

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057
Telephone: +86 (0) 755 2601 2053
Fax: +86 (0) 755 2671 0594
Email: ee.shenzhen@sgs.com

Report No.: HR20188000604

Page: 1 of 78

FCC TEST REPORT

Application No.: HR201880006
Applicant: Orion Labs, Inc

Address of Applicant 208 Utah Street Suite 350 San Francisco California United States

Manufacturer: Orion Labs, Inc

Address of Manufacturer 208 Utah Street Suite 350 San Francisco California United States

Factory: Fujian Star-net CommunicationCo.,Ltd

Address of Factory 3F,Bldg 1,Star-Net Science-based Haixi Industrial Pack,No. 9

GaoxinRoad, MinhouCounty, Fuzhou, China

EUT Description: Orion Sync
Model Name: ROS-001-VZ
Trade Mark: Orion Labs

FCC ID: 2ANZ3ROS001VZ

Standards: 47 CFR FCC Part 2, Subpart J

47 CFR Part 15, Subpart C

Test Method ANSI C63.4(2014)

ANSI C63.10 (2013)

Date of Receipt: 2018/10/15

Date of Test: 2018/10/16 to 2018/11/8

Date of Issue: 2018/12/12

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derek Yang

Derole yang

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: HR20188000604

Page: 2 of 78

1 Version

Revision Record				
Version	Chapter	Date	Modifier	Remark
00		2018/12/12		Original

Authorized for issue by:			
Tested By	Mike Mu	2018/12/12	
	(Mike Hu) /Project Engineer	Date	
Checked By	David Chen	2018/12/12	
	(David Chen) /Reviewer	Date	

Report No.: HR20188000604

Page: 3 of 78

2 Test Summary

Test Item Test Requirement		Test method	Test Result	Result
AC Power Line Conducted Emission	Conducted 15.207		Clause 4.2	PASS
Conducted Peak Output Power	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 4.3	PASS
20dB Emission Bandwidth & OBW	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 4.4	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 4.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 4.6	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 4.7	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 4.8	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 4.9	PASS
Radiated Spurious emissions	15.247(d) ;15.205/15.209	ANSI C63.10 (2013)	Clause 4.10	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d) ;15.205/15.209	ANSI C63.10 (2013)	Clause 4.11	PASS

Report No.: HR20188000604

Page: 4 of 78

Contents

1	V E	EKSIUN	
2		EST SUMMARY	
3	Gi	ENERAL INFORMATION	5
	3.1	CLIENT INFORMATION	5
	3.2	GENERAL DESCRIPTION OF EUT	5
	3.3	TEST ENVIRONMENT	
	3.4	DESCRIPTION OF SUPPORT UNITS	7
	3.5	TEST LOCATION	7
	3.6	TEST FACILITY	
	3.7	DEVIATION FROM STANDARDS	
	3.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	3.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	3.10	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
	3.11	EQUIPMENT LIST	10
4	TE	EST RESULTS AND MEASUREMENT DATA	11
	4.1	Antenna Requirement	11
	4.2	AC POWER LINE CONDUCTED EMISSIONS	11
	4.3	CONDUCTED PEAK OUTPUT POWER	15
	4.4	20dB Emission Bandwidth & OBW	22
	4.4	4.1 Test plots	
	4.5	CARRIER FREQUENCIES SEPARATION	
	4.6	HOPPING CHANNEL NUMBER	
		6.1 Test plots	
	4.7	DWELL TIME	
		7.1 Test plots	
	4.8		
		8.1 Test plots	
	4.9	STORES OF THE COLOR COLOR STORES	
		9.1 Test plots	
	4.10		
		10.1 Radiated Emission below 1GHz	
		10.2 Transmitter Emission above 1GHz	
	4.11	TEED TITLE TEED ET TEED TETTE TITLE QUEET TEET TEED TEED TEET TEED TEED TEET TEED TEET TEED TEED TEET TEED	
	4.	7.2 Test plots	/3
5	PF	HOTOGRAPHS - FUT CONSTRUCTIONAL DETAILS	77

Report No.: HR20188000604

Page: 5 of 78

1	I VERSION	2
2	2 TEST SUMMARY	3
3	GENERAL INFORMATION	5
	 3.1 CLIENT INFORMATION 3.2 GENERAL DESCRIPTION OF EUT 3.3 TEST ENVIRONMENT 3.4 DESCRIPTION OF SUPPORT UNITS 3.5 TEST LOCATION 3.6 TEST FACILITY 3.7 DEVIATION FROM STANDARDS 	5 5 8 8 8 9 9
	3.8 ABNORMALITIES FROM STANDARD CONDITIONS 3.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 3.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 3.11 EQUIPMENT LIST	9 9 10 11
4	TEST RESULTS AND MEASUREMENT DATA	12
	 4.1 Antenna Requirement 4.2 AC Power Line Conducted Emissions 4.3 Conducted Peak Output Power 4.4 20db Emission Bandwidth & OBW 4.4.1 Test plots 4.5 Carrier Frequencies Separation 4.6 Hopping Channel Number 4.6.1 Test plots 4.7 Dwell Time 4.7.1 Test plots 4.8 Band-edge for RF Conducted Emissions 8.8.1 Test plots 4.9 Spurious RF Conducted Emissions 8.9.1 Test plots 4.10 Radiated Spurious Emission 4.10.1 Radiated Emission below 1GHz 4.10.2 Transmitter Emission above 1GHz 4.11 Restricted bands around fundamental frequency 4.7.2 Test plots 	12 12 16 23 24 33 37 38 40 42 47 48 54 55 60 63 65 72
5	PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	78

