

FCC Measurement/Technical Report on

RF-310

FCC ID: 2AO3N-TH87K6XYCS

IC: 23389-TH87K6XYCS

Test Report Reference: MDE_DEDRONE_2202_FCC_01

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors:

Sebastian Doose Stefan Kischka Bernhard Retka Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

		Coi	

1 A	pplied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	4
2 R	evision History / Signatures	6
3 A	dministrative Data	7
3.1	Testing Laboratory	7
3.2	Project Data	7
3.3	Applicant Data	7
3.4	Manufacturer Data	8
4 T	est object Data	9
4.1	General EUT Description	9
4.2	EUT Main components	9
4.3	Ancillary Equipment	10
4.4	Auxiliary Equipment	10
4.5	EUT Setups	10
4.6	Operating Modes / Test Channels	11
4.7	Product labelling	11
5 T	est Results	12
5.1	Conducted Emissions at AC mains	12
5.2	Radiated Emissions	15
6 T	est Equipment	23
6.1	Test Equipment Hardware	23
6.2	Test Equipment Software	23
7 A	ntenna Factors, Cable Loss and Sample Calculations	27
7.1	LISN R&S ESH3-Z5 (150 kHz - 30 MHz)	27
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	28
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	29
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	30
7.5	Antenna EMCO 3160-09 (18 GHz - 26.5 GHz)	31
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	32
8 M	leasurement Uncertainties	33
9 P	hoto Report	34

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-21 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart B - Unintentional Radiators

- § 15.107 Conducted limits
- § 15.109 Radiated emission limits; general requirements
- § 15.111 Antenna power conduction limits for receivers.
- § 15.121 Scanning receivers and frequency converters used with scanning receivers.

Applicable ISED Standards

ICES-Gen, Issue 1

ICES-003, Issue 7

Note:

ANSI C63.4-2014 is applied.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for Information Technology Equipment (ITE) from FCC and ISED Canada

Measurement	FCC reference	ISED reference
Conducted Emissions (AC Power Line)	§15.107	ICES-003 Issue 7: 3.2.1
Radiated Spurious Emissions	§15.109	ICES-003 Issue 7: 3.2.2
Antenna Power conduction limits for receivers	§ 15.111	RSS-135 Issue 2 RSS-GEN Issue 5: 7.4
Scanning receivers and frequency converters used with scanning receivers	§ 15.121	-

Remarks:

- FCC Part 15 subpart B, ICES 003 and CISPR 22 contain different definitions of Class A and Class B limits, i.e. which class is applicable to which kind of EUT. ICES 003 and CISPR 22 distinguish between the location where the EUT is intended to operate whilst FCC refers to the method of commercial distribution (distributive trades).
- 2. The correct assignment of the appropriate class to the concrete EUT is not scope of this test report!
- 3. A radio apparatus that is specifically subject to an ISED Radio Standard Specification (RSS) and which contains an ITE is not subject to ICES-003 provided the ITE is used only to enable operation of the radio apparatus and the ITE does not control additional functions or capabilities.
- 4. ISM (Industrial, Scientific or Medical) radio frequency generators, though they may contain ITE, are excluded from the definition of ITE and are not subject to ICES-003. They are instead subject to the Interference-Causing Equipment Standard ICES-001, which specifically addresses ISM radio frequency generators.

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15	§ 15.107 Class B
Subpart B	

Conducted Emissions at AC mains The measurement was performed according to ANSI C63.4 Final Result				esult
OP-Mode AC mains connection, Test setup	Setup	Date	FCC	IC
via auxiliary equipment, computer peripheric	S01_AA01	2022-11-30	Passed	Passed

47 CFR CHAPTER I FCC PART 15 § 15.109 Class A Subpart B

Subpart B					
Radiated Emissions					
The measurement was performed accordi		Final R	esult		
OP-Mode AC mains connection, Measurement range, Test setup	Setup	Date	FCC	IC	
via auxiliary equipment, 26 GHz - 40 GHz, computer peripheric	S01_AA01	2022-12-27	Passed	Passed	
via auxiliary equipment, 18 GHz - 26 GHz, computer peripheric	S01_AA01	2022-12-27	Passed	Passed	
via auxiliary equipment, 1 GHz - 18 GHz, computer peripheric	S01_AA01	2022-12-02	Passed	Passed	
via auxiliary equipment, 30 MHz - 1 GHz, computer peripheric	S01_AA01	2022-12-01	Passed	Passed	

