

Global United Technology Services Co., Ltd.

Report No.: GTS201801000063F01

FCC REPORT

Applicant: TILTA TECHNOLOGY CO., LTD

2nd Floor, Building B, Qiaode High Technology Park. Road **Address of Applicant:**

No.7, Guangming New Dist, Shenzhen China

TILTA TECHNOLOGY CO., LTD Manufacturer:

Address of 2nd Floor, Building B, Qiaode High Technology Park, Road

No.7, Guangming New Dist, Shenzhen China Manufacturer:

Equipment Under Test (EUT)

Product Name: Nucleus-M Wireless Follow Focus System

Model No.: WLC-T03 FIZ Hand Unit

TILTAMAX Trade mark:

FCC ID: 2AO2S-FIZHAND

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: January 15, 2018

Date of Test: January 15-31, 2018

Date of report issued: February 01, 2018

PASS * **Test Result:**

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	February 01, 2018	Original

Prepared By:	Tjer. Chen	Date:	February 01, 2018	
	Project Engineer			
Check By:	Andy wa	Date:	February 01, 2018	
	Roviower			

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
	4.1 MEASUREMENT UNCERTAINTY	
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	7 7 7
	5.5 TEST LOCATION	
6	TEST INSTRUMENTS LIST	9
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	
8	7.6.2 Radiated Emission Method TEST SETUP PHOTO	
9	FUT CONSTRUCTIONAL DETAILS	30

Test Summary 4

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013

N/A means not applicable.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)		
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)		
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)		
AC Power Line Conducted Emission 0.15MHz ~ 30MHz ± 3.45dB (1)					
Note (1): The measurement unce	rtainty is for coverage factor of k	=2 and a level of confidence of	95%.		

5 General Information

5.1 General Description of EUT

Product Name:	Nucleus-M Wireless Follow Focus System
Model No.:	WLC-T03 FIZ Hand Unit
Serial No.:	K0180201161
Test sample(s) ID:	GTS201801000064-1
Sample(s) Status	Engineer sample
Hardware:	V3
Software:	NUCLES-M-150-V18.01.04
Operation Frequency:	2405MHz~2480MHz
Channel numbers:	16
Channel separation:	5MHz
Modulation type:	O-QPSK
Antenna Type:	Integral Antenna
Antenna gain:	0.7dBi(declare by Applicant)
Power supply:	DC 7.2V

Label:

NUCLEUS-M WIRELESS FOLLOW FOCUS SYSTEM

MODEL: WLC-T03 FIZ Hand Unit FCC ID: 2AO2S-FIZHAND TILTA TECHNOLOGY CO., LTD MADE IN CHINA SN:K0180201161

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2405MHz	5	2425MHz	9	2445MHz	13	2465MHz
2	2410MHz	6	2430MHz	10	2450MHz	14	2470MHz
3	2415MHz	7	2435MHz	11	2455MHz	15	2475MHz
4	2420MHz	8	2440MHz	12	2460MHz	16	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2405MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Keep the EUT in continuously transmitting mode. Transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 **Description of Support Units**

None

5.4 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 **Test Location**

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road,

Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Additional instructions

Software (Used for test) from client

Built-in by manufacture, power on and then it can be transmitted by operator.

Channel	Power level
Lowest	Default
Middle	Default
Highest	Default

Test software set

6 Test Instruments list

Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June 28 2017	June 27 2018
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 28 2017	June 27 2018
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 28 2017	June 27 2018
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 28 2017	June 27 2018
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 28 2017	June 27 2018
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
9	Coaxial Cable	GTS	N/A	GTS213	June 28 2017	June 27 2018
10	Coaxial Cable	GTS	N/A	GTS211	June 28 2017	June 27 2018
11	Coaxial cable	GTS	N/A	GTS210	June 28 2017	June 27 2018
12	Coaxial Cable	GTS	N/A	GTS212	June 28 2017	June 27 2018
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 28 2017	June 27 2018
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 28 2017	June 27 2018
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 28 2017	June 27 2018
16	Band filter	Amindeon	82346	GTS219	June 28 2017	June 27 2018

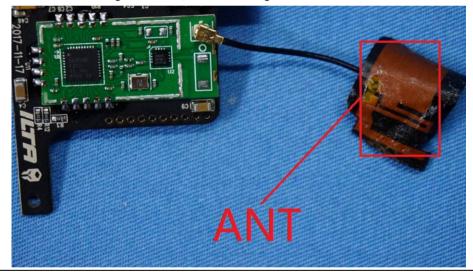
Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	June 28 2017	June 27 2018	

