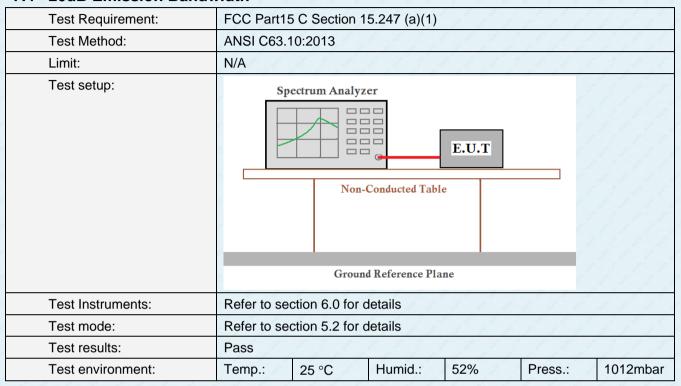
Neutral:

	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
Ī		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	1	0.6414	33.53	10.92	44.45	56.00	-11.55	QP
ĺ	2 *	0.6414	28.79	10.92	39.71	46.00	-6.29	AVG
ĺ	3	1.9245	33.45	10.96	44.41	56.00	-11.59	QP
ĺ	4	1.9245	27.52	10.96	38.48	46.00	-7.52	AVG
ĺ	5	3.2067	31.18	11.02	42.20	56.00	-13.80	QP
ĺ	6	3.2067	26.53	11.02	37.55	46.00	-8.45	AVG
	7	4.4898	30.74	11.08	41.82	56.00	-14.18	QP
	8	4.4898	24.10	11.08	35.18	46.00	-10.82	AVG
Ī	9	5.7690	30.63	11.14	41.77	60.00	-18.23	QP
Ī	10	5.7690	25.81	11.14	36.95	50.00	-13.05	AVG
	11	7.0521	29.74	11.20	40.94	60.00	-19.06	QP
Ī	12	7.0521	21.53	11.20	32.73	50.00	-17.27	AVG
1								

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Los

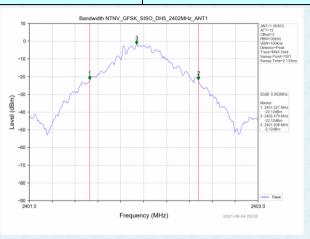
7.3 Conducted Peak Output Power


Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (b)(1)					
Test Method:	ANSI C63.1	ANSI C63.10:2013					
Limit:	30dBm(for	30dBm(for GFSK),20.97dBm(for EDR)					
Test setup:	Power sensor and Spectrum analyzer E.U.T Non-Conducted Table						
		Ground Reference Pl	ane				
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

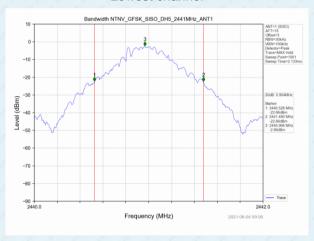
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
11111	Lowest	0.15		
GFSK	Middle	-0.20	30.00	Pass
	Highest	-0.97	11111	
	Lowest	0.86		
π/4-DQPSK	Middle	0.50	20.97	Pass
111111	Highest	-0.30		

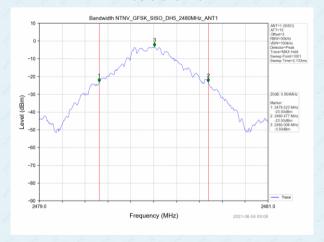
7.4 20dB Emission Bandwidth


Measurement Data

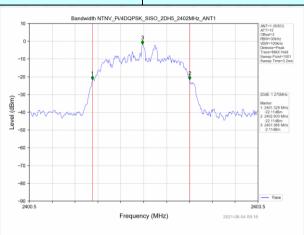
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.952	
GFSK	Middle	0.954	Pass
	Highest	0.954	
	Lowest	1.275	
π/4-DQPSK	Middle	1.315	Pass
	Highest	1.308	