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

Report version control			
Version	Release date	Change Description	Version validity
initial	2023-02-13		valid
		==	

COMMENT: -

(responsible for accreditation scope)

Marco Kullik

(responsible for testing and report)

Mohamed Fraitat

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01 | -02 | -03

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

ISED CAB Identifier DE0007; ISED#: 3699A

Responsible for accreditation scope: Marco Kullik

Report Template Version: 2022-05-25

3.2 PROJECT DATA

Responsible for testing and report: Mohamed Fraitat

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2023-02-13

Testing Period: 2022-11-30 to 2022-12-02

3.3 APPLICANT DATA

Company Name: Dedrone Holdings, Inc.

Address: 45662 Terminal Dr, Suite 110

Sterling, VA 20166

USA

Contact Person: Mr. Robin H. Jaeger

3.4 MANUFACTURER DATA

Company Name: Dedrone Holdings, Inc.

Address: Miramstraße 87 34128 Kassel

Germany

Contact Person: Mr. Robin H. Jaeger

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	The EUT is a sensor used for drone detection. Two RF module are integrated and used as receiver only operating in the frequency bands:
	Broadband receiver module USRP B210: 433MHz, 868MHz, 2400MHz and 5800 MHz
	Wi-Fi module: 2.4 GHz and 5 GHz bands
Product name	RF-310
Туре	RF-310 RFP
Declared EUT data by	the supplier
Power Supply Type	PoE (Power over Ethernet)
Nominal Voltage / Frequency	53 DC
Highest internal frequency	5800 MHz
Ports - LAN (PoE) (connected to AUX1, 1m)	
Special software used for testing	Putty

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT A	DE1270008aa01	Radiated sample
Sample Parameter		Value
Serial No.	DR03102226P10010006	
HW Version	A1	
SW Version	5.0	
Comment	-	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
AUX 1	EDIMAX, GP-102ITT, -, -, GP102T25CA00029	PoE
AUX 2	Ettus Research, USRP E310, -, -, 3179372	Drone Simulator
AUX 3	ASUS, RT-AC87U, -, -, G9IMGS002462	Router
AUX 4 Fujitsu, Lifebook E Series U758, -, -, DSAL006396		Laptop
AUX 5	Fujitsu, A13-065N3A, -, -, 184903C604	AC/DC Adapter for laptop

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AA01	EUT A, AUX 1 to AUX 5	Setup for radiated measurement

4.6 OPERATING MODES / TEST CHANNELS

This chapter describes the operating modes of the EUTs used for testing.

- Drone detection
- Wifi detection
- Data traffic via LAN to a laptop

4.7 PRODUCT LABELLING

4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

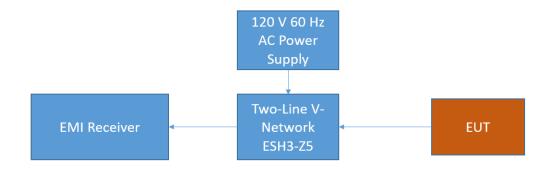
4.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

Page 12 of 34

5 TEST RESULTS

5.1 CONDUCTED EMISSIONS AT AC MAINS


Standard FCC Part 15 Subpart B

The test was performed according to:

ANSI C63.4

5.1.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C 63.4 The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from $50\mu\text{H}$ || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

FCC Conducted Emissions on AC

The measurement procedure consists of two steps. It is implemented into the EMI test software EMC-32 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT. EMI receiver settings:

- Detector: Peak Maxhold & AverageFrequency range: 150 kHz 30 MHz
- Frequency steps: 2.5 kHzIF-Bandwidth: 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)
- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1. EMI receiver settings:

- Detector: Quasi-Peak & (CISPR) Average

- IF Bandwidth: 9 kHz

- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart B, §15.107

Class B:

Frequency (MHz)	QP Limits (dBµV)	AV Limits (dBμV)
0.15 - 0.5	66 - 56	56 - 46
0.5 - 5	56	46
5 - 30	60	50

