

Test Report

Report No.: MTi210924005-03E1

Date of issue: Nov. 30, 2021

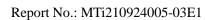
Applicant: Chug, Inc.

Product: Magsafe stand/ Magsafe pad

Model(s): QIC43, QIC42, HKWP2681-15EL, HKWP2701-15EL

FCC ID: 2AO23-QIC43

Shenzhen Microtest Co., Ltd. http://www.mtitest.com


Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Contents

General Description	5
Summary of Test Result	7
Test Facilities and accreditations	8
3.1 Test laboratory	8
List of test equipment	9
Test Results	10
5.1 Standard requirement	10
5.3 AC power line Conducted emissions	11
5.5 Occupied bandwidth test	25
Photographs of the test setup	27
Photographs of the EUT	28
	1.1 Description of the EUT 1.2 Description of test modes 1.3 Description of support units 1.4 Environmental conditions 1.5 Measurement uncertainty Summary of Test Result Test Facilities and accreditations 3.1 Test laboratory

Test Result Certification			
Applicant:	licant: Chug, Inc.		
Address:	7157 Shady Oak Road, Eden Prairie, MN 55344, USA		
Manufacturer:	HANK ELECTRONICS VIETNAM LTD		
Address:	No.7, 11 Street VSIP Tu Son, 16353 Bac Ninh Province, Vietnam		
Product description			
Product name:	Magsafe stand/ Magsafe pad		
Trademark:	Heyday		
Model name:	QIC43		
Serial Model:	QIC42, HKWP2681-15EL, HKWP2701-15EL		
Standards:	FCC 47 CFR Part 15 Subpart C		
Test method:	ANSI C63.10-2013		
Date of Test			
Date of test:	2021-11-18 ~ 2021-11-29		
Test result:	Pass		

Test Engineer	:	Yanice Xie		
		(Yanice Xie)		
Reviewed By:	:	leon chen		
		(Leon Chen)		
Approved By:	:	Tom Xue		
		(Tom Xue)		

1 General Description

1.1 Description of the EUT

Product name:	Magsafe stand/ Magsafe pad	
Model name:	QIC43	
Series Model:	QIC42, HKWP2681-15EL, HKWP2701-15EL	
Model difference:	All the models are the same circuit and RF module, except the model name.	
Electrical rating:	Input: Type-C 9V/2.22A Output: Magsafe Charger 15W(max)	
Accessories:	Adapter: Model: HKAP3231S-20US Input: 100V-240V~50/60Hz 600mA(Max) Output: 5.0V-3.0A, 9.0V-2.22A, 12.0V-1.67A	
RF specification:		
Operation frequency:	127 kHz(5W/7.5W) 360 kHz(15W)	
Modulation type:	ASK	
Antenna type:	Coil Antenna	

1.2 Description of test modes

All the test modes were carried out with the EUT in normal operation, the final test mode of the EUT was the worst test mode for emission test, which was shown in this report and defined as:

No.	Emission test modes	
Mode 1	Stand-by mode	
Mode 2	Wireless charger (5W)	
Mode 3	Wireless charger (7.5W)	
Mode 4	Wireless charger (15W)	

The worst test mode of conducted emissions: Mode 4

The worst test mode of radiated emissions: Mode 4

1.3 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list					
Description	Model	Serial No.	Manufacturer		
Wireless charging load	/	/	YBZ		
lphone 12	A2404	F17DLCK70DYN	Apple		
Support cable list					
Description	Length (m)	From	То		
/	/	/	/		

1.4 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C~35°C
Humidity:	20 % RH ~ 75 % RH
Atmospheric pressure:	98 kPa~101 kPa

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emission (9 kHz~30 MHz)	± 2.5 dB
Radiated emission (9 kHz ~ 30 MHz)	± 4.0dB
Radiated emission (30 MHz~1 GHz)	± 4.2 dB
Radiated emission (above 1 GHz)	± 4.3 dB
Occupied bandwidth	± 3 %
Temperature	±1 degree
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

2 Summary of Test Result

No.	FCC reference	Description of test	Result	
	Emission			
1	FCC Part 15.203	Antenna requirement	Pass	
2	FCC Part 15.207	AC power line Conducted emissions	Pass	
3	FCC Part 15.209	Radiated emissions	Pass	
4	FCC Part 15.215	Occupied bandwidth	Pass	

Note: N/A means not applicable.