7 Test results and Measurement Data

7.1 Antenna requirement

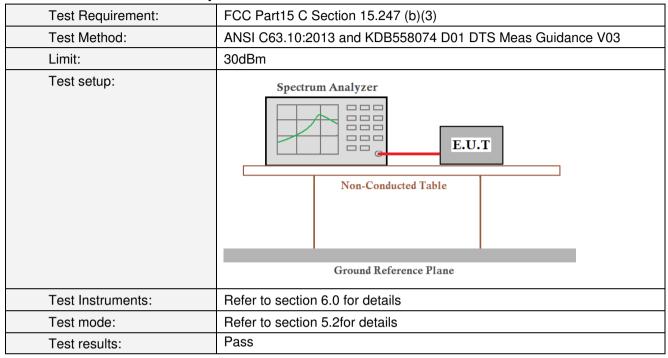
Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

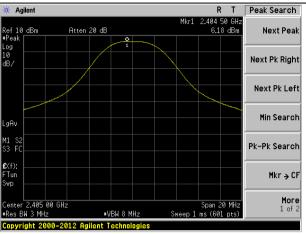
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

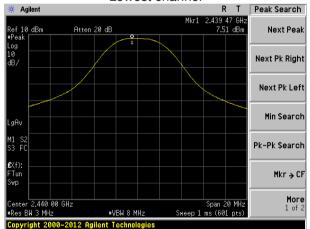

EUT Antenna:

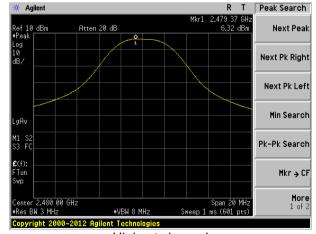
The antenna is integral Antenna, the best case gain of the antenna is 0.7dBi

7.2 Conducted Peak Output Power



Measurement Data


Frequency (MHz)	Peak Output Power (dBm)	Limit(dBm)	Result
2405	6.18		
2440	7.15	30	PASS
2480	6.32		

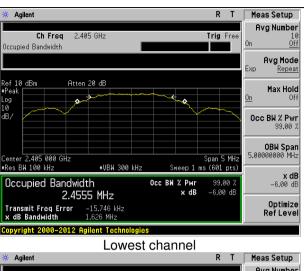

Test plot as follows:

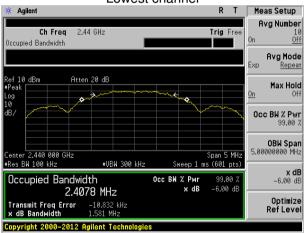
Middle channel

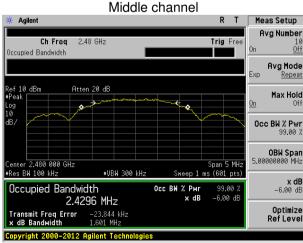
Highest channel

7.3 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

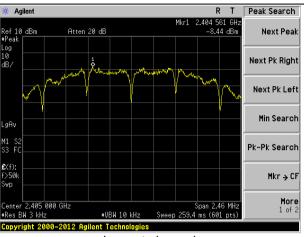

Measurement Data


Frequency (MHz)	Channel Bandwidth (MHz)	Limit(KHz)	Result
2405	1.626		
2440	1.581	>500	Pass
2480	1.601		

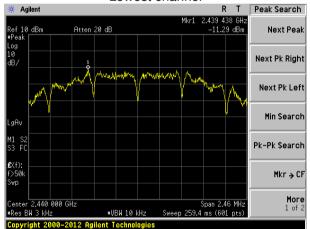

Test plot as follows:

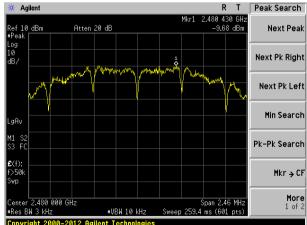
Highest channel

7.4 Power Spectral Density


Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

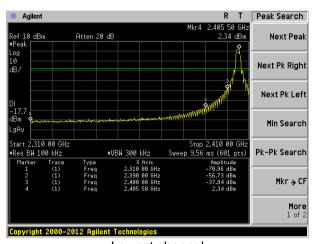

Frequency (MHz)	Power Spectral Density (dBm)	Limit (dBm/3kHz)	Result
2405	-8.44		
2440	-11.29	8.00	Pass
2480	-9.68		