Class A:

Frequency (MHz)	QP Limits (dBµV)	AV Limits (dBµV)
0.15 - 0.5	79	66
0.5 - 30	73	60

5.1.3 TEST PROTOCOL

Temperature: 24 °C
Air Pressure: 1002 hPa
Humidity: 33 %

via auxiliary equipment, computer peripheric

Power line	PE	Frequency [MHz]	Level [dBµV]	Detector	Limit [dBµV]	Margin [dB]
L1	GND	22.26	42.08	AV	50.0	7.9
L1	GND	22.26	43.29	QP	60.0	16.7
L1	GND	22.76	42.76	AV	50.0	7.2
L1	GND	22.76	44.14	QP	60.0	15.9
L1	GND	23.25	43.36	AV	50.0	6.6
L1	GND	23.25	44.74	QP	60.0	15.3
L1	GND	23.75	43.69	QP	60.0	16.3
L1	GND	23.75	48.29	AV	50.0	1.7
L1	GND	24.24	43.68	QP	60.0	16.3
L1	GND	24.24	45.83	AV	50.0	4.2
L1	GND	26.72	43.57	AV	50.0	6.4
L1	GND	26.72	43.21	QP	60.0	16.8

Remark: Please see next sub-clause for the measurement plot.

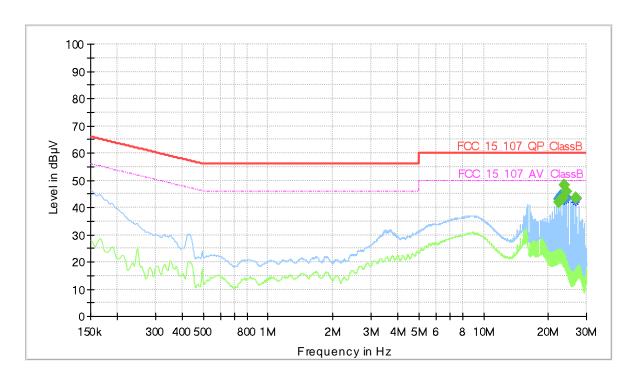
5.1.5 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Common Information

Test Description: Conducted Emissions
Test Standard: FCC §15.107, ANSI C63.4

EUT / Setup Code: DE1270008aa01

Operating Conditions: 120 V 60 Hz, Drone detection, Wifi detection, drone simulation on


868 MHz, LAN traffic to Laptop.

Comment: Computer peripheral setup

Legend: Trace: blue = QP, green = CISPR AV; Star: red or blue = critical

frequency; Rhombus: blue = final QP, green = final CISPR AV

Tested Port / used LISN: AC mains (AUX1) => 1st LISN ESH3-Z5
Termination of other ports: AC of AUX5 => 2nd LISN ESH3-Z5 +50 Ohm

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Line	PE	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)			(dB)
22.263000		42.08	50.00	7.92	1000.0	9.000	L1	GND	11.1
22.263000	43.29		60.00	16.71	1000.0	9.000	L1	GND	11.1
22.758000		42.76	50.00	7.24	1000.0	9.000	L1	GND	11.2
22.758000	44.14		60.00	15.86	1000.0	9.000	L1	GND	11.2
23.253000		43.36	50.00	6.64	1000.0	9.000	L1	GND	11.2
23.253000	44.74		60.00	15.26	1000.0	9.000	L1	GND	11.2
23.748000	43.69		60.00	16.31	1000.0	9.000	L1	GND	11.2
23.748000		48.29	50.00	1.71	1000.0	9.000	L1	GND	11.2
24.243000	43.68		60.00	16.32	1000.0	9.000	L1	GND	11.2
24.243000		45.83	50.00	4.17	1000.0	9.000	L1	GND	11.2
26.715750		43.57	50.00	6.43	1000.0	9.000	L1	GND	11.2
26.715750	43.21		60.00	16.79	1000.0	9.000	L1	GND	11.2