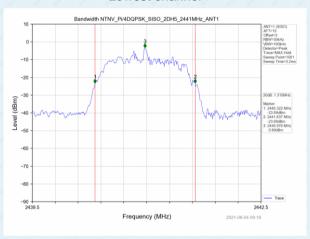


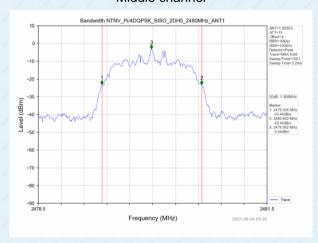
Test plot as follows: 20dB Emission Bandwidth


Test mode: GFSK mode

Lowest channel


Middle channel


Highest channel


Test mode: π/4-DQPSK mode

Lowest channel

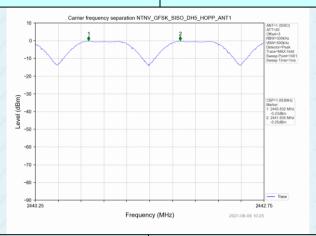
Middle channel

Highest channel

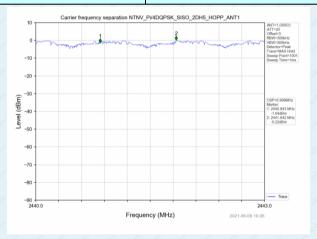
7.5 Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak					
Limit:	GFSK: 20dB bandwidth π/4-DQPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details Refer to section 5.2 for details					
Test mode:						
Test results:	Pass					
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar					

Measurement Data


Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	1.003	2/3*20dB	Pass
			bandwidth	
			25KHz or	1 1 1 1
π/4-DQPSK	Middle	0.999	2/3*20dB	Pass
	11111	1111111111	bandwidth	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



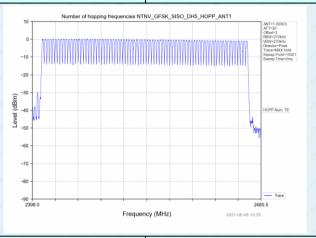
Test plot as follows:

Modulation mode: GFSK

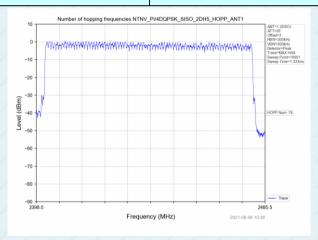
Test mode: $\pi/4$ -DQPSK

7.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak				
Limit:	15 channels				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table				
	Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar				


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	≥15	Pass
π/4-DQPSK	79		Pass



Test plot as follows:

Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak					
Limit:	0.4 Second					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar					

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	0.377	121.017	400	Pass
2441MHz	DH3	1.633	177.997	400	Pass
2441MHz	DH5	2.880	181.440	400	Pass

Note: We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3

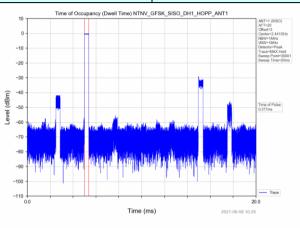
Dwell time=Pulse time (ms) x (1600 ÷ 6 ÷ 79) x31.6 Second for DH5, 2-DH5

$\pi/4$ -DQPSK mode:

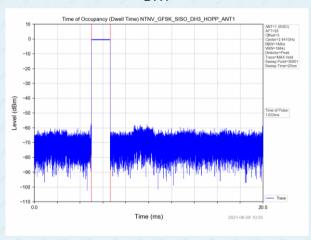
Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
2441MHz 2DH1		0.389	122.535	400	Pass
2441MHz	2DH3	1.639	154.066	400	Pass
2441MHz	2DH5	2.887	193.429	400	Pass

Note: We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

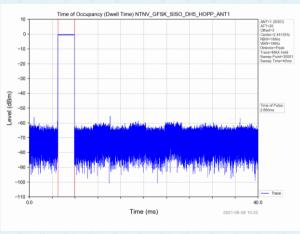
Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1


Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3

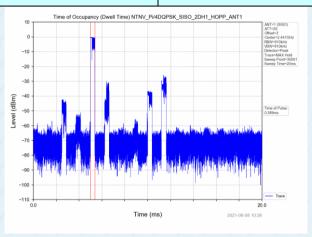
Dwell time=Pulse time (ms) x (1600 ÷ 6 ÷ 79) x31.6 Second for DH5, 2-DH5

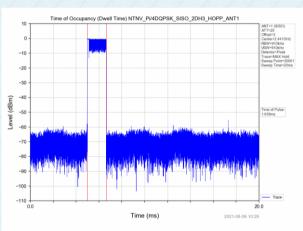


Test plot as follows: GFSK mode:

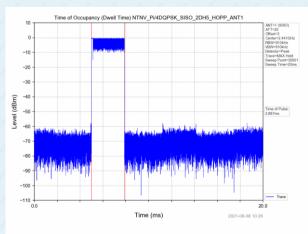

Test channel: 2441MHz

DH1


DH3



π/4-DQPSK mode:


Test channel: 2441MHz

DH1

DH3

DH5

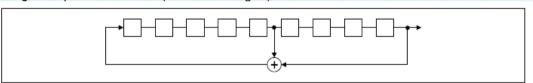
7.8 Pseudorandom Frequency Hopping Sequence

Test Requirement:

FCC Part15 C Section 15.247 (a)(1)/g/h requirement:

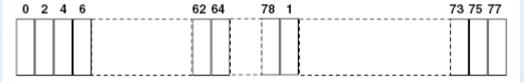
a(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

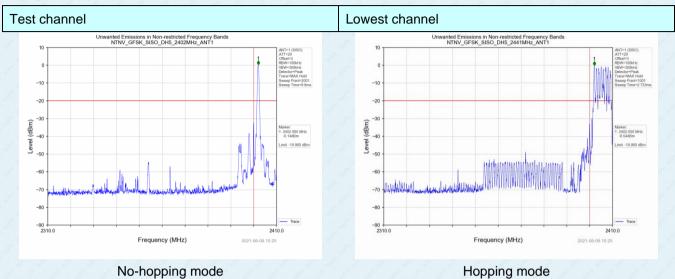
An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

it permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted.

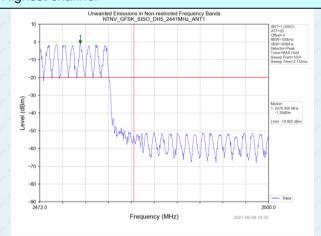
7.9 Band Edge


7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mba						

Test plot as follows:

GFSK Mode:

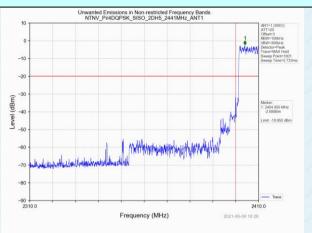


Test channel:

No-hopping mode

Highest channel

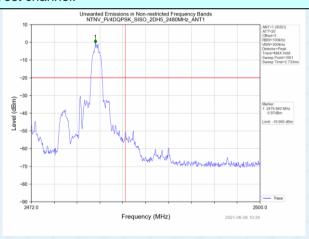
Hopping mode



π/4-DQPSK Mode:

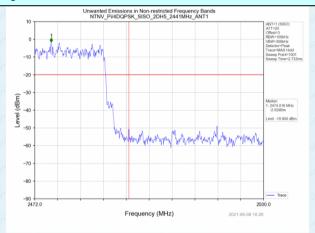
Test channel Unwanted Emissions in Non-restricted Frequency Bands NTNV_PI4DQPSK_SISO_2DH5_2402MHz_ANT1 In International Intern

No-hopping mode



Hopping mode

Test channel:


-90 -2310.0

Level (dBm)

