BLEPARK

USER MANUAL
V1.2.1

FCC & IC statements (1/2)

Caution

The user is cautioned that changes or modifications not expressly approved by the party responsible for compliance could void the user's
authority to operate the equipment.

This device complies with Part 15 of the FCC Rules and Industry Canada licence-exempt RSS standard(s). Operation is subject to the following
two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including
interference that may cause undesired operation.

Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée
aux deux conditions suivantes: (1) I'appareil ne doit pas produire de brouillage, et (2) I'utilisateur de I'appareil doit accepter tout brouillage
radioélectrique subi, méme si le brouillage est susceptible d’en compromettre le fonctionnement.

FCC & IC statements (2/2)

NOTE

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These
limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses
and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to
radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and
on, the user is encouraged to try to correct the interference by one or more of the following measures:

Reorient or relocate the receiving antenna.

Increase the separation between the equipment and receiver.

Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
Consult the dealer or an experienced radio/TV technician for help.

FCC and IC Radiation Exposure Statement:

This equipment complies with FCC and Canada radiation exposure limits set forth for an uncontrolled environment. This transmitter must not be
co-located or operating in conjunction with any other antenna or transmitter.

This equipment should be installed and operated with a minimum distance of 20cm between the radiator and your body.
Déclaration d’IC sur I’exposition aux radiations:

Cet équipement est conforme aux limites d’exposition aux radiations définies par le Canada pour des environnements non contrélés. Cet
émetteur ne doit pas étre installé au méme endroit ni utilisé avec une autre antenne ou un autre émetteur.

Cet équipement doit étre installé et utilisé a une distance minimum de 20 cm entre I'antenne et votre corps.

HARDWARE DESCRIPTION

° Main components:
o Chip antenna
o Jtag connector for programming s &
o Power supply header Anterna] - : iR Csin
o Serial port connector

° Power Supply
o Voltage range: +12 .. +24V DC
o Current consumption: 10mA MAX

Power Supply Connector

Pin2 V+ Positive Power Supply|

Power Supply Connector

Pin1 0V/Ground Power Supply Return

Pin1 Pin 2 Pin 6 Pin 1

SERIAL AND JTAG PINOUT

Serial Interface
RS-232 ; Baud rate: 57600; Stop Bits: 1; Parity: None

Serial Connector

BLEPARK D-SUB 9 Female (DCE) HOST D-SUB 9 Male (DTE)

Pin 1 NA Pin1 DCD Input
Pin 2 TXD Output Pin2 RXD Input

Pin 3 RXD Input Pin3 TXD Output
Pin 4 NA Pin4 DTR Qutput
Pin 5 GND Common Pin5 GND Common
Pin 6 NA Pin6 DSR Input
Pin7 CTS Input Pin7 RTS Output
Pin 8 RTS Output Pin8 CTS Input

Pin 9 NA Pin9 RI Input

JTAG

JTAG Connector

Pin 1

Pin 2

Pin3

Pin 4

Pin 5

Pin 6

Pin7

Pin 8

Pin 9

Pin 10

Vref

SWDIO

GND

SWCLK

GND

NA

NA

NA

GND

NA

Chip characteristics

The board uses SoC nrf51422 from Nordic Semiconductor with integrated RF transceiver.
The following list gathers the main characteristics

2.4 GHz transceiver

-90 dBm sensitivity in ANT mode

-93 dBm sensitivity in Bluetooth® low energy mode
250 kbps, 1 Mbps, 2 Mbps supported data rates

TX Power +4 dBm in 4 dB steps

TX Power -30 dBm Whisper mode

13 mA peak RX, 10.5 mA peak TX (0 dBm)

9.7 mA peak RX, 8 mA peak TX (0 dBm) with DC/DC
RSSI (1 dB resolution)

MECHANICAL DRAWINGS

BLEPARK

Application protocol specification
V3.1

Changelog

° Changelog for V2.1

o

First release: w.r.t to JunglePass board, the following have been added:
[keepCitrlAlive() and keepHostAlive() messages to allow both the

° Changelog for V2.2

o

O O O

(e]

For APP developers only
m Added routines to calculate MAC to PASSWORD transformation (for APP developers only)
m Added map of GATT server characteristics
Added a NOTE on calibration
Added sequence diagram for keep alive messages
Added description of keepCitrlAlive() message missing in the previous release
Compressed number of ticket types to 2 (transient and subscriptions). Specific types must be addressed in ticket record length.