5.1.6 TEST EQUIPMENT USED

Conducted Emissions FCC

5.2 RADIATED EMISSIONS

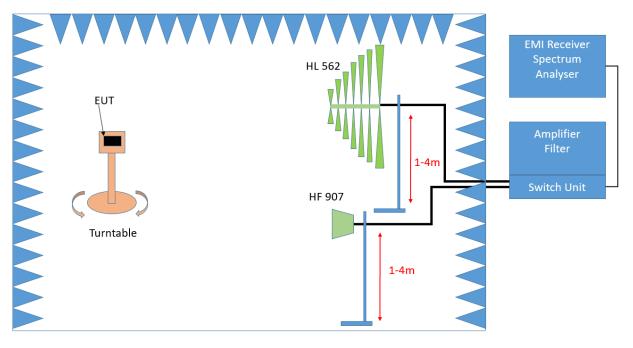
Standard FCC Part 15 Subpart B

The test was performed according to:

ANSI C63.4

5.2.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The measurements were performed according the following subchapters of ANSI C63.4:


• 30 MHz - 1 GHz: Chapter 8.3.2.1

• > 1 GHZ: Chapter 8.3.2.2

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

1. Measurement setup

Test Setup; Spurious Emission Radiated (SAC)

Frequency range 30 MHz - 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 4 m
Height variation step size: 1.5 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by 360° . During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will slowly vary between 1-4 m. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF - Bandwidth: 120 kHz
 Measuring time: 100 ms
 Turntable angle range: 360 °
 Height variation range: 1 - 4 m

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 2, the final measurement will be performed: EMI receiver settings for step 3:

- Detector: Quasi-Peak

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 1 s

Above 1 GHz:

The following changes apply to the measurement procedure for the frequency range > 1 GHz:

Step 1:

- Turntable step size: 45°

- Detector: Peak, Average (Maxhold)

- IF - Bandwidth: 1 MHz- Frequency steps: 250 kHz- Measuring time: 500 ms / GHz

Step 2:

- IF - Bandwidth: 1 MHz

Step 3:

- Detector: Peak / CISPR Average

- IF - Bandwidth: 1 MHz

After every measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

5.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart B, §15.109, Radiated Emission Limits

Class B:

Frequency (MHz)	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

Class A:

Frequency (MHz)	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	90@10m	3	39.1@10m
88 - 216	150@10m	3	43.5@10m
216 - 960	210@10m	3	46.4@10m
960 - 26000	300@10m	3	49.5@10m
26000 - 40000	300@10m	1	49.5@10m

The measured values for Class A and for Class B (> 26 GHz) measurements are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

TEST REPORT REFERENCE: MDE_DEDRONE_2202_FCC_01 Page 17 of 34

5.2.3 TEST PROTOCOL

Ambient temperature: 20 °C
Air Pressure: 1015 hPa
Humidity: 41 %

via ancillary equipment, computer peripheric

Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detector	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
35.4	19.3	QP	120	40.0	20.7
38.9	21.4	QP	120	40.0	18.6
44.3	23.7	QP	120	40.0	16.3
118.8	34.9	QP	120	43.5	8.6
137.1	36.4	QP	120	43.5	7.1
183.9	21.3	QP	120	43.5	22.2
226.5	27.4	QP	120	46.0	18.7
5300.0	44.9	PEAK	1000	74.0	29.1
5700.0	31.7	PEAK	1000	74.0	42.3
11154.0	37.9	PEAK	1000	74.0	36.1
11155.0	24.9	AV	1000	54.0	29.1
15715.8	42.4	PEAK	1000	74.0	31.6
15716.3	30.0	AV	1000	54.0	24.0

Remark: Please see next sub-clause for the measurement plot.

MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

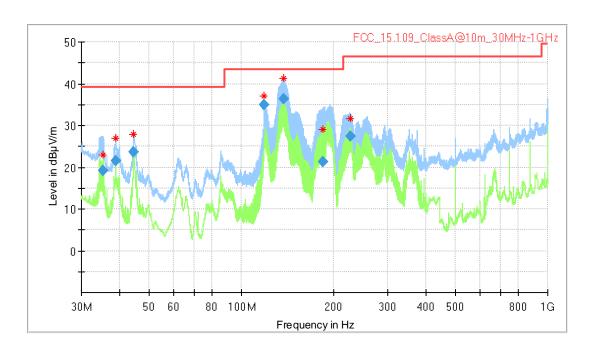
Diagram 2.01

Common Information

Test Description: Radiated Emissions, Test Site: Semi Anechoic Chamber @ 3 m

Test Standard: FCC §15.109 / Class A

Frequency range: 30 MHz – 1 GHz EUT / Setup Code: DE1270008aa01


Operating Conditions: Drone Detection + Wifi detection + drone simulation on 868 MHz,

LAN traffic to Laptop.

