

FCC TEST REPORT

Test report On Behalf of Echeers Products Limited For Bluetooth speaker Model No.: DB-01,DB-02,DB-03,DB-04,DB-05,DB-06,DB-07,DB-08,DB-09, DB-10

FCC ID: 2AO2RDB-01

Prepared for : Echeers Products Limited F8, A2 Block, TianRui Industrial Park, FuYuan 1st Road, FuYong Town, BaoAn District, ShenZhen, GD, China

Prepared By : Shenzhen HUAK Testing Technology Co., Ltd. 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

TEST REPORT

Applicant's name	Echeers Products Limited
Address	F8, A2 Block, TianRui Industrial Park, FuYuan 1st Road, FuYong Town, BaoAn District, ShenZhen, GD, China
Manufacture's Name	Echeers Products Limited
Address	F8, A2 Block,TianRui Industrial Park, FuYuan 1st Road, FuYong Town, BaoAn District, ShenZhen, GD, China
Product description	
Trade Mark:	/
Product name	Bluetooth speaker
Model and/or type reference .:	DB-01,DB-02,DB-03,DB-04,DB-05,DB-06,DB-07,DB-08,DB-09,DB-10
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests	Aug. 27, 2018 ~Sep. 12, 2018
Date of Issue	Sep.12, 2018
Test Result	Pass

5

Testing Engineer

Gory Gian)

Technical Manager

Edan Hu

(Eden Hu)

Authorized Signatory:

Jason Zhou

(Jason Zhou)

Contents

<u>S U M N</u>	1ARY	<u></u>
Product	Description	
Equipm	ent Under Test	
Short de	escription of the Equipment under Test (EUT)	
EUT ope	eration mode	
Block D	agram of Test Setup	
Related	Submittal(s) / Grant (s)	
viodifica	ations	
<u></u>	ENVIRONMENT	<u></u>
TEST FA		
TEST FA	mental conditions	
TEST FA Environ Summa	mental conditions v of measurement results	
TEST F/ Environ Summa Stateme	mental conditions y of measurement results nt of the measurement uncertainty	
TEST F/ Environ Summa Stateme Equipme	mental conditions y of measurement results nt of the measurement uncertainty ents Used during the Test	
TEST F/ Environ Summa Stateme Equipme	mental conditions ry of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u>	
TEST F/ Environ Summa Stateme Equipm	Mental conditions Ty of measurement results nt of the measurement uncertainty ents Used during the Test CONDITIONS AND RESULTS AC Power Conducted Emission	
TEST F/ Environ Summa Stateme Equipm TEST 4.1. 4.2.	Ac Power Conducted Emission	
TEST F/ Environ Summa Stateme Equipm TEST 4.1. 4.2. 4.3.	AC Power Conducted Emission Radiated Emission Maximum Peak Output Power	
TEST F/ Environ Summa Stateme Equipm TEST 4.1. 4.2. 4.3. 4.4.	AC Power Conducted Emission Radiated Emission Maximum Peak Output Power 2008 Bandwidth	
TEST F/ Environ Summa Stateme Equipm TEST 4.1. 4.2. 4.3. 4.4. 4.5.	AC Power Conducted Emission Radiated Emission Maximum Peak Output Power 2008 Bandwidth Frequency Separation	
TEST F/ Environ Summa. Stateme Equipm TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6.	AC Power Conducted Emission Maximum Peak Output Power	
TEST F/ Environ Summa Stateme Equipm TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7.	AC Power Conducted Emission	
TEST F/ Environ Summa Stateme Equipm TEST 4.1. 4.2. 4.3. 4.4. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8.	mental conditions ry of measurement results nt of the measurement uncertainty ents Used during the Test CONDITIONS AND RESULTS AC Power Conducted Emission Radiated Emission Maximum Peak Output Power 20dB Bandwidth Frequency Separation Band Edge Compliance of RF Emission Spurious RF Conducted Emission Number of hopping frequency	
TEST F/ Environ Summa Stateme Equipm TEST 4.1. 4.2. 4.3. 4.4. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9.	ACTIONS mental conditions ry of measurement results nt of the measurement uncertainty ents Used during the Test <u>CONDITIONS AND RESULTS</u> AC Power Conducted Emission Radiated Emission Maximum Peak Output Power 20dB Bandwidth Frequency Separation Band Edge Compliance of RF Emission Spurious RF Conducted Emission Number of hopping frequency Time Of Occupancy(Dwell Time)	
TEST F/ Environ Summa Stateme Equipm TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 4.10.	AC Power Conducted Emission Maximum Peak Output Power 20dB Bandwidth Frequency Separation Band Edge Compliance of RF Emission Spurious RF Conducted Emission Number of hopping frequency Time Of Occupancy(Dwell Time) Pseudorandom Frequency Hopping Sequence	