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.	
Test site location:	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community Fuhai Street, Bao' an District, Shenzhen, Guangdong, China	
Telephone:	(86-755)88850135	
Fax:	(86-755)88850136	
CNAS Registration No.:	CNAS L5868	
FCC Registration No.:	448573	

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
MTI-E043	EMI test receiver	R&S	ESCI7	101166	2021/06/02	2022/06/01
MTI-E044	Broadband antenna	Schwarzbeck	VULB9163	9163-1338	2021/05/30	2023/05/29
MTI-E045	Horn antenna	Schwarzbeck	BBHA9120D	9120D-2278	2021/05/30	2023/05/29
MTi-E046	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2021/05/30	2023/05/29
MTI-E047	Pre-amplifier	Hewlett-Packard	8447F	3113A06184	2021/06/02	2022/06/01
MTI-E048	Pre-amplifier	Agilent	8449B	3008A01120	2021/06/02	2022/06/01
MTi-E005	EMI test receiver	R&S	ESPI7	100314	2021/06/02	2022/06/01
MTi-E120	Broadband antenna	Schwarzbeck	VULB9163	9163-1419	2021/05/30	2023/05/29
MTi-E121	Pre-amplifier	Hewlett-Packard	8447D	2944A09365	2021/04/16	2022/04/15
MTi-E123	Pre-amplifier	Agilent	8449B	3008A04723	2021/05/06	2022/05/05
MTi-E122	MXA signal analyzer	Agilent	N9020A	MY5444085 9	2021/05/06	2022/05/05
MTi-E001	Artificial Mains Network	R&S	ESH2-Z5	100263	2021/06/02	2022/06/01
MTi-E002	EMI Test Receiver	R&S	ESCI3	101368	2021/06/02	2022/06/01
MTi-E023	Artificial power network	Schwarzbeck	NSLK8127	NSLK8127# 841	2021/06/02	2022/06/01
MTi-E025	Artificial power network	Schwarzbeck	NSLK8127	8127183	2021/06/02	2022/06/01
MTi-E026	8-wire Impedance Stabilization Network	Schwarzbeck	NTFM 8158	NTFM 8158 #199	2021/06/02	2022/06/01
MTi-E021	EMI Test Receiver	R&S	ESCS30	100210	2021/06/02	2022/06/01
MTi-E024	Artificial power network	Schwarzbeck	NSLK8127	01001	2021/06/02	2022/06/01

5 Test Results

5.1 Standard requirement

15.203 requirement

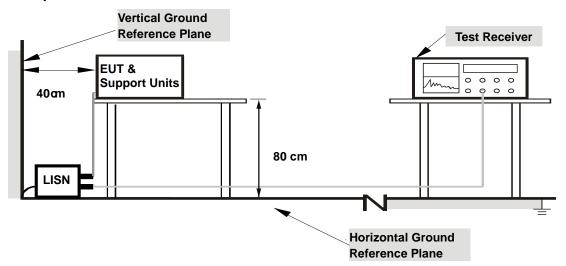
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

5.2 Description of the EUT antenna

The antenna of EUT is coil antenna, which is integrated on the main PCB of the EUT and no consideration of replacement.

5.3 AC power line Conducted emissions

5.3.1 Limits


Frequency (MHz)	Detector type / Bandwidth	Limit-Quasi-peak dBµV	Limit-Average dBµV
0.15 -0.5		66 to 56	56 to 46
0.5 -5	Average / 9 kHz	56	46
5 -30		60	50

Note 1: the limit decreases with the logarithm of the frequency in the range of 0.15 MHz to 0.5 MHz.