3 General Information

3.1 Client Information

Applicant:	Orion Labs, Inc	
Address of Applicant:	208 Utah Street Suite 350 San Francisco California United States	
Manufacturer:	Orion Labs, Inc	
Address of Manufacturer:	208 Utah Street Suite 350 San Francisco California United States	
Factory:	Fujian Star-net CommunicationCo.,Ltd	
Address of Factory:	3F,Bldg 1,Star-Net Science-based Haixi Industrial Pack,No. 9 GaoxinRoad,MinhouCounty,Fuzhou, China	

3.2 General Description of EUT

EUT Description:	Orion Sync
•	,

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: HR20188000604

Page: 6 of 78

Model Name:	ROS-001-VZ
Trade Mark:	Orion Labs
Hardware Version:	RA15_MB P4
Software Version:	7.1.2
Operation Frequency:	2400MHz~2480MHz fc = 2402 MHz + N * 1 MHz, where: -fc = "Operating Frequency" in MHz, -N = "Channel Number" with the range from 0 to 78.
Bluetooth Version:	V2.0
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	⊠ Portable Device,
Antenna Type:	☐ External, ☑ Integrated
Antenna Gain:	3.5dBi
Power Supply	

Report No.: HR20188000604

Page: 7 of 78

	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Report No.: HR20188000604

Page: 8 of 78

3.3 Test Environment

Operating Environment			
Temperature:	24.0 °C		
Humidity:	55 % RH		
Atmospheric Pressure:	101.30 KPa		

3.4 Description of Support Units

The EUT has been tested independent unit.

3.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: HR20188000604

Page: 9 of 78

3.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

• FCC -Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

• Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

3.7 Deviation from Standards

None.

3.8 Abnormalities from Standard Conditions

None.

3.9 Other Information Requested by the Customer

None.

Report No.: HR20188000604

Page: 10 of 78

3.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Total RF power, conducted	±0.75dB
2	RF power density, conducted	±2.84dB
3	Spurious emissions, conducted	±0.75dB
4	Dadiated Courieus emission test	±4.5dB (30MHz-1GHz)
4	4 Radiated Spurious emission test	±4.8dB (1GHz-25GHz)
5	Conduct emission test	±3.12 dB(9KHz- 30MHz)
6	Temperature test	±1°C
7	Humidity test	±3%
8	DC and low frequency voltages	±0.5%

Report No.: HR20188000604

Page: 11 of 78

3.11 Equipment List

Conducted Emission							
To at Equipment	Manufacturer Model No.		Inventory No.	Cal. date	Cal.Duedate		
Test Equipment	Manutacturer	Wodel No.	Inventory No.	(yyyy-mm-dd)	(yyyy-mm-dd)		
Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017/5/10	2020/5/9		
LISN	Rohde & Schwarz	ENV216	SEM007-01	2018/9/2	2019/9/2		
LISN	ETS-LINDGREN	Feb-16	SEM007-02	2018/4/2	2019/4/1		
Measurement Software	AUDIX	e3 V5.4.1221d	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM024-01	2018/7/12	2019/7/11		
2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T2-02	EMC0122	2018/2/14	2019/2/13		
EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2018/4/2	2019/4/1		

RF conducted test							
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date	Cal.Duedate		
rest Equipment	Manuacturer	Wiodel No.	inventory No.	(yyyy-mm-dd)	(yyyy-mm-dd)		
DC Power Supply	Agilent Technologies Inc	66311B	W009-09	2018/9/15	2019/9/15		
Signal Analyzer	Rohde & Schwarz	FSV	W025-05	2018/3/13	2019/3/12		
Coaxial Cable	SGS	N/A	SEM031-01	2018/7/13	2019/7/12		
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A		
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2018/9/2	2019/9/2		
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2018/9/2	2019/9/2		
	RE	in Chamber					
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date	Cal.Due date		
rest Equipment	Manuacturer	wiodei No.	inventory No.	(yyyy-mm-dd)	(yyyy-mm-dd)		
3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017/8/5	2020/8/4		
Measurement Software	AUDIX	e3 V8.2014-6-27	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM025-01	2018/7/12	2019/7/11		
MXE EMI Receiver (20Hz- 8.4GHz)	Agilent Technologies	N9038A	SEM004-05	2018/9/2	2019/9/2		
BiConiLog Antenna (26- 3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017/6/27	2020/6/26		
Pre-amplifier (0.1-1.3GHz)	Agilent Technologies	8447D	SEM005-01	2018/4/2	2019/4/1		

RE in Chamber							
Test Equipment	Manufacturer	nufacturer Model No. Inventory No.		Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)		
10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2018/3/31	2021/3/30		
EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2018/4/2	2019/4/1		
Trilog-Broadband Antenna(25M-2GHz)	Schwarzbeck	VULB9168	SEM003-18	2016/6/29	2019/6/28		
Pre-amplifier (9k-1GHz)	Sonoma	310N	SEM005-03	2018/4/13	2019/4/12		
Loop Antenna (9kHz-30MHz)	ETS-Lindgren	6502	SEM003-08	2017/8/22	2020/8/21		
Measurement Software	AUDIX	e3 V8.2014-6-27	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM029-01	2018/7/12	2019/7/11		

Report No.: HR20188000604

Page: 12 of 78

4 Test results and Measurement Data

4.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)
--

15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3.5 dBi.