1. <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>DA 00-705</u>: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

2.1. Product Description

Name of EUT	Bluetooth speaker
Trade Mark:	1
Model Number	DB-01
List Model:	DB-02, DB-03, DB-04, DB-05, DB-06, DB-07, DB-08, DB-09, DB-10
Power Rating	DC 3.7V and DC 5V From Adapter
Adapter(Auxiliary test Provided by the laborator)	Mode:EP-TA20CBC Input:AC100-240V-50/60Hz, 0.5A Output:DC 5V,2A
FCC ID	2AO2RDB-01
Bluetooth FCC Operation frequency	2402MHz-2480MHz
Bluetooth Modulation	GFSK,8DPSK,π/4DQPSK
Bluetooth	BT 4.2
Antenna Type	Internal
Antenna gain	2.0 dBi

2.2. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		ullet	Other (specified in blank bel	ow	

DC 3.7V and DC 5V From Adapter

2.3. Short description of the Equipment under Test (EUT)

This is a Bluetooth speaker.

For more details, refer to the user's manual of the EUT.

2.4. EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing .There are 79 channels provided to the EUT. Channel 00/39/78 was selected to test.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	40	2442
01	2403	41	2443
02	2404	42	2444
03	2405	43	2445
04	2406	44	2446
05	2407	45	2447
06	2408	46	2448
07	2409	47	2449
08	2410	48	2450
09	2411	49	2451
10	2412	50	2452
11	2413	51	2453
12	2414	52	2454
13	2415	53	2455
14	2416	54	2456
15	2417	55	2457
16	2418	56	2458
17	2419	57	2459
18	2420	58	2460
19	2421	59	2461
20	2422	60	2462
21	2423	61	2463
22	2424	62	2464
23	2425	63	2465
24	2426	64	2466
25	2427	65	2467
26	2428	66	2468
27	2429	67	2469
28	2430	68	2470
29	2431	69	2471
30	2432	70	2472
31	2433	71	2473
32	2434	72	2474
33	2435	73	2475
34	2436	74	2476
35	2437	75	2477
36	2438	76	2478
37	2439	77	2479
38	2440	78	2480
39	2441		

2.5. Block Diagram of Test Setup

2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AO2RDB-01 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7. Modifications

No modifications were implemented to meet testing criteria.

3. <u>TEST ENVIRONMENT</u>

3.1. TEST FACILITY

Test Firm : Shenzhen HUAK Testing Technology Co., Ltd.

Address 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

3.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

15-35 ° C
30-60 %
950-1050mbar

3.3. Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re	Recorded In Report		Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest					complies
§15.247(e)	Power spectral density	-/-	-/-	-/-	-/-					Not applicable for FHSS
§15.247(a)(1)	Carrier Frequency separation	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	🖾 Middle	\boxtimes				complies
§15.247(a)(1)	Number of Hopping channels	GFSK 8DPSK	🛛 Full	GFSK Π/4DQPSK 8DPSK	🛛 Full	\boxtimes				complies
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	🖾 Middle	\boxtimes				complies
§15.247(a)(1)	Spectrum bandwidth of a FHSS system 20dB bandwidth	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.247(b)(1)	Maximum output power	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest					complies
§15.247(d)	Band edge compliance conducted	GFSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	\boxtimes				complies
§15.205	Band edge compliance radiated	GFSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK	⊠ Lowest ⊠ Highest					complies
§15.247(d)	TX spurious emissions conducted	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions radiated	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.109	RX spurious emissions radiated	-/-	-/-	-/-	-/-					complies
§15.209(a)	TX spurious Emissions radiated	GFSK	-/-	GFSK	-/-					complies