° Changelog for V3.1

(0]

(0]

Maijor version updated to allow retro compatibility with hosts attached to Junglepass controllers. The “JunglePass Board V2.X"
documents indeed overlap with V2.X of BLEPARK specifications in terms of major protocol number and produces problems in
fields.
[NOTE: every BLEPARK boards shall be interfaced with a major protocol version >= 3. Major version number 2 is
reserved for existing installations of Junglepass board.
Integrated missing portion related to firmware update protocol subset in the documentation

GATT server characteristic list

BLE_UUID TAS REQ ACCESS CHARACTERISTIC
BLE UUID TAS USERID TICKET CHARACTERISTIC
BLE UUID TAS DATA TICKET CHARACTERISTIC

BLE UUID TAS TICKET PROCESSED CHARACTERISTIC
BLE UUID TAS TOGGLE TICKET CHARACTERISTIC
BLE UUID TAS TICKET ERROR CHARACTERISTIC

BLE UUID TAS TAC_ CHARACTERISTIC

BLE_UUID TAS RTX PWR_CHARACTERISTIC
BLE_UUID TAS PTX_PWR_CHARACTERISTIC
BLE_UUID TAS MAC_CHARACTERISTIC
BLE_UUID TAS PASSWD DATA_CHARACTERISTIC
BLE_UUID TAS_PASSWD CTRL_CHARACTERISTIC
BLE_UUID TAS HOST STATUS CHARACTERISTIC

Device calibration

NOTE ON CALIBRATION

Calibrator has to write to characteristic 0x0021 to set the transmitted power
value. This is done automatically by Operator APP.

Firmware version “blepark_app V1 _2” stills allows to set such value without
previous authentication. From blepark_app V1 _3 this is no more possible.

CRC generation for password
generation (only for APP team)

#define WIDTH (8 * sizeof(crc))
#define TOPBIT (1 << (WIDTH - 1))
#define POLYNOMIAL 0x04C11DB7

crc crcGen(uint8_t *message, int nBytes)

{

crc remainder = 0;

for (int byte = 0; byte < nBytes; ++byte)
{
remainder A= (message[byte] << (WIDTH - 8));

for (uint8_t bit = 8; bit > 0; --bit)
{

if (remainder & TOPBIT)

{

remainder = (remainder << 1) * POLYNOMIAL;
}

else

{

remainder = (remainder << 1);
}

}

}

return (remainder);

Message format

The format of messages exchanged between a host (peripheral software) and
BLE controller is described in the following table.

Name Length (bytes) Description
Module ID 1 Module ID
Opcode 1 Operation Code
Payload Length 2

Payload N

Message format

It's fields are explained below:

- Module ID: it represents a specific functionality to be addressed. For
example, firmware update or bluetooth communication.

- Opcode: identifies the specific message the host or the controller wishes to
send to peer.

- Payload length: length of payload

- Payload: message contents

Modules IDs

The following table shows the module ID used in BLEPARK. For
re-compatibility with JunglePass protocol, codes do not start from 1.

Modules IDs table

Short name Value
(hex)

HUB MOD BLE 0x12

HUB MOD_ NRF_SBL 0x16

HUB_MOD_NONE 0x1B

Opcodes

Host -> BLEPARK

Modules IDs table

Message name Opcode
sendConfig() Oxaa
reset() Oxac
endTransaction() Oxae
startTransit() 0xf0
endTransit() O0xOf
ticketEmission() 0x81
checkTicketResponse() //same format as ticketEmission() 0x82

keepHostAlive() 0x83

Opcodes

BLEPARK -> Host

Modules IDs table

Message name Opcode
requestConfig() Oxab
sessionEnd() Oxaf
requestTicket() 0x18
identifyCustomer() 0x19
conf() 0x42
verify Ticket() 0x99
checkTicket() //same format as verify Ticket() Oxa0

keepCtrlAlive() Oxa1

Opcodes

Common between BLEPARK and Host

Modules IDs table
Message name Opcode
ACK Oxff

NACK 0xf0

Messages

APDU sendConfig(bt,dt,dn,ic)
<8-bit module> HUB_MOD_BLE

<8-bit opcode> Oxaa

<16-bit len> 9+ic_len

<8-bit brand type> (bt) #0

<8-bit device type> (dt) #1

<32-bit device number> (dn), little endian #2-#5
<8-bit major protocol number> #6

<8-bit minor protocol number> #7

<8-bit installation code length> (ic_len) #8

<ic_len-byte installation code> (ic) #9-(#9+#ic_len-1)

NOTEH1: the installation code can be either in hex or ascii format.