Comment Computer peripheral Setup

Legend: Trace (preview): blue = PK, green = QP; Star: red or blue = critical

frequency; Rhombus: blue = final QP

Final Result

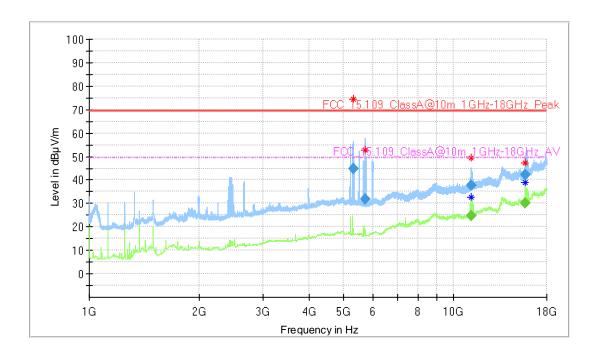
Frequency (MHz)	QuasiPeak (dΒμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
35.400000	19.27	39.10	19.83	1000.0	120.000	103.0	V	109.0	5.7
38.850000	21.44	39.10	17.66	1000.0	120.000	105.0	V	-94.0	3.8
44.310000	23.70	39.10	15.40	1000.0	120.000	100.0	V	84.0	0.3
118.800000	34.87	43.50	8.63	1000.0	120.000	119.0	V	-133.0	1.3
137.130000	36.39	43.50	7.11	1000.0	120.000	131.0	V	-145.0	-0.2
183.930000	21.32	43.50	22.18	1000.0	120.000	124.0	V	-134.0	-0.7
226.500000	27.35	46.40	19.05	1000.0	120.000	112.0	V	10.0	0.3

Diagram 2.02

Common Information

Test Description: Radiated Emissions, Test Site: Semi Anechoic Chamber @ 3 m

Test Standard: FCC §15.109 / Class A Frequency range: 1 GHz – 18 GHz EUT / Setup Code: DE1270008aa01


Operating Conditions: Drone Detection + Wifi detection + drone simulation on 868 MHz,

LAN traffic to Laptop.

Comment Computer peripheral Setup

Legend: Trace (preview): blue = PK, green = QP; Star: red or blue = critical

frequency; Rhombus: blue = final QP

Final Result

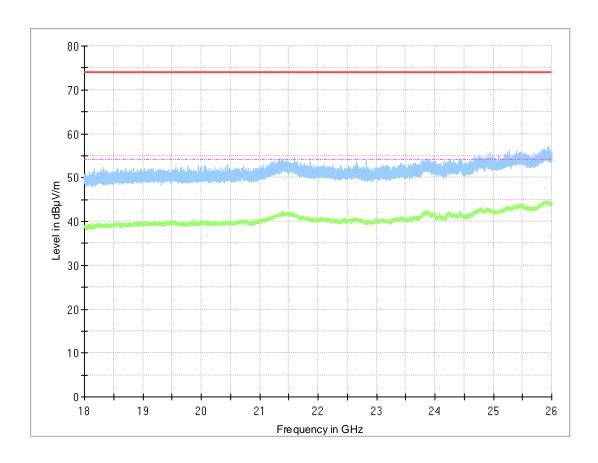
Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
5300.000000	44.93		69.50	24.57	200.0	1000.000	384.0	Н	-234.0	3.3
5700.000000	31.67		69.50	37.83	200.0	1000.000	353.0	V	33.0	3.9
11154.000000	37.89		69.50	31.61	200.0	1000.000	405.0	Н	-199.0	11.6
11155.000000		24.90	49.50	24.60	200.0	1000.000	353.0	V	33.0	11.6
15715.750000	42.36		69.50	27.14	200.0	1000.000	145.0	Н	-183.0	16.6
15716.250000		29.98	49.50	19.52	200.0	1000.000	353.0	V	33.0	16.6

Diagram 2.03

Common Information

Test Description: Radiated Emissions in FAC

Test Standard: FCC §15.109
Frequency range: 18 GHz - 26 GHz EUT / Setup Code: DE1270008aa01


Operating Conditions: Drone Detection + Wifi detection + drone simulation on 868 MHz,

LAN traffic to Laptop.