5.3.2 Test Procedures

- a) The test setup is refer to the standard ANSI C63.10-2013.
- b) The EUT is connected to the main power through a line impedance stabilization network (LISN). All support equipment is powered from additional LISN(s).
- c) Emissions were measured on each current carrying line of the EUT using an EMI test receiver connected to the LISN powering the EUT.
- d) The test receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes described in Item 1.2.
- e) The test data of the worst-case condition(s) was recorded.

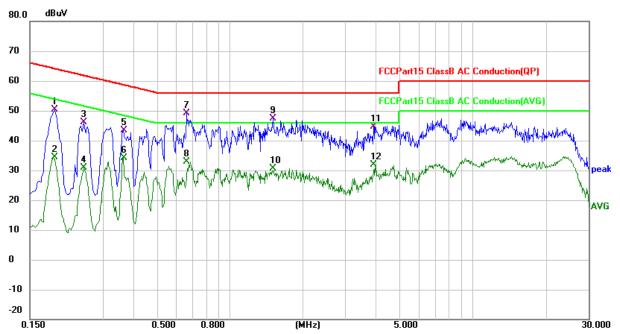
5.3.3 Test setup

For the actual test configuration, please refer to the related item – Photographs of the test setup.

5.3.4 Test Result

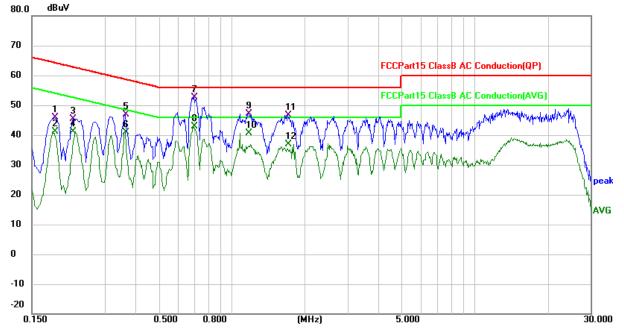
Calculation formula:

Measurement (dB μ V) = Reading Level (dB μ V) + Correct Factor (dB) Over (dB) = Measurement (dB μ V) - Limit (dB μ V)



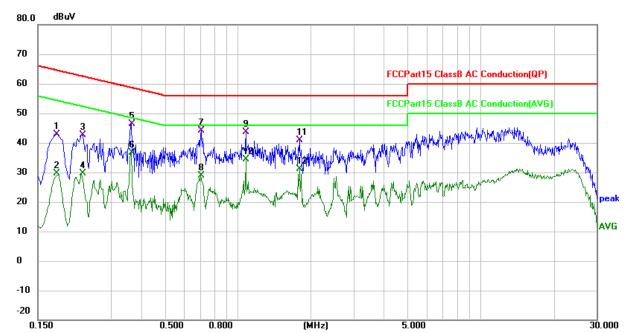
est mode:	Mode 4	Phase:	L
ower supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	CE chamber 1
80.0 dBuV			
70			
60		FCCPart15 ClassB AC Co	
50 1 3 5	who Min	FCCPart15 ClassB AC Co	, , , , , , , , , , , , , , , , , , ,
40 3 6		Party rating day young the The party support of the second second	MANAGE TO THE PARTY OF THE PART
30	What I was the morning which	10 " "	peak
20	{ V V		AVG
10			
0			
-10			
-20			

		D 1:					
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1900	38.46	10.98	49.44	64.04	-14.60	QP
2	0.1900	27.84	10.98	38.82	54.04	-15.22	AVG
3	0.2460	35.21	10.99	46.20	61.89	-15.69	QP
4	0.2460	22.71	10.99	33.70	51.89	-18.19	AVG
5	0.3180	35.65	10.98	46.63	59.76	-13.13	QP
6	0.3180	27.75	10.98	38.73	49.76	-11.03	AVG
7 *	0.7140	40.69	11.09	51.78	56.00	-4.22	QP
8	0.7140	28.21	11.09	39.30	46.00	-6.70	AVG
9	4.3219	34.01	11.44	45.45	56.00	-10.55	QP
10	4.3219	21.88	11.44	33.32	46.00	-12.68	AVG
11	23.3460	40.25	11.80	52.05	60.00	-7.95	QP
12	23.3460	29.74	11.80	41.54	50.00	-8.46	AVG