NOTE2: the maximum length for installation code is 12 bytes

Messages

APDU sendConfig(bt,dt,dn,ic)

dt value
0x00
0x01
0x04

0x05

Device type
Entrance
Exit

APM

Exit+APM

bt value
0x00
0x01
0x02
0x03

0x04

HUB Brand
FAAC
ZEAG
DATAPARK
CTR

HUB

Messages

APDU reset()

<8-bit module> HUB_MOD_ BLE
<8-bit opcode> Oxac

<16-bit len> 0

<variable data> null

NOTE: this command logically resets JANUS BLE, i.e. it restarts waiting for start transit event for 1/O
devices

Messages

APDU startTransit ()

<8-bit module> HUB_MOD_BLE
<8-bit opcode> 0xf0

<16-bit len> 0

<variable data> null

Messages

APDU endTransit(etr)

<8-bit module> HUB_MOD_ BLE

<8-bit opcode> 0xOf

<16-bit len> 0x01

<variable data> 8-bit end transit result (etr)

NOTE: see “End Transit Result (etr) codes” section

Messages

End Transit Result (etr) codes

Message
Normal gate crossing
Gone backward

Undertermined

Value
Oxff
0xf0

0x18

Messages

APDU ticketEmission (te,tt, gmt_offset, ts, trl, trp,_tte.am.cur)

<1-byte flag>

<1-byte opcode> 0x81
<2-bytes len> trl + 8 (trl = ticket length) + 11 (only in case of APM and Exit+APM devices)

<1-byte> ticket error (te) #0 //if te = 255 -> other fields must be present (irl can be 0) and they will be ignored.

<1-byte> ticket type (tt) #1

<1-byte> gmt_offset (int8) - #2 //offset w.r.t to GMT, expressed in quarters of hours (ex.: +5 means +75 minutes from GMT)
<4-bytes> unix timestamp - little endian #3- #6

<1-byte> ticket_record_len (trl) in bytes #7

<trl-bytes> ticket_record_payload (trp) #8...8+trl-1 //SEE “ticket representation” paragraphs for the specific formatting of each ticket

<4-bytes unsigned int - time to exit> (tte) #trl+8 - #trl+11 //in minutes

<4-bytes float - amount> (am) #trl+12 - #trl+15

<3-bytes - currency> (cur) #trl+16 - #trl+18 //according to ISO 4217 - little endian

NOTE1: See table “Ticket error” for te results.
NOTEZ2:: tte. am, cur fields are used only in case of APM or Exit+APM devices (code 0x05)

Messages

APDU keepHostAlive()

<8-bit module> HUB_MOD_ BLE
<8-bit opcode> 0x83

<16-bit len> 0

Messages

APDU keepCtrlAlive()

<8-bit module> HUB_MOD_BLE
<8-bit opcode> Oxa1

<16-bit len> 0

Messages

APDU conf (rc)

<8-bit module>

<8-bit opcode> 0x42

<16-bit len> 1

<8-bit> return code (rc) //either APDU_OK or APDU_KO

Messages

APDU endTransaction(te,tte,am,cur)

<8-bit module> HUB_MOD_ BLE

<8-bit opcode> Oxae

<16-bit len> 12

<8-bit ticket error> (te) #0 //see “Ticket error” table

<32 bit unsigned int - time to exit> (tte) #1 - #4 //in minutes

<32 bit float - amount> (am) #5 - #8

<24 bit - currency> (cur) #9 - #11 //according to ISO 4217 - little endian

Messages

APDU requestConfig()
<8-bit module>

<8-bit opcode> Oxab
<16-bit len> 0x00
<variable-data> NULL

Messages

APDU requestTicket ()
<8-bit module>

<8-bit opcode> 0x18
<16-bit len> 0

Messages

APDU identifyCustomer(id)