4.2 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
	Frequency range (MHz)	Limit (dBuV)		
	Frequency range (wiriz)	Quasi-peak	Average	
Limit:	0.15-0.5	66 to 56*	56 to 46*	
LIIIII.	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarith	m of the frequency.		
Test Procedure:	 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the 			

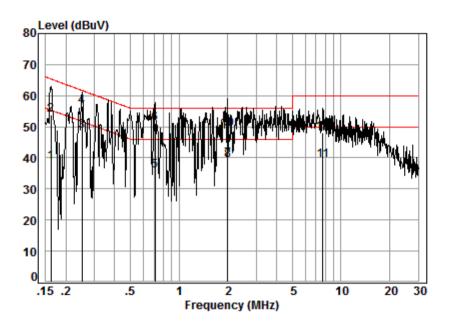
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: HR20188000604

Page: 13 of 78

	mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.
Test Setup:	Shielding Room Test Receiver LISN2 + AC Mains Ground Reference Plane
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel. Charge + Transmitting mode.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case. Charge + Transmitting mode Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: HR20188000604


Page: 14 of 78

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

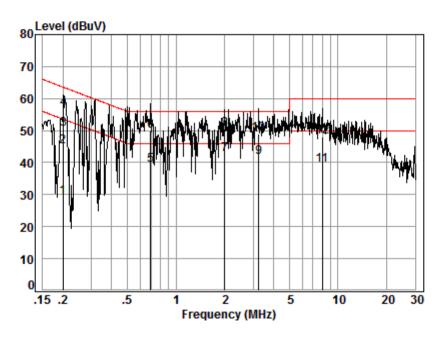
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

Site : Shielding Room

Condition: Line Job No. : 80005

Test mode: b


	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.16	0.01	9.66	29.03	38.70	55.38	-16.68	Average
2	0.16	0.01	9.66	44.12	53.79	65.38	-11.59	QP
3	0.25	0.03	9.67	38.89	48.59	51.73	-3.14	Average
4	0.25	0.03	9.67	46.82	56.52	61.73	-5.21	QP
5	0.71	0.08	9.69	26.24	36.01	46.00	-9.99	Average
6	0.71	0.08	9.69	41.36	51.13	56.00	-4.87	QP
7	2.00	0.16	9.72	29.65	39.53	46.00	-6.47	Average
8	2.00	0.16	9.72	29.43	39.31	46.00	-6.69	Average
9	2.00	0.16	9.72	39.30	49.18	56.00	-6.82	QP
10	2.00	0.16	9.72	39.49	49.37	56.00	-6.63	QP
11	7.73	0.17	9.80	29.16	39.13	50.00	-10.87	Average
12	7.73	0.17	9.80	38.12	48.09	60.00	-11.91	QP

Report No.: HR20188000604

Page: 15 of 78

Neutral line:

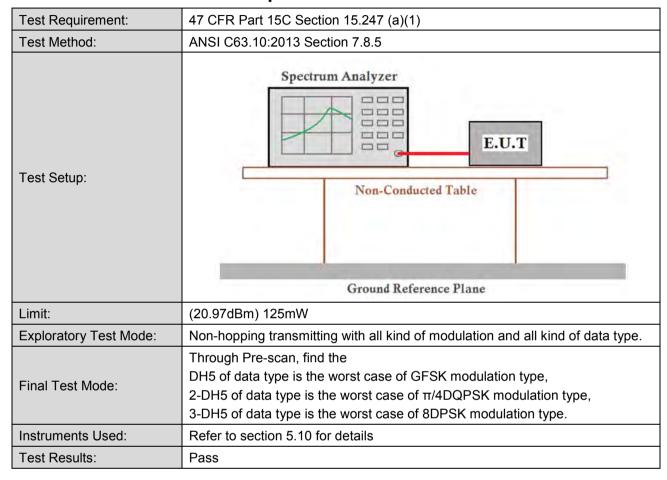
Site : Shielding Room

Condition: Neutral Job No. : 80005

Test mode: b

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.20	0.02	9.64	19.41	29.07	53.62	-24.55	Average
2	0.20	0.02	9.64	35.21	44.87	63.62	-18.75	QP
3	0.20	0.02	9.64	40.77	50.43	53.54	-3.11	Average
4	0.20	0.02	9.64	47.17	56.83	63.54	-6.71	QP
5	0.70	0.07	9.65	29.57	39.29	46.00	-6.71	Average
6	0.70	0.07	9.65	40.09	49.81	56.00	-6.19	QP
7	2.00	0.16	9.69	32.68	42.53	46.00	-3.47	Average
8	2.00	0.16	9.69	40.59	50.44	56.00	-5.56	QP
9	3.24	0.16	9.68	31.96	41.80	46.00	-4.20	Average
10	3.24	0.16	9.68	39.19	49.03	56.00	-6.97	QP
11	7.98	0.17	9.79	29.31	39.27	50.00	-10.73	Average
12	7.98	0.17	9.79	38.20	48.16	60.00	-11.84	QP

Remarks:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: HR20188000604

Page: 16 of 78

4.3 Conducted Peak Output Power

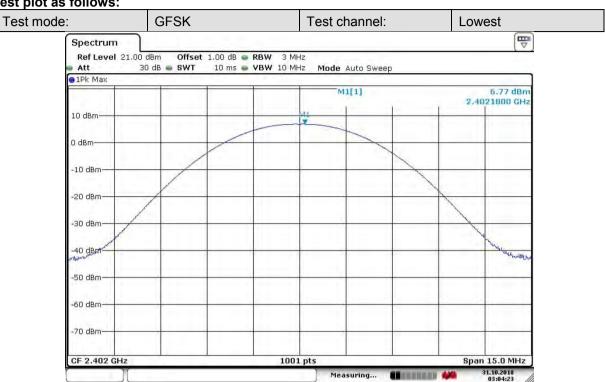
Report No.: HR20188000604

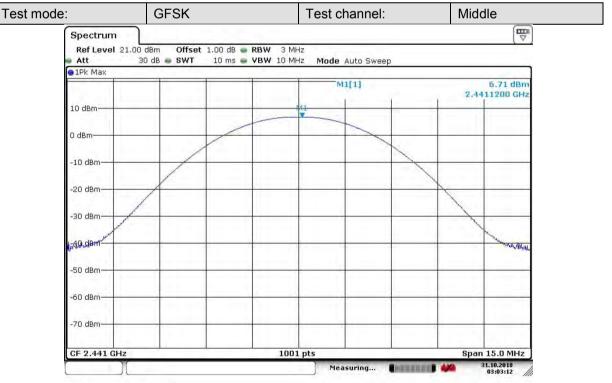
Page: 17 of 78

Measurement Data of Average power

	GFSK mode					
Test channel	Average Output Power (dBm)	Result				
Lowest	5.38	Report purpose only				
Middle	5.33	Report purpose only				
Highest	4.56	Report purpose only				
π/4DQPSK mode						
Test channel	Average Output Power (dBm)	Result				
Lowest	-0.56	Report purpose only				
Middle	-0.47	Report purpose only				
Highest	-0.98	Report purpose only				
	8DPSK mode					
Test channel	Average Output Power (dBm)	Result				
Lowest	-0.58	Report purpose only				
Middle	-0.55	Report purpose only				
Highest	-0.97	Report purpose only				