Test mode:	Mode 4	Phase:	N
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	CE chamber 1
80.0 dBuV			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1900	39.50	10.93	50.43	64.04	-13.61	QP
2		0.1900	23.33	10.93	34.26	54.04	-19.78	AVG
3		0.2500	35.29	10.91	46.20	61.76	-15.56	QP
4		0.2500	20.09	10.91	31.00	51.76	-20.76	AVG
5		0.3620	32.51	10.90	43.41	58.68	-15.27	QP
6		0.3620	23.15	10.90	34.05	48.68	-14.63	AVG
7	*	0.6620	38.02	11.04	49.06	56.00	-6.94	QP
8		0.6620	21.85	11.04	32.89	46.00	-13.11	AVG
9		1.5060	33.12	14.32	47.44	56.00	-8.56	QP
10		1.5060	16.32	14.32	30.64	46.00	-15.36	AVG
11		3.9140	33.24	11.38	44.62	56.00	-11.38	QP
12		3.9140	20.42	11.38	31.80	46.00	-14.20	AVG

Page 14 of 28 Report No.: MTi210924005-03E1


Test mode:	Mode 4	Phase:	L	
Power supply:	Power by AC/DC adapter (AC 240V/60Hz)	Test site:	CE chamber 1	
80.0 dBuV				
70				

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1860	34.85	10.98	45.83	64.21	-18.38	QP
2	0.1860	30.06	10.98	41.04	54.21	-13.17	AVG
3	0.2220	34.52	10.98	45.50	62.74	-17.24	QP
4	0.2220	30.24	10.98	41.22	52.74	-11.52	AVG
5	0.3620	35.78	10.98	46.76	58.68	-11.92	QP
6	0.3620	29.83	10.98	40.81	48.68	-7.87	AVG
7	0.6980	41.48	11.07	52.55	56.00	-3.45	QP
8 *	0.6980	31.77	11.07	42.84	46.00	-3.16	AVG
9	1.1660	33.49	13.63	47.12	56.00	-8.88	QP
10	1.1660	26.98	13.63	40.61	46.00	-5.39	AVG
11	1.7060	31.76	14.81	46.57	56.00	-9.43	QP
12	1.7060	22.08	14.81	36.89	46.00	-9.11	AVG

Test mode:	Mode 4	Phase:	N
Power supply:	Power by AC/DC adapter (AC 240V/60Hz)	Test site:	CE chamber 1

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1780	32.03	10.94	42.97	64.58	-21.61	QP
2	0.1780	18.58	10.94	29.52	54.58	-25.06	AVG
3	0.2300	31.82	10.91	42.73	62.45	-19.72	QP
4	0.2300	18.62	10.91	29.53	52.45	-22.92	AVG
5	0.3620	35.41	10.90	46.31	58.68	-12.37	QP
6	0.3620	25.63	10.90	36.53	48.68	-12.15	AVG
7	0.7060	33.07	11.08	44.15	56.00	-11.85	QP
8	0.7060	17.78	11.08	28.86	46.00	-17.14	AVG
9	1.0820	30.20	13.38	43.58	56.00	-12.42	QP
10 *	1.0820	20.94	13.38	34.32	46.00	-11.68	AVG
11	1.7980	25.97	14.96	40.93	56.00	-15.07	QP
12	1.7980	16.16	14.96	31.12	46.00	-14.88	AVG

5.4 Radiated emissions

5.4.1 Limits

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note 1: the tighter limit applies at the band edges.