<8-bit module>

<8-bit opcode>

<16-bit len> id_len (variable, comprised of separators)
<id_len 8-bit data> id_payload

id_payload format:
CCCC;PNPNPNPNPN;PCPC
Where:
1. CCCC = country code
2. PNPN... = phone number
3. PCPC =pin
4. ; = separator (each field can be variable length)

Messages

APDU sessionEnd(esr)

<8-bit module>

<8-bit opcode> Oxaf

<16-bit len> 0x05

<8-bit> esr //see table “End Session Result (esr)”

Messages

End Session Result (esr)

Decimal
Value

0
1

Description

App updated
Timeout

BLE problem

Messages

APDU sendStatus()
<8-bit module>
<8-bit opcode> Oxa1
<16-bit len> 0x00

NOTE: currently the pair getStatus/sendStatus are only used to verify the
controller is powered-up and running. Host may send a getStatus during
inactivity periods with a relaxed period (ex.: 5s)

Messages

APDU verifyTicket(te,tt, gmt_offset, ts, tri, trp)
<1-byte flag>

<1-byte opcode> 0x99

<2-bytes len> trl + 8 (trl = ticket length)

<1-byte> ticket error (te) #0 //if te = 255 -> other fields can be ignored.
<1-byte> ticket_type (tt) #1

<1-byte> gmt_offset (int8) - #2 //offset w.r.t to GMT, expressed in quarters of hours (ex.: +5 means +75 minutes from
GMT)

<4-bytes> unix timestamp - little endian #3- #6
<1-byte> ticket_record_len (irl) in bytes #7

<trl-bytes> ticket_record_payload (trp) #8...8+trl-1 //SEE “ticket representation” paragraphs for the specific formatting of
each ticket type

NOTE1: See table “Ticket error (te)” for te results.

Messages

Ticket error (te)

Decimal Value @ Description

Generic validation codes

255 Success/No error (convenience value)

254 Undefined error

253 Ignore field

Errors generated by MS

0 display standard (unused within an app)

1 A difference exists to be paid (excess to be paid)

2 already used (exited from parking lot)

Generator

All

All

All

Exit

APM. Exit

Action

None

None

The field must not be used

None

Ticket becomes ACTIVE and we need to remember that it was already
paid because we have to sum the new received amount with the previous
one.

Ticket becomes CONSUMED.

Messages

Ticket error (te) - cont’d

Decimal Value Description

8 black list

4 not paid (in exit to indicate ticket not paid)

5 wrong gate

6 not valid (for example, ticket not present in MS)

7 read voucher (unused within an app, maybe useful with credit cards or
similar)

8 not enough (unused within an app)

9 wrong plate number

10 payment canceled in APM

11 subscription not valid

Generator

APM, Exit

Exit

Exit

Entrance, APM, Exit

APM, Exit

APM, Exit

Entrance, Exit

APM

Entrance

Action

Ticket becomes DISPOSED.

None (shouldn’t happen.)

None

Ticket becomes DISPOSED.

None

None

None

None

If app has another subscription available try to use i,
otherwise asks the user to take a transient title.

Messages

Ticket error (te) - cont’d

Decimal Value | Description Generator Action

12 Parking lot is FULL Entrance

Messages

Ticket error (te) - cont’d

Decimal Value Description

Errors generated locally (by lane devices or APM)
100 site code mismatch

101 Ticket format error (ex.: less or more than expected
number of characters, bad checksum, device number
beyond limit, progressive beyond upper limit)

102 Another transaction is in progress

103 Timeout: actions took too long to be completed
(unused within an app, used by peripherals)

104 BLE problem: BLE controller lost connection with
central, or some error occurred in the BLE
exchange (unused within an app, used by
peripherals)

Generator

APM, Exit

APM, Exit

Entrance, Exit

All

All

Action

None

None

None

None

None

Messages

Ticket types

Ticket Types Table
Code Meaning Description
1 TRANSIENT Originated by controller

2 SUBSCRIPTION | Originated by APP

Messages

Ticket representation (Ticket Record Payload)

Constraints:
Maximum Ticket Record Length (MTRL): 64 bytes

Messages

Ticket representation (Ticket Record Payload)

UNIQUE FORMAT

<1 byte> identifier length (idl)

<idl - bytes> identifier field (ASCII -> printable on smartphone)
<1 byte> product specific length (psl)

<psl - bytes> product specific binary data

Example:
0x05 0x31 0x32 0x33 0x34 0x35 0x07 0x01 0x02 0x03 0x04 0x05 0x06 Ox07

Maximum Ticket Record Length (MTRL): 64 bytes
NOTE: the MTRL (maximum ticket record length) comprises the field lengths

Message for firmware update

e The following pages describes the set of commands to
update and retrieve information about firmware
e Use the flag value HUB__MOD NRF_SBL instead of

HUB MOD_BLE when dealing with commands related
to firmware.