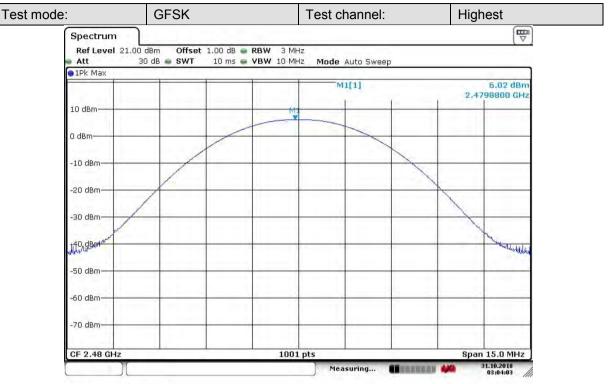
Measurement Data of Peak power

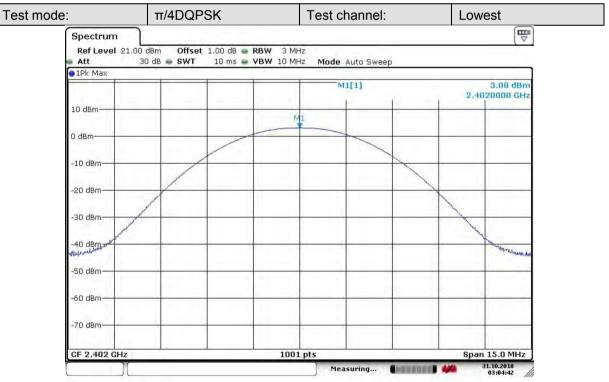

easurement Data of	Peak power					
	GFSK mod	е				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	6.77	30.00	Pass			
Middle	6.71	30.00	Pass			
Highest	6.02	30.00	Pass			
π/4DQPSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	3.09	30.00	Pass			
Middle	3.19	30.00	Pass			
Highest	2.65	30.00	Pass			
	8DPSK mod	de				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	3.49	30.00	Pass			
Middle	3.58	30.00	Pass			
Highest	3.05	30.00	Pass			


Report No.: HR20188000604

Page: 18 of 78

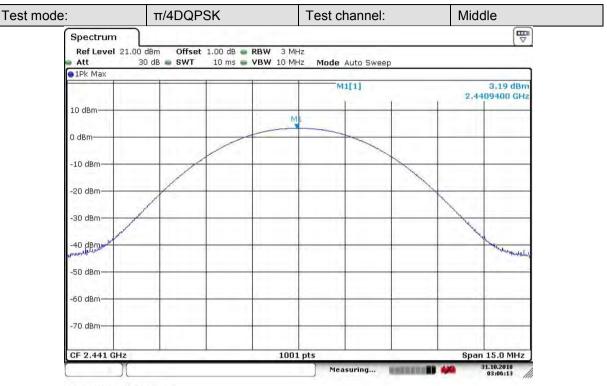
Test plot as follows:

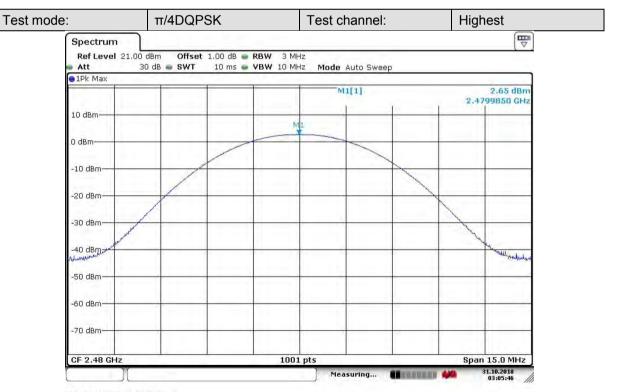

Date: 31.OCT.2018 03:04:23



Report No.: HR20188000604

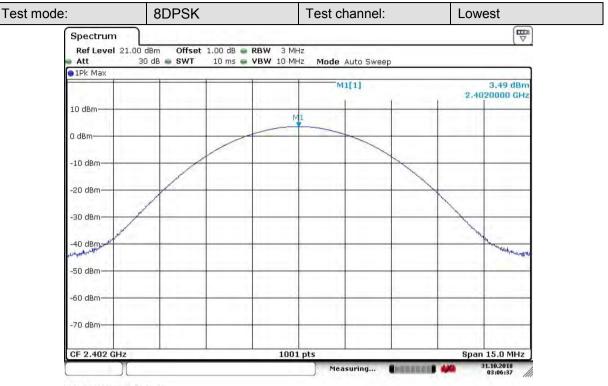
Page: 19 of 78

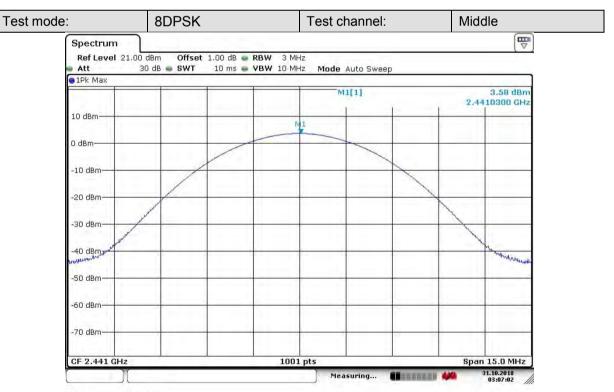

Date: 31.OCT.2018 03:04:03



Report No.: HR20188000604

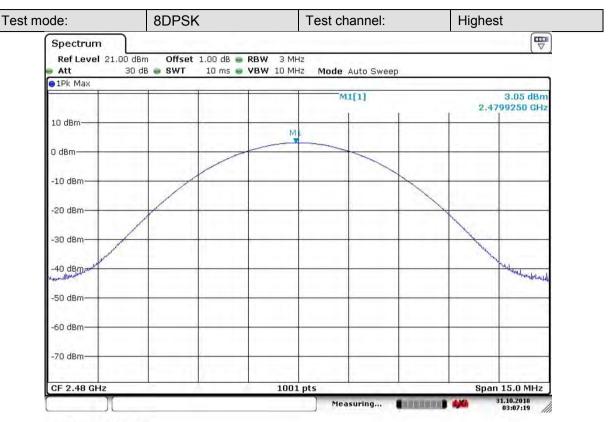
Page: 20 of 78


Date: 31.OCT.2018 03:06:14



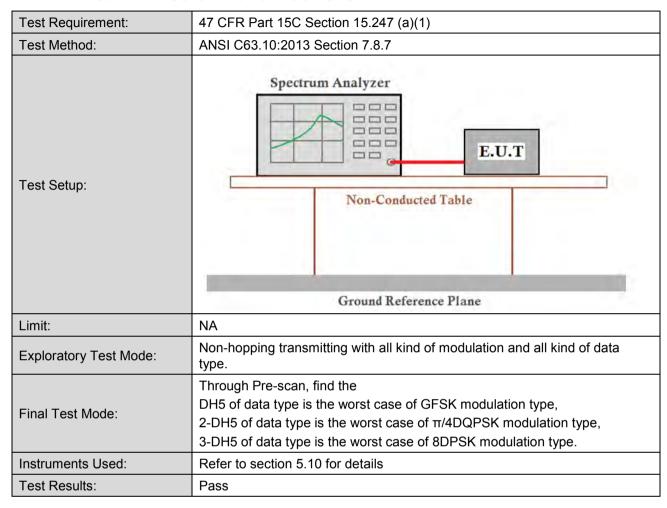
Report No.: HR20188000604

Page: 21 of 78


Date: 31.OCT.2018 03:06:37

Report No.: HR20188000604

Page: 22 of 78

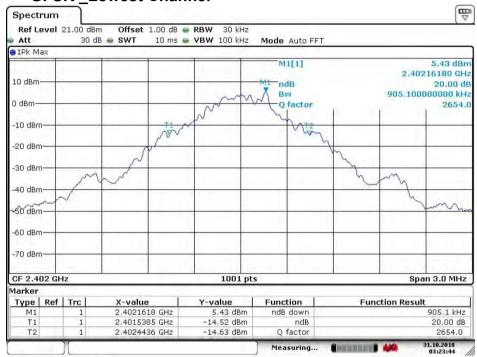


Report No.: HR20188000604

Page: 23 of 78

4.4 20dB Emission Bandwidth & OBW

Mode	Test Channel	Occupied Bandwidth (KHz)	20dB Emission Bandwidth (KHz)	Result
	Lowest	905.1	938.1	Pass
GFSK	Middle	905.1	941.1	Pass
	Highest	905.1	941.1	Pass
	Lowest	1354.6	1210.8	Pass
π/4DQPSK	Middle	1357.6	1207.8	Pass
	Highest	1354.6	1210.8	Pass
	Lowest	1312.7	1207.8	Pass
8DPSK	Middle	1324.7	1210.8	Pass
	Highest	1327.7	1210.8	Pass