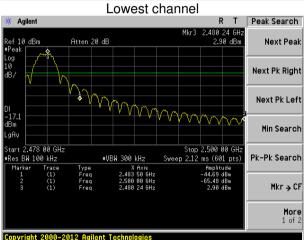

Test plot as follows:

Lowest channel

Middle channel

Highest channel


7.5 Band edges


7.5.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Test plot as follows:

Highest channel

7.5.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.				
Test site:	Measurement D	Measurement Distance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	Ala a v a 4 O L l =	Peak	1MHz	3MHz	Peak
	Above 1GHz	RMS	1MHz	3MHz	Average
Limit:	Freque	ncy	Limit (dBuV/	m @3m)	Value
			54.0		Average
	Above 1	GHZ	74.0	0	Peak
	Turn Tables E	UT+	est Antenna lm 4m > Preamplifier		
Test Procedure:	determine the 2. The EUT was antenna, whice tower. 3. The antenna ground to det horizontal and measurement 4. For each susy and then the a and the rota te the maximum 5. The test-rece Specified Bar 6. If the emission the limit specified the EUT wo have 10dB me peak or avera sheet. 7. The radiation And found the	a 3 meter care position of the position of the set 3 meters che was mounted the ight is varied ermine the made vertical polarical polari	mber. The tall e highest rac away from the don the top d from one naximum value rizations of the con, the EUT uned to heiged from 0 declarimum Hole EUT in peaking could be ed. Otherwise re-tested or specified arts are performoning which is	ole was rotated attack. The interference of a variable of the field she antenna at was arranged has from 1 mgrees to 360 at Detect Furd Mode. The mode was 10 stopped and the emissione by one using the reportmed in X, Y, It is worse cated the interference of the emissione of the mode was 10 stopped and the mode was 10 stopped and the mode was 10 stopped and the emissione by one using the worse cated in X, Y, It is worse cated the interference of the interference of the worse cated the interference of the worse cated the interference of the worse	ed 360 degrees to ce-receiving e-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find nction and OdB lower than I the peak values ons that did not sing peak, quasi-
Toot loots :	worst case m)rτ.	
Test mode:	Refer to section				
Test mode:	Refer to section	5.∠ for details			
Test results:	Pass				

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's was showed.

Test channe	Test channel: Lowest channel							
Peak value:	Peak value:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	37.25	27.91	5.30	24.64	45.82	74.00	-28.18	Horizontal
2390.00	39.66	27.59	5.38	24.71	47.92	74.00	-26.08	Horizontal
2310.00	36.99	27.91	5.30	24.64	45.56	74.00	-28.44	Vertical
2390.00	38.96	27.59	5.38	24.71	47.22	74.00	-26.78	Vertical
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	26.53	27.91	5.30	24.64	35.10	54.00	-18.90	Horizontal
2390.00	28.31	27.59	5.38	24.71	36.57	54.00	-17.43	Horizontal
2310.00	25.18	27.91	5.30	24.64	33.75	54.00	-20.25	Vertical
2390.00	27.00	27.59	5.38	24.71	35.26	54.00	-18.74	Vertical
Test channel: Highest channel								
Peak value:								

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	45.53	27.53	5.47	24.80	53.73	74.00	-20.27	Horizontal
2500.00	41.33	27.55	5.49	24.86	49.51	74.00	-24.49	Horizontal
2483.50	44.36	27.53	5.47	24.80	52.56	74.00	-21.44	Vertical
2500.00	40.78	27.55	5.49	24.86	48.96	74.00	-25.04	Vertical

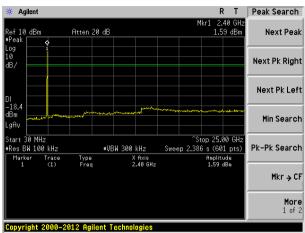
Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	35.25	27.53	5.47	24.80	43.45	54.00	-10.55	Horizontal
2500.00	35.07	27.55	5.49	24.86	43.25	54.00	-10.75	Horizontal
2483.50	34.69	27.53	5.47	24.80	42.89	54.00	-11.11	Vertical
2500.00	34.74	27.55	5.49	24.86	42.92	54.00	-11.08	Vertical

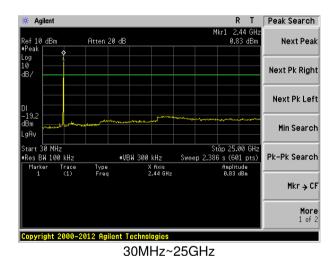
Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