Note 2: the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

5.4.2 Test setup

According to ANSI C63.10, the tests shall be performed in the frequency range shown in the following table:

Frequency range of measurements for unlicensed wireless device

Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower
At or above 10 GHz to below 30 GHz	5th harmonic of highest fundamental frequency or to 100 GHz, whichever is lower
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified

Frequency range of measurements for unlicensed wireless device with digital device

Highest frequency generated or used in the device or on which the device operates or tunes	Upper frequency range of measurement
Below 1.705 MHz	30 MHz
1.705 MHz to 108 MHz	1000 MHz
108 MHz to 500 MHz	2000 MHz
500 MHz to 1000 MHz	5000 MHz
Above 1000 MHz	5th harmonic of the highest frequency or 40 GHz, whichever is lower

Test instrument setup

Frequency	Test receiver / Spectrum analyzer setting
9 kHz ~ 150 kHz	Quasi Peak / 200 kHz
150 kHz ~ 30 MHz	Quasi Peak / 9 kHz
30 MHz ~ 1 GHz	Quasi Peak / 120 kHz

5.4.3 Test Procedures

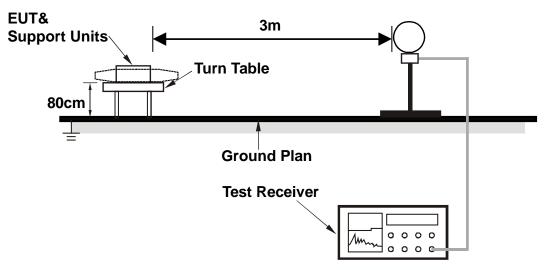
The EUT is placed on a non-conducting table 80cm above the ground plane for measurement blew 1 GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10-2013.

For measurement blew 1 GHz, the resolution bandwidth is set as item 5.4.2.

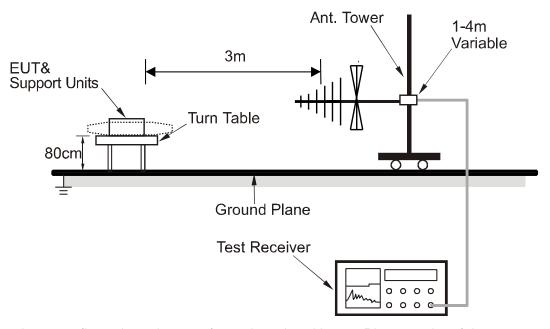
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned form 1 to 4m meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and horizontal positions.

Special requirements for 9 KHz to 30 MHz:

The lowest height of the magnetic antenna shall be 1 m above the ground


When the EUT contains a loop antenna that can only be placed in a vertical axis, normal measurements shall be made aligning the measurement antenna along the site axis, and then orthogonal to the axis. For each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable.

When the EUT contains a loop antenna that can be placed in a horizontal or vertical axis, normal measurements shall be made aligning the measurement antenna along the site axis, orthogonal to the axis, and then with the measurement antenna horizontal. For each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable.



5.4.4 Test Setup

Blew 30 MHz:

Blew 1 GHz:

For the actual test configuration, please refer to the related item – Photographs of the test setup.

5.4.5 Test result

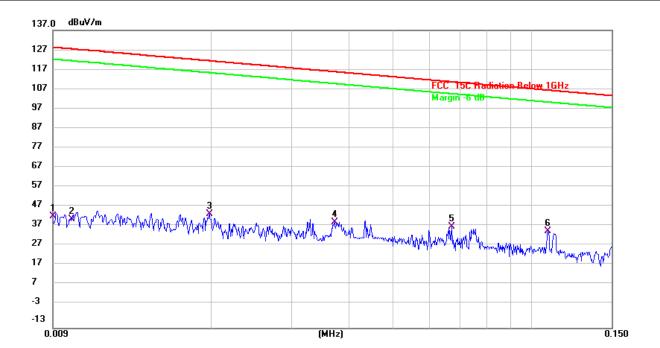
Calculation formula:

Measurement (dB μ V/m) = Reading Level (dB μ V) + Correct Factor (dB/m) Over (dB) = Measurement (dB μ V/m) – Limit (dB μ V/m)

Note: For 9 kHz - 30 MHz testing, all the required orthogonal orientations of the measurement loop antenna were performed for pre-scan, the maximum radiated transmissions (Site axis) were recorded.