Messages

SBLopcodes
Short name Value Meaning
HUB SBL_RESP 0x01 Generic response
HUB SBL CMD_TRIGGER 0x02 Initiates the fimware upgrade procedure
HUB SBL CMD_ GET SBL_VERSION 0x03 Get the bootloader version
HUB_SBL RESP_GET_SBL VERSION 0x04 Response to above message

HUB _SBL CMD_GET _UCODE_VERSION 0x05 Get the User Code version
HUB_SBL _RESP_GET_UCODE_VERSION | 0x06 Response to above message
HUB_SBL_ASK CBLK 0x07 Board asks for a new code block
HUB_SBL_SND_CBLK 0x08 Host sends a code block

HUB _SBL _CMD_FWU_FINISHED 0x09 Board has finished upgrading fw

Messages

SBLgeneric response types

Short name Value Meaning

HUB SBL RESP_OK 0x01 Previous command was correctly applied
HUB SBL RESP_KO 0x02 Error while applying previous commands
HUB_SBL_RESP_WRONG_CRC 0x03 Wrong CRC

HUB_SBL RESP_UNREC_CMD 0x04 Command not recognized

Messages

HUB_SBL_RESP(resp)

<1-byte flag> HUB_MOD NRF_SBL
<1-byte opcode>

<2-byte len> 1

<1-byte > resp //see response table

Messages

HUB_SBL_CMD_TRIGGER(resp)
<1-byte flag> HUB_MOD NRF_SBL
<1-byte opcode>

<2-byte len>0

Messages

HUB_SBL_CMD_GET_SBL/UCODE_VERSION(resp)
<1-byte flag> HUB_MOD NRF_SBL

<1-byte opcode>

<2-byte len>0

Messages

HUB_SBL_CMD_RESP_GET_SBL/UCODE_VERSION(resp)
<1-byte flag> HUB_MOD_NRF_SBL

<1-byte opcode>

<2-byte len> 2

<1-byte> major number

<1-byte> minor number

Messages

HUB SBL ASK CBLK(resp)

<1-byte flag> HUB_MOD_NRF_SBL

<1-byte opcode>

<2-byte len> 4

<4-byte> block_number //each block is 32 byte long

NOTE: in case the *.bin image (ARM format) of the two devices is a multiple of 32 bytes, the
device asks for an “out of bound” code block. The host shall answer with a

HUB_ SBL SND CBLK message containing 0 bytes for the code_block section (this means the
message payload is composed only of block_num and crc fields.

Messages

HUB _SBL SND CBLK(block_num, code block, crc)

<1-byte flag> HUB_MOD_NRF_SBL

<1-byte opcode>

<2-byte len> 4 (block number) +num_bytes block + 2 (crc)

<4-byte> block_number //each block is 32 byte long

<num_bytes block-byte> code block

<2-bytes> crc //calculated taking into account the payload contents (no flag, opcode, length)

CRC generation

ushort table[256] = {0,};
static ushort getCrc16Ccitt(char* bytes, int len)
{
const ushort poly = 0x08408;
ushort initialValue = 0x0000;
ushort temp, a;
ushort crc = initialValue;
inti=0;
for (i = 0; i < sizeof(table); ++i)
{
temp = 0;
a = (ushort)(i << 8);
intj=0;
for (j = 0; j < 8; ++j)

if ((temp * @) & 0x8000) != 0)

temp = (ushort)((temp << 1) * poly);
else

temp <<= 1;
a<<=1;

}

table[i] = temp;
¥
i=0;
for (i = 0; i < len; ++i)

{
}

return crc;

crc = (ushort)((crc << 8) » table[((crc >> 8) (Oxff & bytes]i]))]);