	< 30 MHz							
§15.107(a) §15.207	Conducted Emissions < 30 MHz	GFSK	-/-	GFSK	-/-	\boxtimes		complies

Remark:

1. The measurement uncertainty is not included in the test result.

2. NA = Not Applicable; NP = Not Performed

3. We tested all test mode and recorded worst case in report

3.4. Statement of the measurement uncertainty

Measurement Uncertainty		
Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

3.5. Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 28, 2017	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 28, 2017	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 28, 2017	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 28, 2017	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 28, 2017	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2017	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 28, 2017	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 28, 2017	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 28, 2017	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 28, 2017	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 28, 2017	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Dec. 28, 2017	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Dec. 28, 2017	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 28, 2017	3 Year

Note: 1. The Cal.Interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Eroquency range (MHz)	Limit (dBuV)					
Frequency range (Miriz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the frequency.						

TEST RESULTS

Remark: We measured Conducted Emission at GFSK, $\pi/4$ DQPSK and 8DPSK mode in AC 120V/60Hz and AC 240V/60Hz , the worst case was recorded at the GFSK mode in AC 120V/60Hz

4.2. Radiated Emission

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 12mm above ground plane when testing frequency range 9 KHz –25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
 The distance between test antenna and EUT as following table states:

The distance between test antenna and EOT as following table states.					
Test Frequency range	Test Antenna Type	Test Distance			
9KHz-30MHz	Active Loop Antenna	3			
30MHz-1GHz	Ultra-Broadband Antenna	3			
1GHz-18GHz	Double Ridged Horn Antenna	3			
18GHz-25GHz	Horn Anternna	1			

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
	Average Value: RBW=1MHz/VBW=10Hz,	T Cak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Remark: All the test modes(GFSK, $\pi/4$ DQPSK and 8DPSK), completed for test. The worst case of Radiated Emission (GFSK Transmitting Middle Channel-2412MHz (worst case)); the test data of this mode was reported.

For 9 KHz-30MHz

Frequency (MHz)	Corrected Reading (dBuV/m)@3m	FCC Limit (dBuV/m) @3m	Margin (dB)	Detector	Result
0.38	46.12	96.01	49.89	QP	PASS
1.55	51.49	63.80	12.31	QP	PASS
19.68	56.75	69.54	12.79	QP	PASS
24.62	40.69	69.54	28.85	QP	PASS

For 30MHz-1GHz

Remark: All the test modes(GFSK, $\pi/4$ DQPSK and 8DPSK), completed for test. The worst case of Radiated Emission (GFSK Transmitting (worst case)); the test data of this mode was reported.

CH Low (2402MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type			
4804	60.35	-3.64	56.71	74	-17.29	peak			
4804	46.41	-3.64	42.77	54	-11.23	AVG			
7206	56.25	-0.95	55.3	74	-18.7	peak			
7206	42.35	-0.95	41.4	54	-12.6	AVG			
Domorky Footo									

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	61.42	-3.64	57.78	74	-16.22	peak
4804	44.98	-3.64	41.34	54	-12.66	AVG
7206	55.63	-0.95	54.68	74	-19.32	peak
7206	42.28	-0.95	41.33	54	-12.67	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

CH Middle (2441MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type		
4882	61.49	-3.51	57.98	74	-16.02	peak		
4882	44.76	-3.51	41.25	54	-12.75	AVG		
7326	56.39	-0.82	55.57	74	-18.43	peak		
7326	41.71	-0.82	40.89	54	-13.11	AVG		
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4882	59.68	-3.51	56.17	74	-17.83	peak
4882	45.45	-3.51	41.94	54	-12.06	AVG
7326	56.39	-0.82	55.57	74	-18.43	peak
7326	41.75	-0.82	40.93	54	-13.07	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

CH High (2480MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastan
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	59.89	-3.43	56.46	74	-17.54	peak
4960	45.57	-3.43	42.14	54	-11.86	AVG
7440	55.35	-0.75	54.6	74	-19.4	peak
7440	41.42	-0.75	40.67	54	-13.33	AVG
			. Dre erenlifier		-	-