Comment Computer peripheral Setup

Legend: Trace (preview): blue = PK, green = AV; Star: red or blue = critical

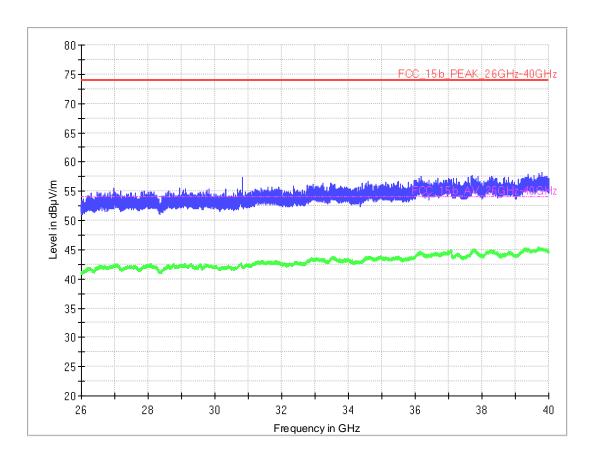
frequency; Rhombus: blue = final Peak, green = Final CISPR AV

Diagram 2.04

Common Information

Test Description: Radiated Emissions in FAC

Test Standard: FCC §15.109
Frequency range: 26 GHz – 40 MHz
EUT / Setup Code: DE1270008aa01


Operating Conditions: Drone Detection + Wifi detection + drone simulation on 868 MHz,

LAN traffic to Laptop.

Comment Computer peripheral Setup

Legend: Trace (preview): blue = PK, green = AV; Star: red or blue = critical

frequency; Rhombus: blue = final Peak, green = Final CISPR AV

5.2.4 TEST EQUIPMENT USED

- Radiated Emissions SAC above 1 GHz
- Radiated Emissions SAC up to 1 GHz
- Radiated emissions FAC

6 TEST EQUIPMENT

6.1 TEST EQUIPMENT HARDWARE

1 Conducted Emissions FCC Conducted Emissions AC Mains for FCC standards

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2021-10	2023-10
1.2	SMBV100A	Vector Signal Generator 9 kHz - 3.2 GHz (GNSS / Broadcast Signalling Unit)	Rohde & Schwarz GmbH & Co. KG	260001	2021-02	2024-02
1.3	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2022-06	2024-06
1.4	ESH3-Z5		Rohde & Schwarz GmbH & Co. KG	828304/029	2021-08	2023-08
1.5	EP 1200/B, NA/B1		Spitzenberger & Spies GmbH & Co. KG	B6278		
1.6	Chroma 6404	AC Source	Chroma ATE INC.	64040001304		
1.7	Shielded Room 02		Frankonia Germany EMC Solution GmbH			
1.8	ESH3-Z5	Two-Line V-	Rohde & Schwarz GmbH & Co. KG	829996/002	2021-08	2023-08
1.9	ESR 7		Rohde & Schwarz	101424	2021-01	2023-01
1.10						
1.11	Opus10 THI (8152.00)	, 33	Lufft Mess- und Regeltechnik GmbH	7489	2021-10	2023-10
1.12	SMU 200A		Rohde & Schwarz GmbH & Co. KG	100912		

2 Radiated Emissions SAC above 1 GHz Radiated emission tests above 1 GHz in a semi anechoic room with floor absorbers

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	N5000/NP	2 Lines, 250 V, 16 A		241515		
2.2	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2021-10	2023-10
2.3	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2022-01	2024-01
2.4	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none		
2.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2022-06	2024-06
2.6	Opus10 THI (8152.00)	T/H Logger 10	Lufft Mess- und Regeltechnik GmbH	12488	2021-08	2023-08
2.7	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278		
2.8	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
2.9	JS4-00102600- 42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
2.10	MA4985-XP-ET	Bore Sight Antenna Mast	innco systems GmbH	none		
2.11	BB4312-C30- H3x	Filter Universal 1A	Siemens Matsushita Components	none		
2.12	HF 907-2	Double-ridged horn	Rohde & Schwarz	102817	2022-07	2025-07