Example fw update - 1/2

Peripheral
|

[HUB_SBL_CMD_TRIGGER]

JP device

HUB_SBL_RESP_OK

block_num =0

HUB_SB

L_RESP

[HUB_SBL_SND_CBLK]

[HUB_SBL_SND_CBLK]

L HUB_SBL_ASK_CBLK
block_num = 0, code_block, crc
HUB_SBL_RESP_OK r
l HUB_SBL_RESP
block_num =1 r
L HUB_SBL_ASK_CBLK

block_num = 1, code_block, crc

HUB_SBL_RESP_OK

HUB_SB

L RESP

Device reboots in
bootloader -mode

Example fw update - 2/2

Peripheral

block_num =N

JP device

[HUB_SBL_SND_CBLK]

block_num = N, code_block, crc

HUB_SBL_ASK_CBLK

HUB_SBL_RESP_OK

)

HUB_SB

L RESP

[HUB_SB

L_RESP

HUB_SBL_RESP_OK

HUB_SBL_CMD

_FWU_FINISHED]

—

Device reboots in user
application -mode

Procedures

USE CASE
Unconfigured controller

Procedures
Description & Sequence diagram

Description:

After power-up the controller is not configured. It does not emit any advertising signal until a configuration is sent by
host. Configuration is request once every 1s period, through the requestConfig() command. The use case terminates
when the host transmit a sendConfig() message with appropriate fields.

Host CTRL

1]
|
loop / requestConfig()|——————

Exit if :

host answers in time | <1s
|
|

--------- sendConfig(l- - — - - — - ->

I
t
|
|
|
|
|
|
|
|
|
|

Procedures

USE CASE
Keep alive

Procedures
Sequence diagram

Neverexits

Host CTRL
T T
t t
loop J = 4 keepCtriAlive() !
Never exits : :
| Ss 1
| |
| 1
: \ 4 keepCtriAlive() !
|]
| |
| |
! .
Host CTRL
loop keepHostAlive()

keepHostAlive()

SO 2SS '

Procedures
Description

The host is capable to understand if a device is operative by sampling the keepCtrlAlive() message. It is sent every 5s.

The controller can understand if the Host is ready by sampling its keepHostAlive() message. Such message is emitted
by host every 5s.

If these signals are not detected for 15 seconds, then

The host can assume the controller is not ready (removed, or having some problems)
- The controller can assume the host is no more ready (offline)

Procedures

USE CASE
Ticket checking

Procedures
Sequence Diagram

Controller configured as «entrance»

Host CTRL APP

T T

| |

| |

:‘—Connection established—b}

I APP found aticket inDB

: ' matching the parking lot ID
e WRITE data_ticket——«—

]
I
I
I
I
I
I
I
I
| |
:/ checkTicket() II
| |

—————— NOTIFY data_ticket — — — — — = >
[[

—————- checkTicketResponse() — — — — — >
I
I
I
I
]] I

Procedures
Description

The check ticket functionality is used to let the app understand if a specific ticket is valid or not for the system. This can
be useful, as explained in the next scenario.

ENTRY SCENARIO

User entered a parking lot with a ticket (transient or subscription). The result of “endTransit” message was not fed to
app due to a disconnection, so the app does not know if user moved back or a normal gate crossing was performed.

The ticket is consequently still valid in app logic. So we have two scenarios:
1. Normal gate crossing
2. Move back
Irrespective of what happened, user can now engage an entrance device again. Why?

- Because user accidentally engages to an entrance device after a normal gate crossing.
The ticket is valid for the system. The app shall ignore the attempt of the user to access the parking again

and close connection.
- Because user moved back and then tries to access the parking lot again.
The ticket is not valid for the system. The app shall remove the current ticket and request a new ticket to

the parking.
So, how the app can know what to do? Use validity check functionality (read later on)!

Procedures
Description

EXIT SCENARIO

User exited a parking lot with a ticket (transient or subscription). The result of “endTransit” message was not fed to app
due to a disconnection, so the app does not know if user moved back or a normal gate crossing was performed. The
ticket is consequently still valid in app logic. So we have two scenarios:

1. Normal gate crossing
2. Move back

Irrespective of what happened, user can now engage an entrance device again. Why?
- Because user accidentally engages to an entrance device after a move back.
- The ticket is valid for the system. The app shall ignore the attempt of the user to access the parking again

and close connection.
- Because user performed a normal gate crossing and then tries to access the parking lot again
- The ticket is not valid for the system. The app shall remove the current ticket and request a new ticket to

the parking.
So, how the app can know what to do? Use ticket validity functionality!