15W@360kHz:

Frequency 150 kHz ~ 30 MHz


Test mode:	Mode 4	Polarization: Site axis			
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	RE chamber 2		
117.0 dBuV/m					
107					
97					
87					
77		FCC 15C Radiati	on Relow 16Hz		
67 ×		Margin - 6 dB	on Below Turiz		
57 X					
47					
37 Mary Markey Markey Land	Made of hand about special cold flat - a special of the last special above special bearings				
27	The many of the contract of th	in the make a publishment with a state of the state of th	ganglemong the section of make the section of		
17					
7					
-3					
-13					
-23	+ + + + + + + + + + + + + + + + + + + +				
		Iz) 5.000			
-33 0.150	0.500 0.800 (MI		30.000		

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *).3596	42.14	20.56	62.70	96.47	-33.77	QP

Frequency 9 kHz ~ 150 kHz

Test mode:		Polarization:	Site axis
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	RE chamber 2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.0090	21.82	21.69	43.51	128.33	-84.82	QP
2	0.0100	20.33	21.67	42.00	127.42	-85.42	QP
3	0.0196	22.97	21.44	44.41	121.60	-77.19	QP
4	0.0371	19.29	21.13	40.42	116.09	-75.67	QP
5	0.0670	17.35	20.83	38.18	110.99	-72.81	QP
6 *	0.1087	15.35	20.51	35.86	106.81	-70.95	QP

7.5W@127kHz:

Frequency 9 kHz ~ 150 kHz

0.1281

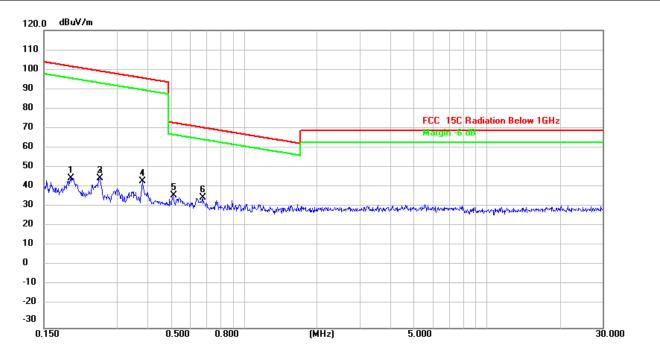
1

47.39

est mode:	: Mode 3 Polarization:			Site axis		3				
ower supply			Power by AC/DC adapter (AC 120V/60Hz)		Test site:			RE chamber 2		
150.0 dl	BuV/m									
140										
130										
120										
110							FCC 15C Radiati	en Below 1GI	l z	
100							Margin -6 dB			
90										
80										
70									×	
60										
50 40		. A1	Mountaine							
30	wa At a dadi	mapara para-ary	Marage margeness ()	may make the	arlander bank	لأنظم			100	
20						elve I dock i	walke day had been been been been been been been bee	Month	Jan May	
10									V	
0.0										
0.009				(MH	z)				0.150	
			Reading	Corre	ct Me	asure	<u>-</u>			
		Г	reading	COLLC	00 1110					
No.	Mk. F	req.	Level	Facto		ent	Limit	Over		