Radiated Emissions SAC up to 1 GHz Radiated emission tests up to 1 GHz in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.1	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515		
3.2	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2021-10	2023-10
3.3	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2022-01	2024-01
3.4	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none		
3.5	HL 562 ULTRALOG	Biconical-log- per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2021-09	2024-09
3.6	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2022-06	2024-06
3.7	Opus10 THI (8152.00)	T/H Logger 10	Lufft Mess- und Regeltechnik GmbH	12488	2021-08	2023-08
3.8	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278		
3.9	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
3.10	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513		

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

TEST EQUIPMENT SOFTWARE

Semi-Anechoic Chamber:	
Software	Version
EMC32 Measurement Software	10.60.10
INNCO Mast Controller	1.02.62
MATURO Mast Controller	12.19
MATURO Turn-Table Controller	30.10
Fully-Anechoic Chamber:	
Software	Version
EMC32 Measurement Software	10.60.10
MATURO Turn-Unit Cotrolller	11.10
MATURO Mast Controller	12.10
MATURO Turntable Controller	12.11
Conducted AC Emissions:	
Software	Version
EMC32 Measurement Software	10.60.20

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency		Corr.
MHz		dB
0.15		10.1
5		10.3
7		10.5
10		10.5
12		10.7
14		10.7
16		10.8
18		10.9
20		10.9
22		11.1
24		11.1
26	-	11.2
28		11.2
30		11.3

LISN insertion loss ESH3-	cable loss (incl. 10 dB atten- uator)
dB	dB
0.1	10.0
0.1	10.2
0.2	10.3
0.2	10.3
0.3	10.4
0.3	10.4
0.4	10.4
0.4	10.5
0.4	10.5
0.5	10.6
0.5	10.6
0.5	10.7
0.5	10.7
0.5	10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

7.2 AIV	LININA	Q3 111112
	AF	
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

cablecablecablecabledistantloss 1loss 2loss 3loss 4cor(inside(outside(switch(to(-40chamber)chamber)unit)receiver)decar	r. (meas. (meas. dB/ distance distance de) (limit) (used)
dB dB dB dE	m m
0.1 0.1 0.1 0.1	-80 300 3
0.1 0.1 0.1 0.1	-80 300 3
0.1 0.1 0.1 0.1	-80 300 3
0.1 0.1 0.1 0.1	-80 300 3
0.1 0.1 0.1 0.1	-80 300 3
0.1 0.1 0.1 0.1	-80 300 3
0.1 0.1 0.1 0.1	-80 300 3
0.1 0.1 0.1 0.1	-80 300 3
	-80 300 3
0.1 0.1 0.1 0.1	-80 300 3
	-80 300 3
0.1 0.1 0.1 0.1	-80 300 3
	-40 30 3 -40 30 3
	-40 30 3
	-40 30 3
	-40 30 3
	-40 30 3
	-40 30 3
	-40 30 3
	-40 30 3
0.2 0.1 0.1 0.1	-40 30 3
0.2 0.1 0.2 0.1	-40 30 3
0.2 0.1 0.2 0.1	-40 30 3
0.2 0.1 0.2 0.1	-40 30 3
	-40 30 3
0.3 0.1 0.2 0.1	-40 30 3
	-40 30 3
	-40 30 3 -40 30 3
	-40 30 3
0.3 0.1 0.2 0.1	-40 30 3
0.3 0.1 0.3 0.1	-40 30 3
0.4 0.1 0.3 0.1	-40 30 3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