Procedures
Description

The checkTicketResponse() has the same format of the ticketEmission() message. The most important field is “ticket
error”. It hold two values in this message:
Oxff (no error): this means the ticket is valid for the parking system -> then app keeps the ticket in DB and closes

the current connection.
0x06 (ticket not valid): the app removes the ticket and proceeds with other use cases, keeping the connection

active

Additional note:
- The ticket checking functionality is required only for entrance devices

Procedures

USE CASE
Entrance

Procedures
Transient - happy path

Controller configured as «entrance»

|

(&————WRITEreq_access #2————
| |
(& identifyCustomer()}————— |

! WRITE data_ticket (tt) #4 !
_

Host CTRL APP
T T T
: Ed—APP opens connection4>ll
i—startTransit(]_}:
i
]

T notify ticket_toggle #o—P
|

|

1 &—
I | tt = TRANSIENT \
| 1
%requesﬁicket(]—: 1
| | 1
I | 1
Vorosizmannend ticketEmission(te) >lr |
f te = OxFF :
: 'L- ————— NOTIFY data_ticket (te) #4 — — — — —)1
| | WRITE ticket_processed|rc) 5 |
: : < rc= OxFF H
- confirc) | 1
| 1
! Host opens barrier : :
| 1
endTransit() o) |
1
1
1

|
14— APP closes connection———
| 1

Procedures
Description

NOTES

- Connection establishment and loop engagement are unrelated. The condition for the controller to send a
requestTicket() (or verifyTicket()) is that BOTH event occurred.
- A consequence of this is that identifyCustomer() and startTransit() can occur in any order.
- This is true not only for entrance but also for exit use case.
- This is true irrespective of the ticket type chosen

- The ticketEmission() command is used in two ways:
e in the “classic” sense in case of transient ticket for entrance devices.
e But ltis also used in exit and payment machines: in these cases the host must:
o Update the ticket record if needed, for offine management
o Always update all the the auxiliary fields (timestamp...) to the most recent values. Please
remember: fields outlined in command descriptions are totally unrelated to ticket internal contents.
The controller is not aware of internal ticket meaning of both visible and binary ticket portions.

Procedures
Transient - host cannot dispense a ticket

Controller configured as «entrance»

Host CTRL APP

T T T
| | |
1 | |
| 1 |
:—starﬂ’ransit()—b: :
| | |
| <~—————WRMEreq_access 22—
| |

|

|

| |
(&——identifyCustomer(}———— \
WRITE data_ticket (tt) #4 !

| |

1 e —— e
| | tt ==TRANSIENT \
| | |
%requesﬂ icket()}——— \
ticketEmission(te)	
(s RIS REE > I

ettt NOTIFY data_ticket (te) #4 — — — — — >:
|
|

opt
<—— APP closes connection——
APP closes connection if
max num attempts has
been reached

| |
1 |
| |
1 |
| |
| |
| |

endTransit)———— P

Procedures
Transient - app cannot process ticket

Controller configured as «entrance»

Host CTRL APP

T T
| 1
|-§———APP opens connection———— !
| 1

startTransit() #: :
[&——WRMTE req_access 22—
| |
| |
| 1

|

|

(&—————identifyCustomer(}——————
WRITE data_ticket (tt) #4

| |
1 l&—
I | tt == TRANSIENT |
Hrequesﬂicket() : :
1 | |
1 | |
Ficinmnasemnancd ticketEmission(te) _ }I |
te = OXFF '
Il- ————— NOTIFY data_ticket (te) #4 — — — — — >:
| WRITE tECka{rfieFSSEd(rC) #5 |
| r =ux |
confirc) ! |

| |
|-§——APP closes connection——— i

Enable manual

|
|
|
1
endTransit() :
|

|
|
|
|
»'
»
|

Procedures
Subscription - happy path

Controller configured as «entrance»