No-hopping mode

Highest channel

Hopping mode

7.9.2 Radiated Emission Method

7.9.2 Radiated Emission Method										
Test Requirement:	FCC Part15	C Section 1	5.209 a	and 15.205	2 6					
Test Method:	ANSI C63.10	0:2013	1 1	1 1 1	8 1					
Test Frequency Range:	All of the res 2500MHz) da			ested, only	the wo	rst band's	2310MHz to			
Test site:	Measuremer	nt Distance:	3m	1 6 1		100				
Receiver setup:	Frequency Detector RBW VBW Remark									
·	Above 1GHz Peak 1MHz 3MHz Peak Value									
	Peak 1MHz 10Hz Average Value									
Limit:	Frequency Limit (dBuV/m @3m) Remark									
	Above 1GHz 54.00 Average Value									
Test setup:				74.0	00	Pea	ak Value			
	Turn Tables	EUT+	< 3m	Test Antenna						
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 									
Test Instruments:	Refer to sect	nethod as spation 6.0 for c	44		The state of		F F F 7			
Test mode:	Refer to sect	tion 5.2 for c	letails		5 5	1 1 1	2 2 5			
Test results:	Pass		1 1	1 1 1		111				
Test environment:	Temp.:	25 °C	Humi	d.: 52%	6	Press.:	1012mbar			

Measurement Data

Remark: GFSK, Pi/4 DQPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2390	57.58	-5.68	51.9	74	-22.1	peak	
2390	43.28	-5.68	37.6	54	-16.4	AVG	

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detecto
(MHz)	(dBµV) (dB)		(dBµV/m) (dBµ		μV/m) (dB)	
2390	61.05	-5.68	55.37	74	-18.63	peak
2390	44.98	-5.68	39.3	54	-14.7	AVG

Operation Mode: GFSK TX High channel (2480MHz)

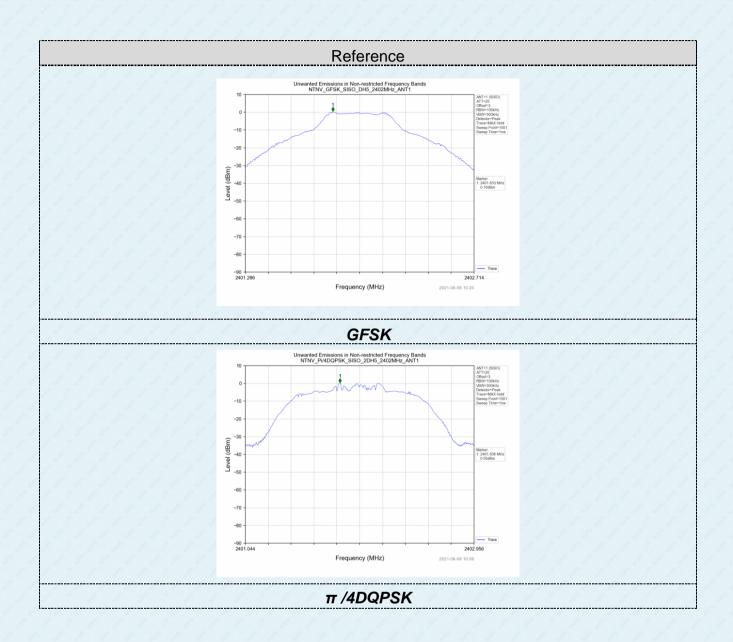
Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	58.99	-5.85	53.14	74	-20.86	peak
2483.5	43.79	-5.85	37.94	54	-16.06	AVG