20.41

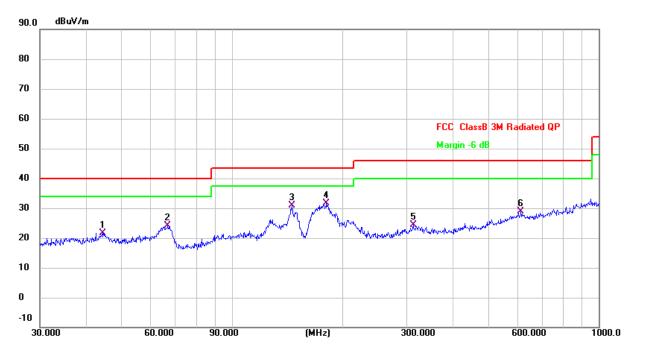
67.80


105.3 -37.59

QP

Frequency 150 kHz ~ 30 MHz

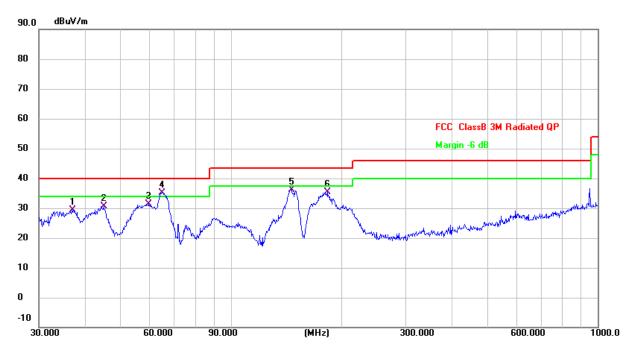
Test mode:		Polarization:	Site axis
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	RE chamber 2



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	0.1934	25.12	20.51	45.63	101.8	-56.22	QP
2	0.2548	25.12	20.53	45.65	99.46	-53.81	QP
3	0.2548	25.12	20.53	45.65	99.46	-53.81	QP
4	0.3811	23.46	20.57	44.03	95.98	-51.95	QP
5	0.5101	16.28	20.60	36.88	73.45	-36.57	QP
6 *	0.6753	15.32	20.67	35.99	71.02	-35.03	QP

Frequency 30 MHz ~ 1 GHz

Test mode:		Polarization:	Horizontal
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	RE chamber 2



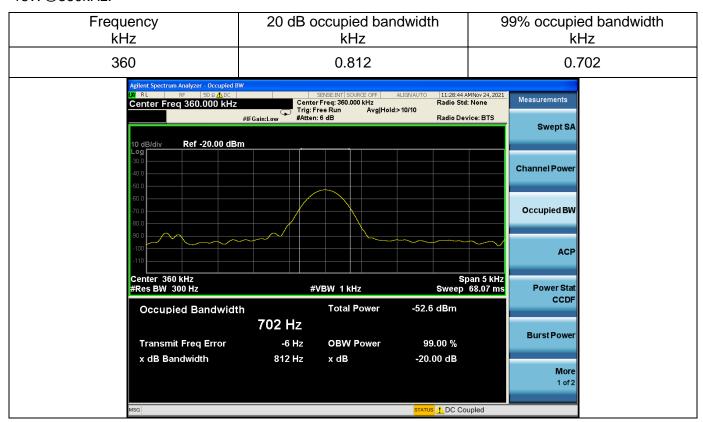
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		44.4308	29.19	-7.47	21.72	40.00	-18.28	QP
2		66.9669	33.98	-9.85	24.13	40.00	-15.87	QP
3		145.8611	41.39	-10.58	30.81	43.50	-12.69	QP
4	*	181.2834	40.43	-8.83	31.60	43.50	-11.90	QP
5		312.1794	29.58	-5.22	24.36	46.00	-21.64	QP
6		614.2142	28.79	0.00	28.79	46.00	-17.21	QP

Frequency 30 MHz ~ 1 GHz

Test mode:		Polarization:	Vertical
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	RE chamber 2

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		36.8953	37.49	-8.14	29.35	40.00	-10.65	QP
2		45.0583	38.12	-7.38	30.74	40.00	-9.26	QP
3		59.8588	40.91	-9.48	31.43	40.00	-8.57	QP
4	*	64.8865	44.89	-9.74	35.15	40.00	-4.85	QP
5		146.3735	46.75	-10.55	36.20	43.50	-7.30	QP
6		183.2005	44.07	-8.77	35.30	43.50	-8.20	QP

5.5 Occupied bandwidth test


5.5.1 Test Procedures

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation.
- d) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement
- e) Set detection mode to peak and trace mode to max hold.
- f) Determine the "-xx dB down amplitude" using [(reference value) xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.

5.5.2 Test Result

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

15W@360kHz:

7.5W@127kHz:

6 Photographs of the test setup

See the APPENDIX – Test Setup Photos.

7 Photographs of the EUT

See the APPENDIX - EUT Photos.

----End of Report----

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com