CTRL APP

T T

1 1
|l}———————APP opens connection————————|
1

startTransit()—}:

|
|
|
| |
%WRH’E req_access #2————

1 |

1 1

<——identifyCustome r{)|————— |
1

= WRITE data_ticket (tt) #4
tt € SUBSCRIPTION

<——verifyTicket(}

________ ticketEmission(te) _}
te = OxFF -

p———— NOTIFY data_ticket (te) #4 — — — — = >

1 1

| WRITE ticket_processed(rc) 45 |

| rc= OxFF |

confirc) 1 |

1 I

1 1

Host opens barrier 1 |

1 I

——endTransit(}—————Pppi 1

———notify ticket_toggle #6————P»
I |

{inPP closes connection4>:

Procedures
Subscription - verification error

Controller configured as «entrance»

Host CTRL APP

startTransit(}——Pp

]
<————WRTEreq_access #2———
I

T T
| |
| |
| |
| |
| |
|

|

| |
(&——identifyCustomer()——— |
WRITE data_ticket (tt) #4 !

1 |
| e —_
| | tt ==TRANSIENT |
| | |
< verifyTicket() T |
1 | |
| I |
| ticketEmission(te) [
I

opt

APP closes connection if
max num attempts has
been reached

|
RS Rs REASIEE. <o >
:— ————— NOTIFY data_ticket (te) #4 — — — — =)I
| |
| |

r<—— APP closes connection———— Py

|
|
|
|
|
endTrans'rt()—b: :

Procedures
Subscription - app cannot process ticket

Controller configured as «entrance»

Host CTRL APP

T T
| |
|-§———APP opens connection—————p»!
| 1

T
1

1

1

: startTransit() >: :
1 E&——WRITE req_access #2———————
I |

I |

1

WRITE data_ticket (tt) #4

| |
| [—— —te
I I tt ==TRANSIENT i
1 . | |
i verifyTicket() T |
I [} |
1 | 1
Liciesucamaiommened ticketEmission(te) _ } 1
! te = OxFF '
: :— ————— NOTIFY data_ticket (te) #4 — — — — — >:
| | WRITE ticket_processed(rc) 5 !
: | rc = OxFF |
r onfirc) i |
| | |
| l-———APP closes connection————— it
| |
1 Enable manual | |
| |
| 1
endTransit() #: :
| |

Procedures

USE CASE
Exit

Procedures
Transient & Subscription - happy path

Controller configured as xexit»

Host CTRL APP

T T

| |
|<§————APP opens connection————————p»!
| |
%starﬁransit(]—b: :

|

|
:<—WRWE data_ticket #4————L
|

1
[
[
[
I,&ve rifyTick et()—1

|
|
|
|
|
ticketEmission(te) |
|

|
l«——APP closes connection——

[1

1 Host opens barrier | |
| 1

| |

1

|

[

:—e ndTrans'rt()—b:
[

[

|
|
>
= te = OXFF
: lL ————— NOTIFY data_ticket (te) #8 — — — — = >J|
[| 3 |
WRITE ticket_processed(rc) #5

I H —de
1 | rc = OxFF |
LS confirc) | |
| |
[

——notify ticket_toggle #6——Pp!
| |

Procedures
Transient & Subscription - verification negative

Controller configured as «exit»

Host CTRL APP

T T T
| | |
| <}———APP opens connection——»|
I | |
:—startTransit(]—b: :
| | |
I :%\NRWE data_ticket #4———L+
1

I |

&——————verifyTicket()}—————————

|
|
|
|
|
ticketEmission(te) |
|

e te l=OxFF >

: Il- ————— NOTIFY data_ticket (te) #4 — — — — = >J|

T T !

opt | | |

| |

APP closes connection if : Enable manual :inPP closes connection%}
max num attempts has | |
been reached | |
T T
[I

————endTransit()|—————P»

|
|
Al
|
|
I |
1 |
1 |
1 [

|
I
I
|

Procedures

USE CASE
Payment

Procedures
Pure BLE-based payment

Controller configured as «xapm-pure ble»

Host CTRL APP

| 1 |

: |<————WRITE data_ticket (tt) #4———
< verifyTicket() : :
|

|

|

|

5 SUAS |
\]_"‘ """"""" HeketEmislon el iy > NOTIFY data_ticket (te) #4 — — — — = >

| |
| k& \WRITE ticket_processed #5———————+
| |

|
K—sessionEnd(esr]—Jl :
' : |