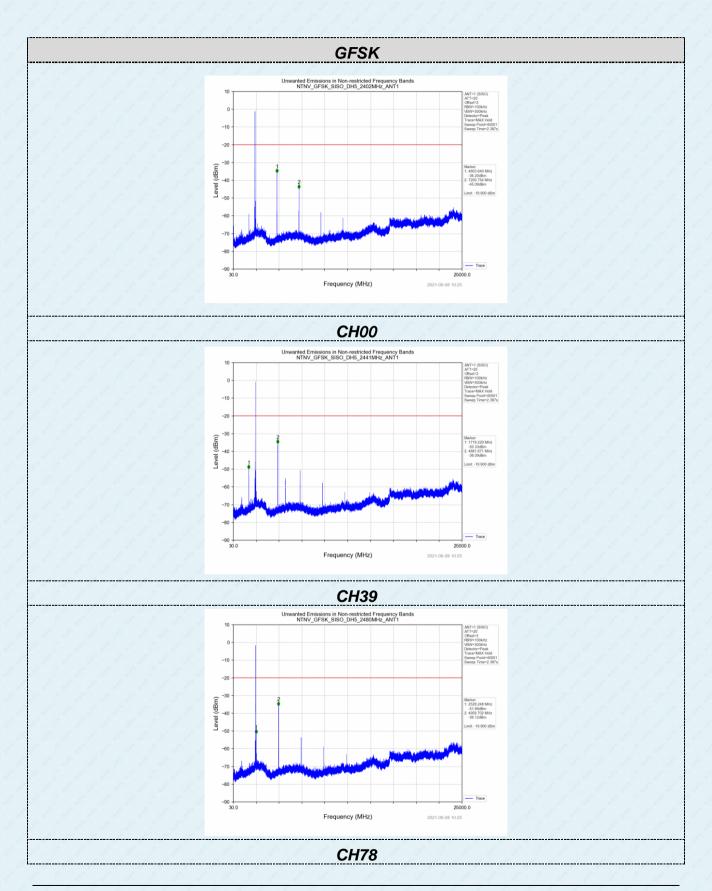
Vertical:

Frequency Meter Reading		quency Meter Reading Factor Emission Level		Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	
2483.5	61.82	-5.85	55.97	74	-18.03	peak	
2483.5	46.05	-5.85	40.2	54	-13.8	AVG	

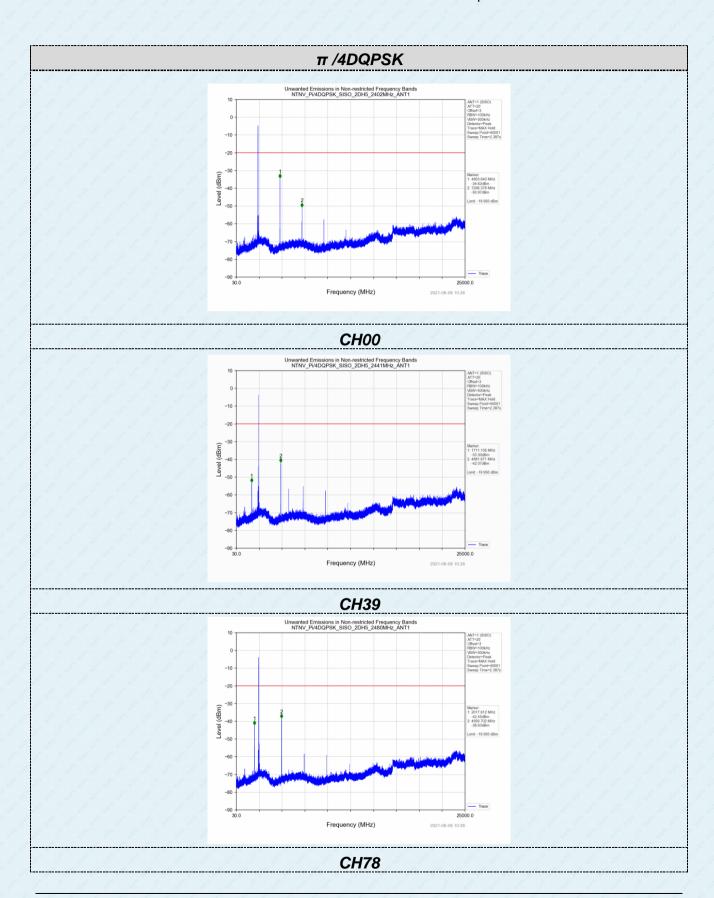
Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.