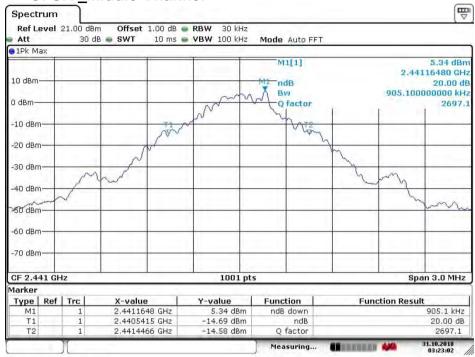
Report No.: HR20188000604

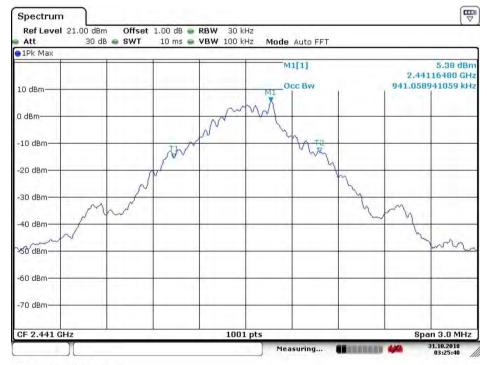

Page: 24 of 78

4.4.1 Test plots

4.4.1.1 GFSK Lowest Channel

Date: 31.OCT.2018 03:23:45

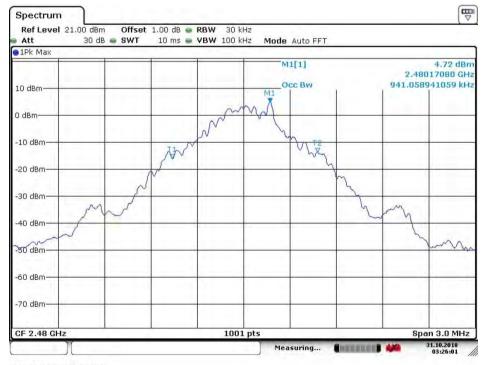



Report No.: HR20188000604

Page: 25 of 78

4.4.1.2 GFSK Middle Channel

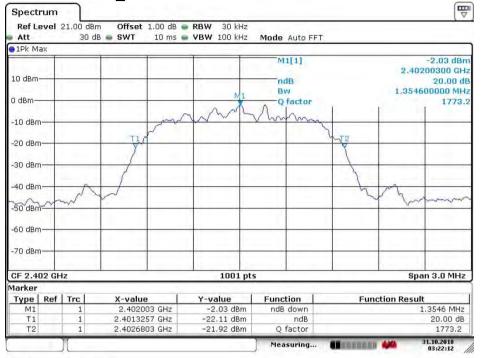
Date: 31.OCT.2018 03:23:02

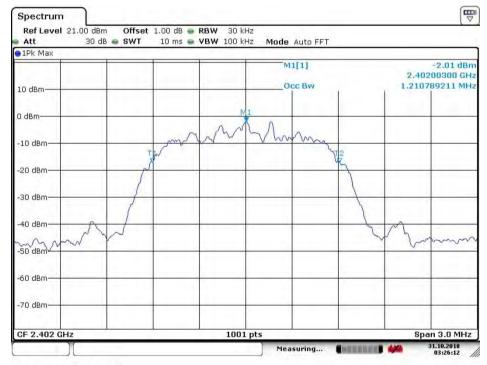

Report No.: HR20188000604

Page: 26 of 78

4.4.1.3 GFSK _Highest Channel

Date: 31.OCT.2018 03:22:30

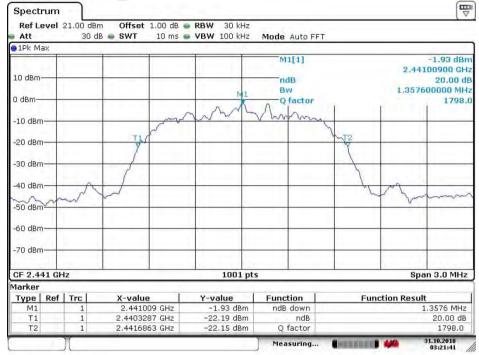


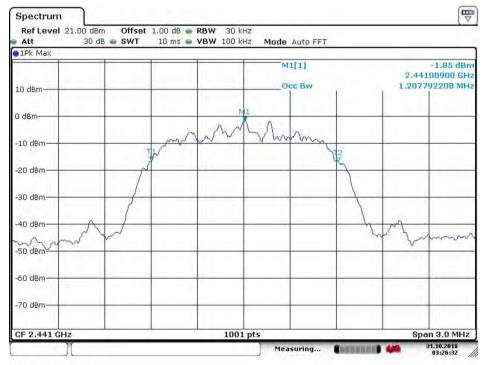

Report No.: HR20188000604

Page: 27 of 78

4.4.1.4 π/4DQPSK Lowest Channel

Date: 31.OCT.2018 03:22:12

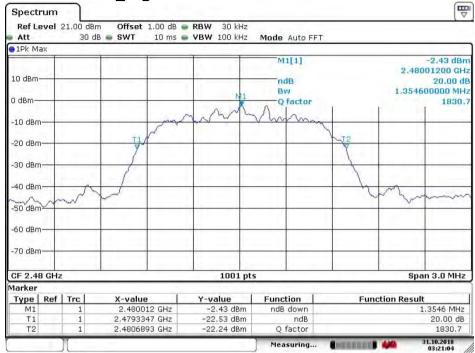


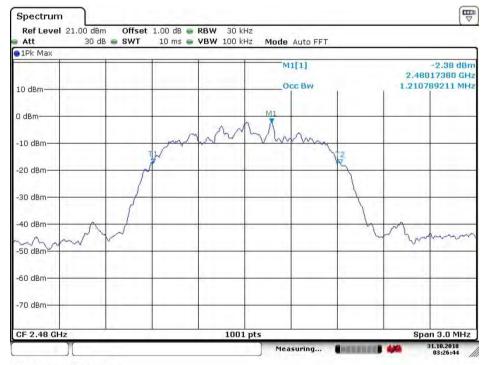

Report No.: HR20188000604

Page: 28 of 78

4.4.1.5 $\pi/4DQPSK _Middle Channel$

Date: 31.OCT.2018 03:21:41

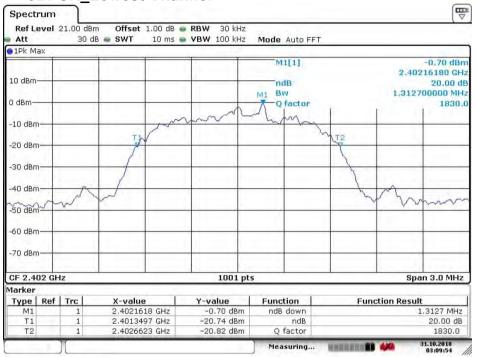


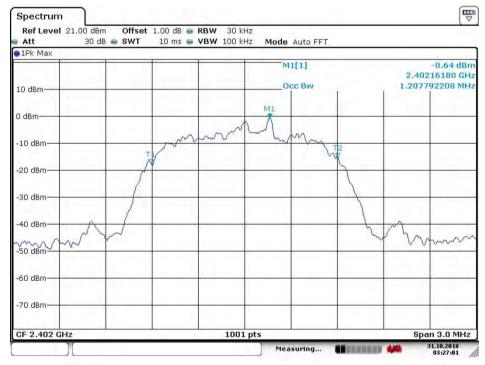

Report No.: HR20188000604

Page: 29 of 78

4.4.1.6 π/4DQPSK Highest Channel