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960	59.85	-3.43	56.42	74	-17.58	peak
4960	46.76	-3.43	43.33	54	-10.67	AVG
7440	56.28	-0.75	55.53	74	-18.47	peak
7440	41.92	-0.75	41.17	54	-12.83	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz $_{\circ}$

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10:2013 Maximum peak conducted output power for HFSS devices: The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

<u>LIMIT</u>

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS

Туре	Channel	Peak Output power (dBm)	Average Output power (dBm)	Limit (dBm)	Result
	00	-0.975	-2.275		
GFSK	39	-0.968	-2.263	30	Pass
	78	-0.809	-2.127		
	00	-0.997	-2.312		Pass
π/4DQPSK	39	-0.963	-2.271	21	
	78	-0.736	-2.035		
	00	-0.943	-2.275		
8DPSK	39	-1.006	-2.323	21	Pass
	78	-0.763	-2.061		

Note: 1.The test results including the cable lose.

4.4. 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

LIMIT

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

Modulation	Channel	20dB bandwidth (MHz)	Result
	CH00	0.9504	
GFSK	CH39	1.011	
	CH78	0.9573	
	CH00	1.274	
π/4DQPSK	CH39	1.265	Pass
	CH78	1.269	
	CH00	1.319	
8DSPSK	CH39	1.323]
	CH78	1.315	

4.5. Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz.

<u>LIMIT</u>

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST RESULTS

4.5.1 GFSK Test Mode

Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result	
CESK	CH38	1 015	1 011	Bass	
Gran	CH39	1.015	1.011	F 055	
	CH38	1 150	0.940	Bass	
II/4DQP3N	CH39	1.152	0.049	Fd55	
0DOK	CH38	1 005	0 992	Bass	
ODESK	CH39	1.005	0.002	Pass	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle

4.6. Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

For Radiated

For Conducted

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed..
- The distance between test antenna and EUT was 3 meter:
 Setting test receiver/spectrum as following table states:

Setting test receiver/spectrum as following table states:					
Test Frequency range	quency range Test Receiver/Spectrum Setting				
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak			

<u>LIMIT</u>

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

TEST RESULTS

Remark: we measured all conditions(DH1,DH3,DH5) and recorded worst case at DH1.

4.6.1 For Radiated Bandedge Measurement

Remark1: All the test modes(GFSK, $\pi/4$ DQPSK and 8DPSK), completed for test. The worst case of Radiated Emission (GFSK Transmitting (worst case)); the test data of this mode was reported

Remark2:we tested radiated bandedge at both hopping and no-hopping modes,recorded worst case at no-hopping mode

GFSK

Operation Mode: TX CH Low (2402MHz) Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	55.36	-5.81	49.55	74	-24.45	peak
2390	38.49	-5.81	32.68	54	-21.32	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	57.37	-5.81	51.56	74	-22.44	peak
2390 40.32 -5.81 34.51 54 -19.49 AVG						AVG
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Operation Mode: TX CH High (2480MHz) Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	56.95	-5.65	51.3	74	-22.7	peak
2483.5	40.62	-5.65	34.97	54	-19.03	AVG
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.68	-5.65	52.03	74	-21.97	peak
2483.5	41.57	-5.65	35.92	54	-18.08	AVG
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						
Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.						

4.6.2 For Conducted Bandedge Measurement

GFSK					
Frequency (MHz)	Delta Peak to Band emission (dBc)	Hoping Mode	Limit (dBc)	Verdict	
2400.00	-34.709	OFF	-20	PASS	
2400.00	-30.729	ON	-20	PASS	
2483.50	-54.213	OFF	-20	PASS	
2483.50	-54.722	ON	-20	PASS	

Page 31 of 48

π/4 DQPSK					
Frequency (MHz)	Delta Peak to Band emission (dBc)	Hoping Mode	Limit (dBc)	Verdict	
2400.00	-26.903	OFF	-20	PASS	
2400.00	-36.531	ON	-20	PASS	
2483.50	-56.419	OFF	-20	PASS	
2483.50	-55.464	ON	-20	PASS	

Page 32 of 48

Report No.: HK1809111051-E

8DPSK						
Frequency (MHz)	Delta Peak to Band emission (dBc)	Hoping Mode	Limit (dBc)	Verdict		
2400.00	-31.391	OFF	-20	PASS		
2400.00	-34.344	ON	-20	PASS		
2483.50	-54.632	OFF	-20	PASS		
2483.50	-56.604	ON	-20	PASS		

4.7. Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and mwasure frequeny range from 9KHz to 25GHz.