7.10 Spurious Emission

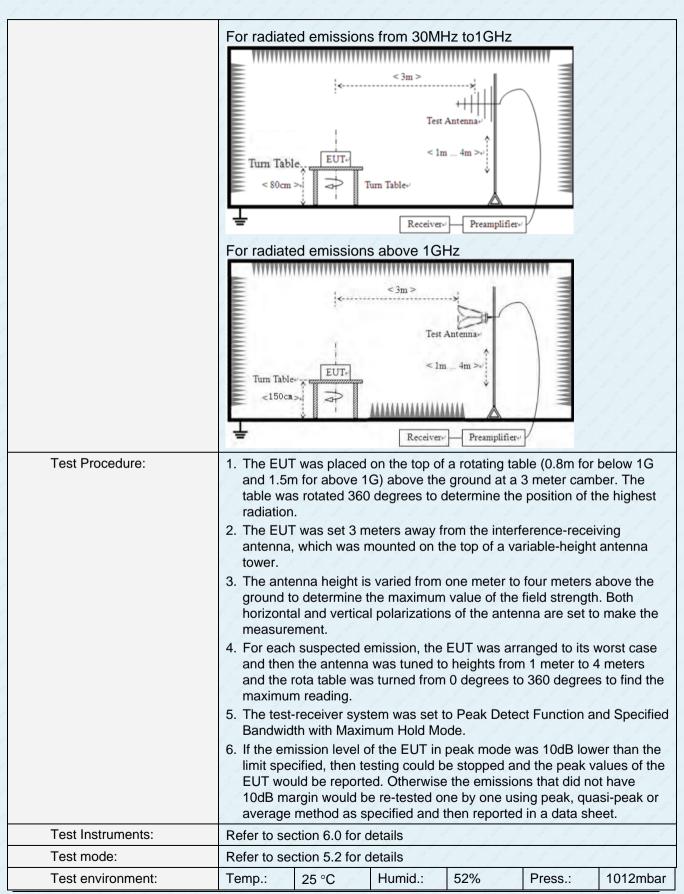

7.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar



GTS

GTS



7.10.2 Radiated Emission Method

Test Requirement:		FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013	1	8 8 8		g .		1	1 8 8 8 8	
Test Frequency Range:	9kHz to 25GHz						e de		
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	C	etector	RBV	W VBW		- 25	Value	
	9KHz-150KHz	Qu	asi-peak	200Hz		600Hz	z	Quasi-peak	
	150KHz-30MHz	Qi	asi-peak	9KH	lz	30KH:	z	Quasi-peak	
	30MHz-1GHz	Qı	ıasi-peak	120K	Hz	300KH	lz	Quasi-peak	
	Above 1GHz		Peak	1MF	łz	3MHz	Z	Peak	
	Above 1G112		Peak	1MH	lz	10Hz		Average	
Limit:	Frequency		Limit (u\	//m)	٧	alue	Ν	leasurement Distance	
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP	5	300m	
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP		30m	
	1.705MHz-30MH	lz	30	E E		QP		30m	
	30MHz-88MHz	e i	100		QP		100		
	88MHz-216MHz	<u>'</u>	150	50		QP			
	216MHz-960MH	Z	200	200		QP		3m	
	960MHz-1GHz	200	500	20		QP		Om	
	Above 1GHz	500 Av		erage					
	710000 10112	E gr	5000)	F	Peak	, N	A Lat of the	
Test setup:	For radiated emiss	ions	from 9kH	z to 30	МН	z			
	Turn Table EUT		< 3m > Test A	Im Receiver			THE PERSON NAMED IN THE PE		