 $(d_{Limit} = 3 m)$

$(d_{Limit} = 3 m)$						
	AF R&S					
Frequency	HL562	Corr.				
MHz	dB (1/m)	dB				
30	18.6	0.6				
50	6.0	0.9				
100	9.7	1.2				
150	7.9	1.6				
200	7.6	1.9				
250	9.5	2.1				
300	11.0	2.3				
350	12.4	2.6				
400	13.6	2.9				
450	14.7	3.1				
500	15.6	3.2				
550	16.3	3.5				
600	17.2	3.5				
650	18.1	3.6				
700	18.5	3.6				
750	19.1	4.1				
800	19.6	4.1				
850	20.1	4.4				
900	20.8	4.7				
950	21.1	4.8				
1000	21.6	4.9				

cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 $(d_{Limit} = 10 m)$

$(d_{Limit} = 10)$	m)								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3
					<u> </u>			<u> </u>	

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

		cable		
cable		loss 3		
loss 1		(switch		
(relay +	cable	unit,		
cable	loss 2	atten-	cable	
inside	(outside	uator &	loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

				cable loss 4		
ı						
ı	cable			(switch		
ı	loss 1	cable	cable	unit,		used
ı	(relay	loss 2	loss 3	atten-	cable	for
ı	inside	(inside	(outside	uator &	loss 5 (to	FCC
ı	chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
ı	dB	dB	dB	dB	dB	
	0.47	1.87	0.53	-27.58	1.33	
ı	0.56	2.41	0.67	-28.23	1.31	
ı	0.61	2.78	0.86	-27.35	1.40	
	0.58	2.74	0.90	-26.89	1.47	
ı	0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Frequency	AF EMCO 3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.2	-22.0
20000		
	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

77 (10 GHZ 20.3 GHZ)					
cable	cable	cable	cable	cable	
loss 1	loss 2	loss 3	loss 4	loss 5	
(inside	(pre-	(inside	(switch	(to	
chamber)	amp)	chamber)	unit)	receiver)	
dB	dB	dB	dB	dB	
0.72	-35.85	6.20	2.81	2.65	
0.69	-35.71	6.46	2.76	2.59	
0.76	-35.44	6.69	3.15	2.79	
0.74	-35.07	7.04	3.11	2.91	
0.72	-34.49	7.30	3.07	3.05	
0.78	-34.46	7.48	3.12	3.15	
0.87	-34.07	7.61	3.20	3.33	
0.90	-33.96	7.47	3.28	3.19	
0.89	-33.57	7.34	3.35	3.28	
0.87	-33.66	7.06	3.75	2.94	
0.88	-33.75	6.92	3.77	2.70	
0.90	-33.35	6.99	3.52	2.66	
0.88	-33.99	6.88	3.88	2.58	
0.91	-33.89	7.01	3.93	2.51	
0.88	-33.00	6.72	3.96	2.14	
0.89	-34.07	6.90	3.66	2.22	
0.86	-35.11	7.02	3.69	2.28	
0.90	-35.20	7.15	3.91	2.36	

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-9.5	3	1.0
4.4				-9.5	3	1.0
4.5				-9.5	3	1.0
4.6				-9.5	3	1.0
4.7				-9.5	3	1.0
4.7				-9.5	3	1.0
4.8				-9.5	3	1.0
4.9				-9.5	3	1.0
5.0				-9.5	3	1.0
5.1				-9.5	3	1.0
5.1				-9.5	3	1.0
5.2				-9.5	3	1.0
5.3				-9.5	3	1.0
5.4				-9.5	3	1.0
5.5				-9.5	3	1.0

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

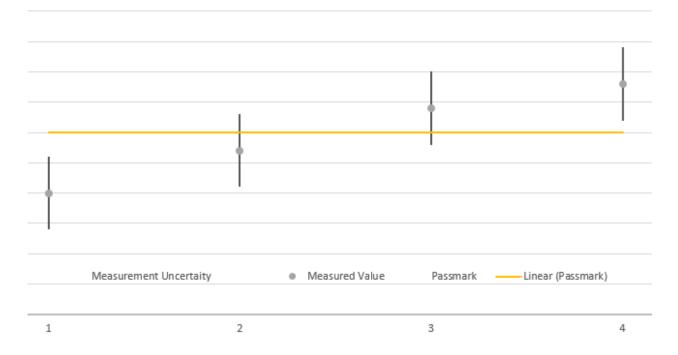
U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
Conducted Emissions at AC mains	Voltage	± 3.4 dB
Radiated Emissions	Field Strength	± 5.5 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.

9 PHOTO REPORT

Please see separate photo report.