Date: 31.OCT.2018 03:21:04

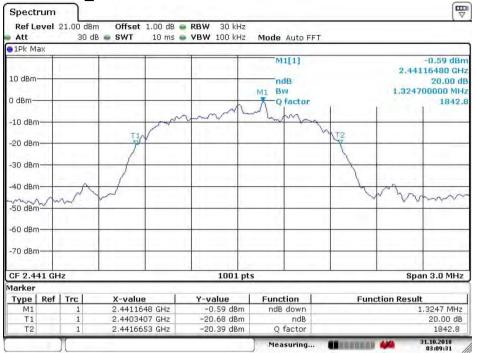


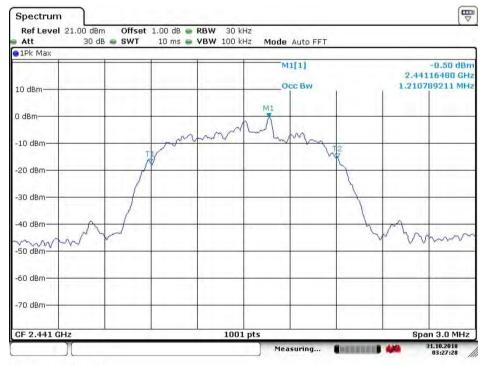

Report No.: HR20188000604

Page: 30 of 78

4.4.1.7 8DPSK Lowest Channel

Date: 31.OCT.2018 03:09:54

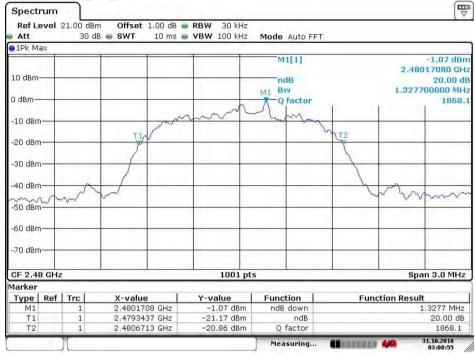


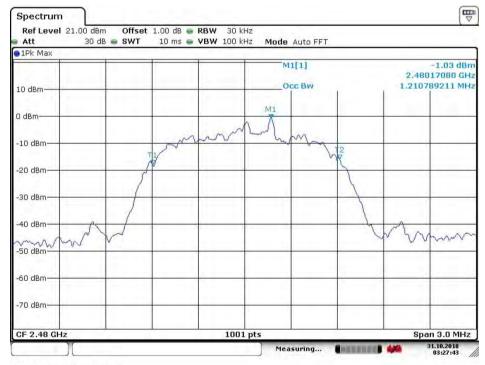

Report No.: HR20188000604

Page: 31 of 78

4.4.1.8 8DPSK Middle Channel

Date: 31.OCT.2018 03:09:32

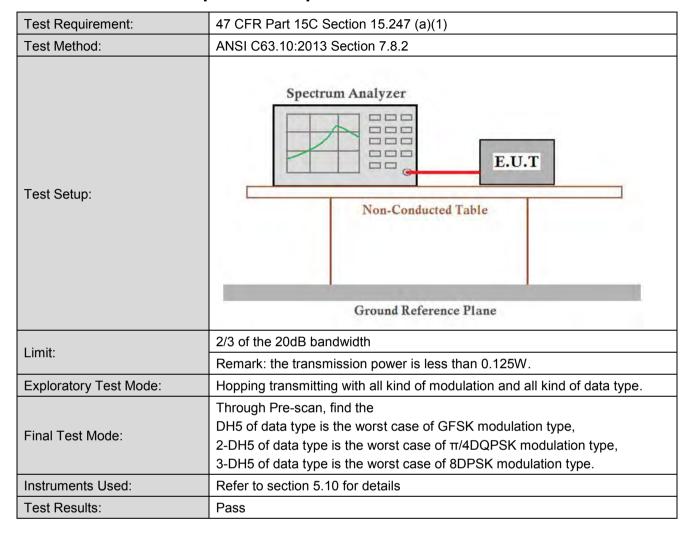



Report No.: HR20188000604

Page: 32 of 78

4.4.1.9 8DPSK_Highest Channel

Date: 31.OCT.2018 03:08:55



Report No.: HR20188000604

Page: 33 of 78

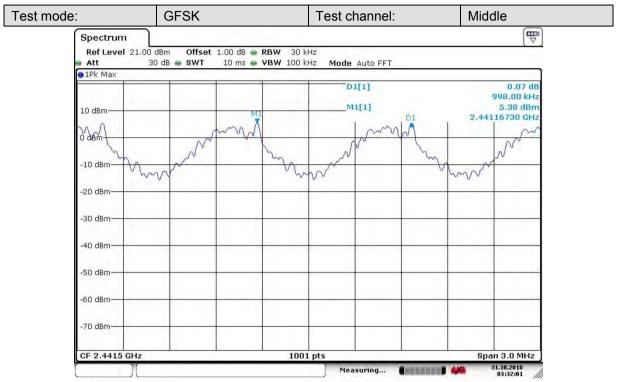
4.5 Carrier Frequencies Separation

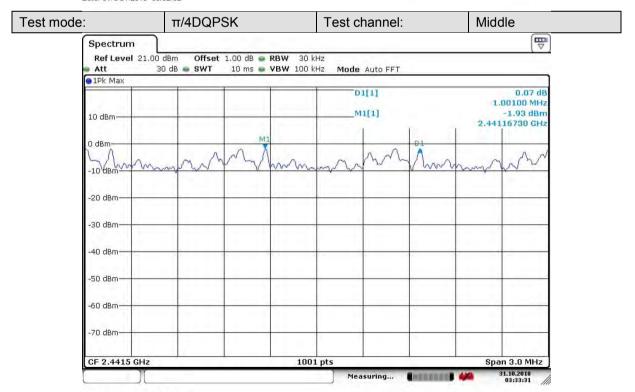
Report No.: HR20188000604

Page: 34 of 78

GFSK mode							
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result				
Middle	998	603.4	Pass				
	π/4DQPSK mode						
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result				
Middle	1001	905.1	Pass				
	8DPSK mode						
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result				
Middle	1001	855.1	Pass				