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

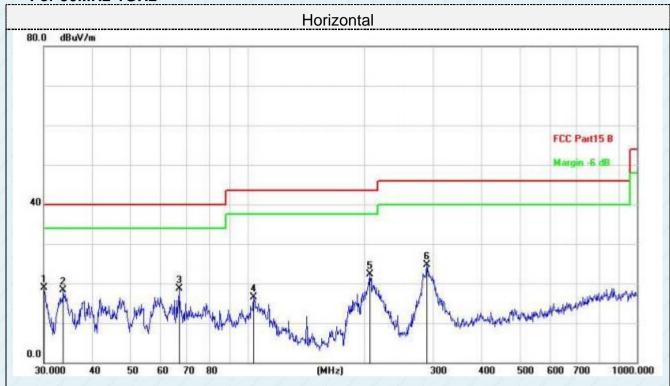
Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

	Test voltage:	AC 120V, 60Hz
ę.	Test results:	Pass

Measurement data:

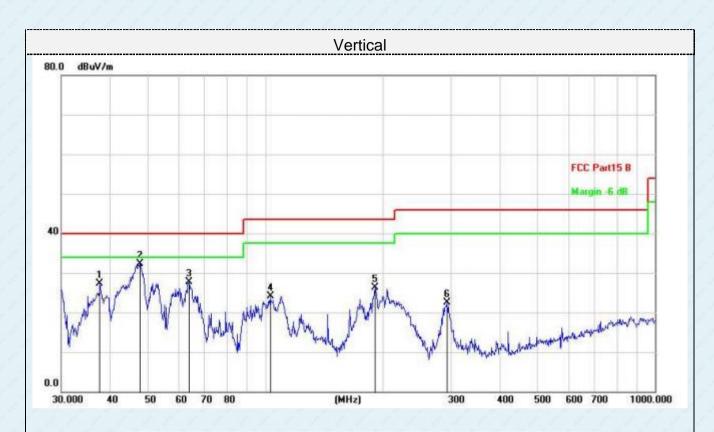
Remarks:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		30.0000	37.44	-18.59	18.85	40.00	-21.15	QP
2		33.6802	36.58	-18.37	18.21	40.00	-21.79	QP
3		66.7325	38.25	-19.55	18.70	40.00	-21.30	QP
4		103.8055	36.98	-20.40	16.58	43.50	-26.92	QP
5	*	206.3976	42.33	-19.93	22.40	43.50	-21.10	QP
6		289.0021	43.42	-18.67	24.75	46.00	-21.25	QP

Final Level =Receiver Read level + Correct Factor

Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
	37.6798	45.42	-18.12	27.30	40.00	-12.70	QP
*	47.6586	50.62	-18.38	32.24	40.00	-7.76	QP
	63.7588	46.90	-19.19	27.71	40.00	-12.29	QP
	103.0800	44.57	-20.42	24.15	43.50	-19.35	QP
	191.0738	46.17	-19.92	26.25	43.50	-17.25	QP
2	293.0842	41.15	-18.69	22.46	46.00	-23.54	QP
*		37.6798 47.6586	37.6798 45.42 47.6586 50.62 63.7588 46.90 103.0800 44.57 191.0738 46.17	37.6798 45.42 -18.12 47.6586 50.62 -18.38 63.7588 46.90 -19.19 103.0800 44.57 -20.42 191.0738 46.17 -19.92	37.6798 45.42 -18.12 27.30 47.6586 50.62 -18.38 32.24 63.7588 46.90 -19.19 27.71 103.0800 44.57 -20.42 24.15 191.0738 46.17 -19.92 26.25	37.6798 45.42 -18.12 27.30 40.00 47.6586 50.62 -18.38 32.24 40.00 63.7588 46.90 -19.19 27.71 40.00 103.0800 44.57 -20.42 24.15 43.50 191.0738 46.17 -19.92 26.25 43.50	37.6798 45.42 -18.12 27.30 40.00 -12.70 47.6586 50.62 -18.38 32.24 40.00 -7.76 63.7588 46.90 -19.19 27.71 40.00 -12.29 103.0800 44.57 -20.42 24.15 43.50 -19.35 191.0738 46.17 -19.92 26.25 43.50 -17.25