<u>LIMIT</u>

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

TEST RESULTS

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

		1	
8DPSK:	Test channel 78		
Agilent Spectrum Analyzer - Swept SA Val RL RF 50.0 AC SENSE::U/T Constart Energy 2.441000000 CH12 SENSE::U/T	ALIGNAUTO 02:18:01 PMSep08, 2018 SAvg Type: Pwr(RMS) TRACE Information Frequency		
PR0: Far →→ IFGain:Low #Atten: 30 dB	AvgHold: 100/100 TYPE DEPERT		
Ref Offset 3 dB 10 dB/div Ref 20.00 dBm	-2.178 dBm		
10.0	2.441000000 GH		
	Start Fre		
100	-22/18 dbr		
-30.0	2.442000000 GH		
-40.0	CF Ste 200.000 ki		
-50.0	Auto		
-70.0	0F		
Center 2.441000 GHz	Span 2.000 MHz		
#Res BW 100 kHz #VBW 300 kHz	Sweep 1.07 ms (8001 pts)		
Chann	iel 78		
Agient Spectrum Analyzer - Swept SA	ALIGNAUTO 02:18:09 PMSep08, 2018 SAvg Type: Pur/RMS) TRACE DISCONTER		
PN0: Fast + Trig: Free Run IFGain:Low #Atten: 30 dB	AvgHold: 17/100 TVFE PPPPPP DET PPPPPP Mkr1 2, 667, 03, GHz Auto Tur		
Ref Offset 3 dB 10 dB/div Ref 20.00 dBm	-52.939 dBm		
10.0	Center Fre 1.515000000 GH		
0.00	Start Fre		
-100			
-30.0	3.00000000 GH		
-40.0	CF Ste 297.00000 Mi		
-50.0			
	OF		
Start 30 MHz	Stop 3.000 GHz		
#Res BW 100 kHz #VBW 300 kHz	Sweep 284 ms (10000 pts)		
30MHz~	~3GHz		
Agilent Spectrum Analyzer - Swept SA Sectrum Analyzer - Swept SA SENSE::NT 00 RL RE 50.0 AC SENSE::NT Center Freq 14.000000000.0.GHz SENSE::NT SENSE::NT SENSE::NT	ALIGNAUTO 02:18:16 FMSep08, 2019 #Avg Type: Pwr(RMS) TRACE REAL FOR		
PN0: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hold: 1/100 DET P P P P P P P P MALE Auto Tur		
10 dB/div Ref 20.00 dBm	-44.631 dBm		
10.0	14.00000000 GF		
-10.0	Start Fre		
-20 0	c22.13 dbr. Stop Fra		
-30.0	25.0000000 G		
-40.0	1 CF Ste 2.200000000 GF		
-70.0	01		
Start 3.00 GHz	Stop 25.00 GHz		
#Res BW 100 kHz #VBW 300 kHz	Sweep 2.10 s (20000 pts)		
3GHz~2	25GHz		

4.8. Number of hopping frequency

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator.Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=1MHz and VBW=3MHz.

<u>LIMIT</u>

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		
π/4 DQPSK	79	≥15	Pass
8DPSK	79		