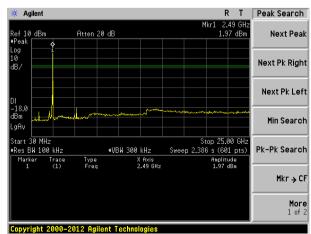
7.6 Spurious Emission


7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:				
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			


Test plot as follows:

Lowest channel



30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	30MHz to 25GHz	30MHz to 25GHz				
Test site:	Measurement Dis	Measurement Distance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
	Above IGHZ	RMS	1MHz	3MHz	Average	
Limit:	Frequen	cy L	imit (dBuV	/m @3m)	Value	
	30MHz-88	MHz	40.0	0	Quasi-peak	
	88MHz-216	6MHz	43.5	0	Quasi-peak	
	216MHz-96	0MHz	46.0	0	Quasi-peak	
	960MHz-1	GHz	54.0	0	Quasi-peak	
	Above 10	NI-	54.0	0	Average	
	Above 10		74.0	0	Peak	
	Test Antenna. Above 1GHz					
	Turn Table <150cm >	.dv. 40-1	6 3	nplifier		
Test Procedure:	1. The EUT was placed on the top of a rotating table (0.8 meters for					

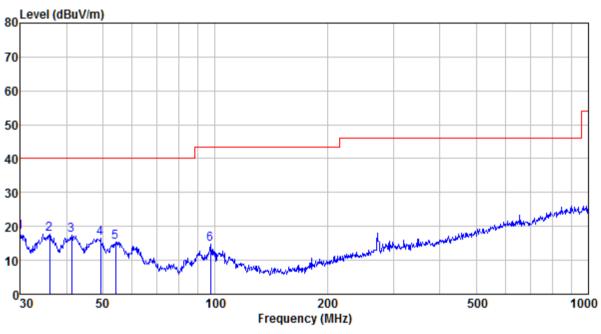
Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

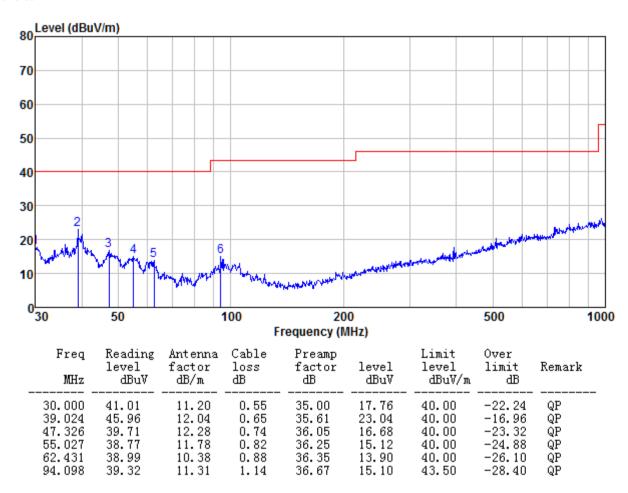
	below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remark:


Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

■ Below 1GHz


Horizontal:

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV	Limit level dBuV/m	Over limit dB	Remark	
30.000	41.58	11.20	0.55	35.00	18.33	40.00	-21.67	QP	
36.001	40.94	11.52	0.62	35.42	17.66	40.00	-22.34	QP	
41.277	40.41	12.21	0.68	35.74	17.56	40.00	-22.44	QP	
49.359	39.55	12.29	0.77	36.15	16.46	40.00	-23.54	QP	
54.071	39.00	11.88	0.81	36.24	15.45	40.00	-24.55	QP	
97.115	38.46	11.79	1.17	36.70	14.72	43.50	-28.78	QP	

Vertical:

■ Above 1GHz

Test channel:	Lowest channel
---------------	----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4810.00	31.42	31.78	8.60	37.66	34.14	74.00	-39.86	Vertical
7222.00	33.08	36.19	11.66	35.69	45.24	74.00	-28.76	Vertical
9620.00	29.74	38.01	14.14	34.91	46.98	74.00	-27.02	Vertical
12025.00	28.11	39.08	15.03	36.13	46.09	74.00	-27.91	Vertical
14430.00	26.43	42.46	17.17	36.01	50.05	74.00	-23.95	Vertical
4810.00	33.55	31.78	8.60	37.66	36.27	74.00	-37.73	Horizontal
7222.00	32.46	36.19	11.66	35.69	44.62	74.00	-29.38	Horizontal
9620.00	27.93	38.01	14.14	34.91	45.17	74.00	-28.83	Horizontal
12025.00	27.19	39.08	15.03	36.13	45.17	74.00	-28.83	Horizontal
14430.00	27.87	42.46	17.17	36.01	51.49	74.00	-22.51	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
4810.00	26.13	31.78	8.60	37.66	28.85	54.00	-25.15	Vertical		
7222.00	25.08	36.19	11.66	35.69	37.24	54.00	-16.76	Vertical		
9620.00	22.66	38.01	14.14	34.91	39.90	54.00	-14.10	Vertical		
12025.00	19.46	39.08	15.03	36.13	37.44	54.00	-16.56	Vertical		
14430.00	20.46	42.46	17.17	36.01	44.08	54.00	-9.92	Vertical		
4810.00	25.72	31.78	8.60	37.66	28.44	54.00	-25.56	Horizontal		
7222.00	24.11	36.19	11.66	35.69	36.27	54.00	-17.73	Horizontal		
9620.00	23.32	38.01	14.14	34.91	40.56	54.00	-13.44	Horizontal		
12025.00	19.85	39.08	15.03	36.13	37.83	54.00	-16.17	Horizontal		
14430.00	20.99	42.46	17.17	36.01	44.61	54.00	-9.39	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test channel:	Middle channel
---------------	----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	28.41	31.85	8.66	37.68	31.24	74.00	-42.76	Vertical
7320.00	28.11	36.37	11.72	35.64	40.56	74.00	-33.44	Vertical
9760.00	27.64	38.35	14.25	34.98	45.26	74.00	-28.74	Vertical
12200.00	26.83	38.92	15.14	36.26	44.63	74.00	-29.37	Vertical
14640.00	25.95	42.21	17.28	35.72	49.72	74.00	-24.28	Vertical
4880.00	29.03	31.85	8.66	37.68	31.86	74.00	-42.14	Horizontal
7320.00	28.04	36.37	11.72	35.64	40.49	74.00	-33.51	Horizontal
9760.00	27.97	38.35	14.25	34.98	45.59	74.00	-28.41	Horizontal
12200.00	26.33	38.92	15.14	36.26	44.13	74.00	-29.87	Horizontal
14640.00	26.01	42.21	17.28	35.72	49.78	74.00	-24.22	Horizontal

Average value:

g									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4880.00	23.36	31.85	8.66	37.68	26.19	54.00	-27.81	Vertical	
7320.00	23.17	36.37	11.72	35.64	35.62	54.00	-18.38	Vertical	
9760.00	20.55	38.35	14.25	34.98	38.17	54.00	-15.83	Vertical	
12200.00	21.34	38.92	15.14	36.26	39.14	54.00	-14.86	Vertical	
14640.00	20.41	42.21	17.28	35.72	44.18	54.00	-9.82	Vertical	
4880.00	23.89	31.85	8.66	37.68	26.72	54.00	-27.28	Horizontal	
7320.00	23.41	36.37	11.72	35.64	35.86	54.00	-18.14	Horizontal	
9760.00	21.63	38.35	14.25	34.98	39.25	54.00	-14.75	Horizontal	
12200.00	22.41	38.92	15.14	36.26	40.21	54.00	-13.79	Horizontal	
14640.00	20.32	42.21	17.28	35.72	44.09	54.00	-9.91	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

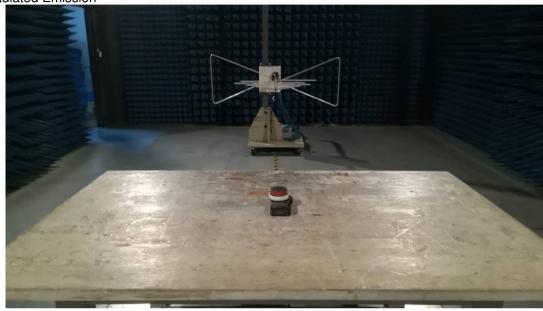
Test channel:	Highest channel
---------------	-----------------