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK and Pi/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	62.31	-3.61	58.7	74	-15.30	peak
4804	46.03	-3.61	42.42	54	-11.58	AVG
7206	53.88	-0.85	53.03	74	-20.97	peak
7206	41.89	-0.85	41.04	54	-12.96	AVG
		1 2 1	11111			
1 <u>1</u> 1	1 1 1 1	1 2 1	2 2 1 1	1 <u>1</u> 1	6 F 6	S _S

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	1 1
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	61.22	-3.61	57.61	74	-16.39	peak
4804	46.25	-3.61	42.64	54	-11.36	AVG
7206	56.25	-0.85	55.4	74	-18.60	peak
7206	44.25	-0.85	43.4	54	-10.60	AVG
<u> </u>	//-//	<u> </u>			<u> </u>	<u> </u>
5 <u>5</u> 5	1 1 1 1	8 2 6	8 8 1 8		e e <u></u> e :	8 9

CH Middle (2441MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	100
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882	62.01	-3.49	58.52	74	-15.48	peak
4882	45.79	-3.49	42.3	54	-11.70	AVG
7326	58.52	-0.8	57.72	74	-16.28	peak
7326	46.21	-0.8	45.41	54	-8.59	AVG
<u> </u>	11-1	£ <u>j2-</u> j8		<u> </u>	6 5 <u>-</u> 5 5	
1 1 1	1 1 <u></u> () 1	1 <u>1</u> 1	100 100		1 / <u></u> / /	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882	59.89	-3.49	56.4	74	-17.60	peak
4882	45.59	-3.49	42.1	54	-11.90	AVG
7326	55.24	-0.80	54.44	74	-19.56	peak
7326	41.28	-0.8	40.48	54	-13.52	AVG
1 4	11.	1 2 1	6 6 6	<u> </u>	27_7	E E E
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	8 <u>1</u> 6	11 1 1	8 8 <u>1</u> 8	8 8 <u></u> 8	6 6 8

CH High (2480MHz)

Horizontal:

Meter Reading	Factor	Emission Level	Limits	Margin	
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
62.04	-3.41	58.63	74	-15.37	peak
45.82	-3.41	42.41	54	-11.59	AVG
55.59	-0.72	54.87	74	-19.13	peak
42.32	-0.8	41.52	54	-12.48	AVG
1 1 <u>-</u> 1 1	1 4	11 <u></u> 1		f	
17-11	112	11111		4 4 <u>-</u> 4 7	
	(dBµV) 62.04 45.82 55.59 42.32	(dBµV) (dB) 62.04 -3.41 45.82 -3.41 55.59 -0.72 42.32 -0.8	(dBμV) (dB) (dBμV/m) 62.04 -3.41 58.63 45.82 -3.41 42.41 55.59 -0.72 54.87 42.32 -0.8 41.52	(dBμV) (dB) (dBμV/m) (dBμV/m) 62.04 -3.41 58.63 74 45.82 -3.41 42.41 54 55.59 -0.72 54.87 74 42.32 -0.8 41.52 54	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 62.04 -3.41 58.63 74 -15.37 45.82 -3.41 42.41 54 -11.59 55.59 -0.72 54.87 74 -19.13 42.32 -0.8 41.52 54 -12.48

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datasta
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	61.20	-3.41	57.79	74	-16.21	peak
4960	45.24	-3.41	41.83	54	-12.17	AVG
7440	55.27	-0.72	54.55	74	-19.45	peak
7440	42.46	-0.80	41.66	54	-12.34	AVG
<u> </u>	£ £ £ \$	<u> </u>		<u> </u>	1 1 <u>-</u> 1 ,	2 <u>+</u>
2 <u>2</u> 2	1 1 - 1	1 <u>1</u> 1	11121	6	6 8 <u></u> 5	F _ F

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(2) When the test results of Peak Detected below the limits of Average Detected,

the Average Detected is not need completed.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----