Agina Spectrum Analyzer, Swept SA SP/EE.2/17 ALIZ/AUTO Center Freq 2.441750000 GHz SP/EE.2/17 ALIZ/AUTO Center Freq 2.441750000 GHz SP/EE.2/17 ALIZ/AUTO	02:237/M/Sec09,2019 TRAC R Determine Two: Determine				
If Galact.ovv #Atten: 20 dB Ref Offset3 dB 10 dB/dlv Ref 20.00 dBm	1 78.041 MHz 0.007 dB				
	1/2 Center Freq 2.447/5000 GHz				
	Start Freq				
	2.40000000 GHz				
	Stop Freq 2.483600000 GHz				
Start 2.40000 CHz SW 200 kHz S #R5 SW 100 kHz #VBW 300 kHz Sweep 8. war weer tes Sci 2 × Y Function / Funcili	100 24 38300 CHZ 00 ms (8001 pts) 8.350000 MHZ FANCTION WALE Auto Man				
1 Δ2 1 f (Δ) 78.041 MHz (Δ) 0.007 dB 2 F 1 f 2.401 941 GHz -2.616 dBm 3 F 1 f 2.401 941 GHz -2.616 dBm	Freq Offset				
6 6 7 8	0 Hz				
GESK Modulation					
Aglent Spectrum Analyzer : Swept SA	102831 (Mawa) (118)				
Center Freq 2.441750000 GHz are	The Frequency Frequency Frequency				
Ref Offset3 dB △Mkr 10. dB/div Ref 20.00 dBm	2.193 dB				
	Center Freq 2.441750000 GHz				
	Start Freq 2.400000000 GHz				
	Stop Freq				
Start 2.40000 GHz \$ #Res BW 100 kHz #VBW 300 kHz Sweep 8.	top 2.48350 GHz om s (8001 pts)				
MRR MODE TRC SQ. X Y Function Runction width 4 A2 1 f (Δ) 78.104 MHz (Δ) 2.193 dB Function	FUNCTION VALUE Man				
3 4 5 6	Freq Offset 0 Hz				
8 9 10					
12 (STATUS)					
π/4 DQPSK					
Aglenti Spectrum Analyzer Swept S3. SP-EE:NT ALISNAUTO UR Kr FF SO A SP-EE:NT ALISNAUTO Center Freq 2.4417550000 GHz SP-EE:NT ALISNAUTO PRO: Fast →→ Trig: Free Run Aglefold: 100100	02-22-35 M/Sec.00, 2010 THAC IN CONTRACT FOR A CONTRACT OF THE CONTRACT. THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT. THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT. THE CONTRACT OF THE CONTRACT OF THE CONTR				
IF GainsLow #Atten: 30 dB Ref Offset3 dB 10 dB/div Ref 20.00 dBm	1 78.031 MHz Auto Tune 0.350 dB				
	102 Center Freq 2.441750000 GHz				
	Start Freq				
	2.40000000 GHz				
	2.48360000 GHz				
With Exhlored Child X YUBW 300 kHz Sweep 8 #Res BW 100 kHz #VBW 300 kHz Sweep 8 #Res BW 100 kHz #VBW 300 kHz Sweep 8 #Res BW 100 kHz #VBW 300 kHz Function work	CF Stop B 350000 MHz FUICTION WALKE Man				
2 P 1 P 24019330H7 (20 0.500 08) 3 1 P 24019330H2 65.647 dBm 6	Freq Offset 0 Hz				
6 7 8 9					
10 11 11 11 11 11 11 11 11 11 11 11 11 1					
8DPSK Modulation					

4.9. Time Of Occupancy(Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz,Span=0Hz.

<u>LIMIT</u>

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

Modulation	Packet	Pulse time (ms)	Dwell time (second)	Limit (second)	Result
	DH1	0.367	0.117		
GFSK	DH3	1.621	0.259	0.40	Pass
	DH5	2.868	0.306		
π/4 DQPSK	DH1	0.377	0.121		
	DH3	1.627	0.260	0.40	Pass
	DH5	2.875	0.307		
8DSPSK	3-DH1	0.376	0.120		
	3-DH3	1.627	0.260	0.40	Pass
	3-DH5	2.875	0.307		

Note:

- 1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.
- Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1 Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3 Dwell time=Pulse time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second for DH5, 2-DH5, 3-DH5

4.10. Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE

For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the frist stage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

0	2	4	6	62 64	78 1	73 75 77
				1 1 1		

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

4.11. Antenna Requirement

Standard Applicable

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Antenna Information

The antenna is PCB antenna, The directional gains of antenna used for transmitting is 2.0 dBi.

5. <u>Test Setup Photos of the EUT</u>

.....End of Report.....