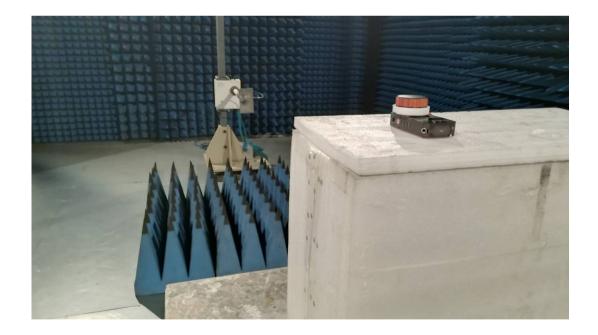
Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	30.12	31.93	8.73	37.78	33.00	74.00	-41.00	Vertical
7440.00	28.36	36.59	11.79	35.56	41.18	74.00	-32.82	Vertical
9920.00	27.41	38.81	14.38	35.14	45.46	74.00	-28.54	Vertical
12400.00	27.66	38.76	15.27	36.44	45.25	74.00	-28.75	Vertical
14880.00	27.37	41.52	17.39	35.47	50.81	74.00	-23.19	Vertical
4960.00	29.02	31.93	8.73	37.78	31.90	74.00	-42.10	Horizontal
7440.00	27.42	36.59	11.79	35.56	40.24	74.00	-33.76	Horizontal
9920.00	27.08	38.81	14.38	35.14	45.13	74.00	-28.87	Horizontal
12400.00	27.14	38.76	15.27	36.44	44.73	74.00	-29.27	Horizontal
14880.00	27.39	41.52	17.39	35.47	50.83	74.00	-23.17	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	25.37	31.93	8.73	37.78	28.25	54.00	-25.75	Vertical
7440.00	22.58	36.59	11.79	35.56	35.40	54.00	-18.60	Vertical
9920.00	22.85	38.81	14.38	35.14	40.90	54.00	-13.10	Vertical
12400.00	22.42	38.76	15.27	36.44	40.01	54.00	-13.99	Vertical
14880.00	21.98	41.52	17.39	35.47	45.42	54.00	-8.58	Vertical
4960.00	25.41	31.93	8.73	37.78	28.29	54.00	-25.71	Horizontal
7440.00	22.54	36.59	11.79	35.56	35.36	54.00	-18.64	Horizontal
9920.00	21.09	38.81	14.38	35.14	39.14	54.00	-14.86	Horizontal
12400.00	21.34	38.76	15.27	36.44	38.93	54.00	-15.07	Horizontal
14880.00	21.69	41.52	17.39	35.47	45.13	54.00	-8.87	Horizontal


Remark:

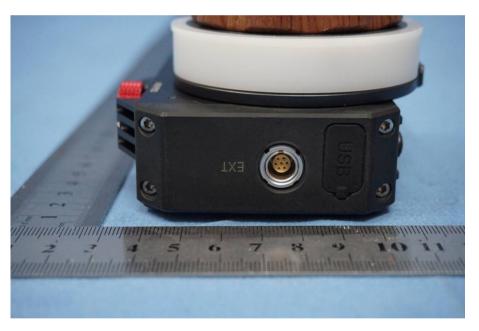

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

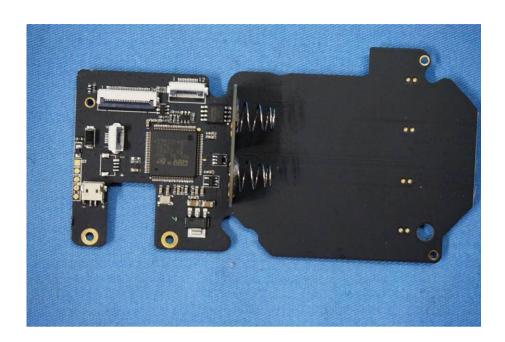
8 Test Setup Photo

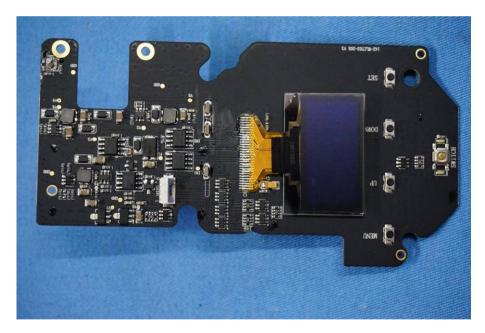
Radiated Emission

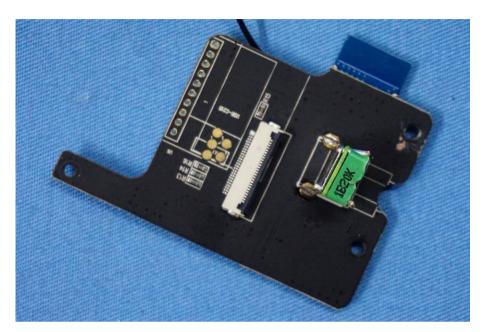


9 EUT Constructional Details









-----End-----