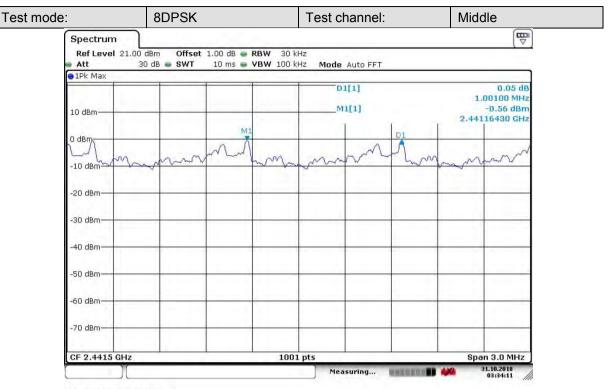
Remark: According to section 6.4,


Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	905.1	603.4
π/4DQPSK	1357.6	905.1
8DPSK	1327.7	855.1


Report No.: HR20188000604

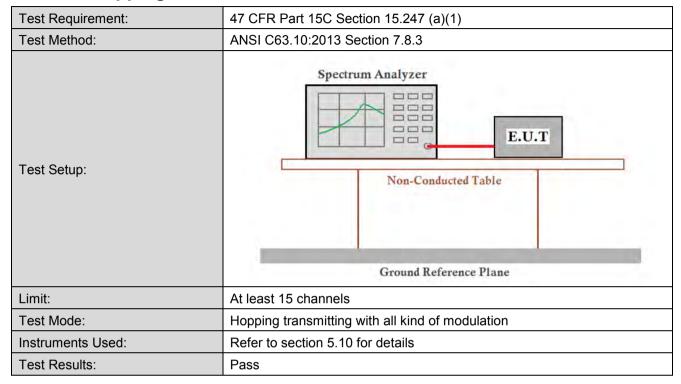
Page: 35 of 78

Test plot as follows:


Date: 31.OCT.2018 03:32:02

Report No.: HR20188000604

Page: 36 of 78



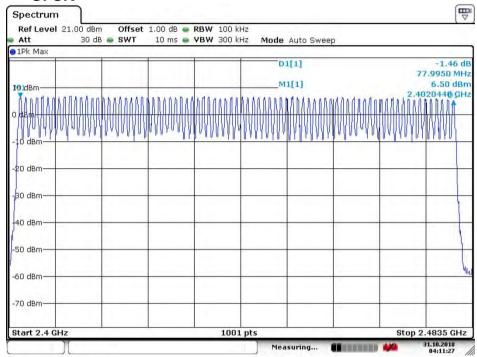
Report No.: HR20188000604

Page: 37 of 78

4.6 Hopping Channel Number

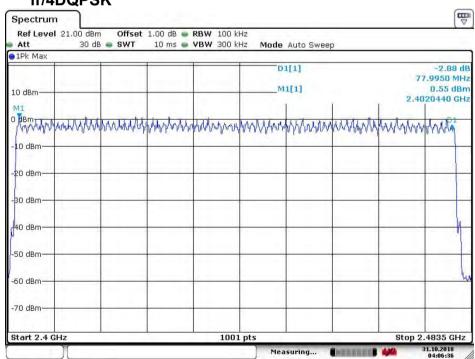
Measurement Data

Mode	Hopping channel numbers	Limit		
GFSK	79	≥15		
π/4DQPSK	79	≥15		
8DPSK	79	≥15		



Report No.: HR20188000604

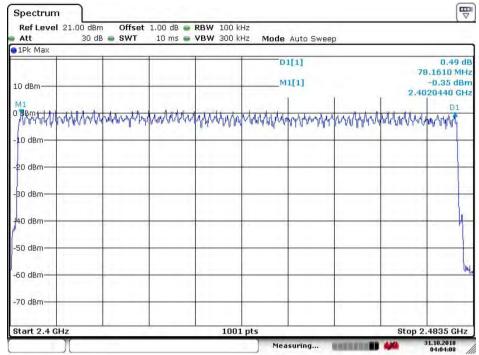
Page: 38 of 78


4.6.1 Test plots

4.6.1.1 GFSK

Date: 31.OCT.2018 04:11:27

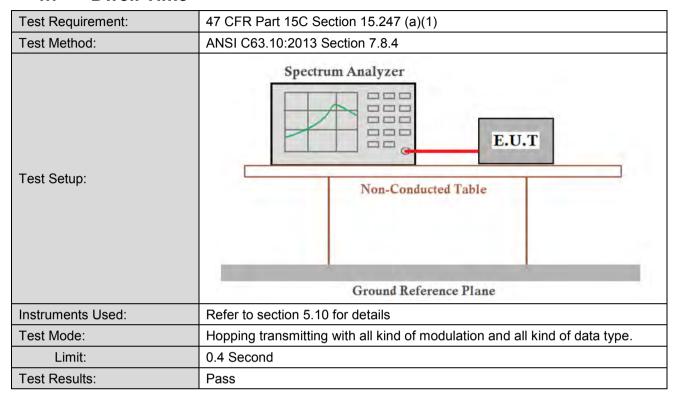
4.6.1.2 $\pi/4DQPSK$


Date: 31.OCT.2018 04:06:36

Report No.: HR20188000604

Page: 39 of 78

4.6.1.3 8DPSK


Date: 31.OCT.2018 04:04:08

Report No.: HR20188000604

Page: 40 of 78

4.7 Dwell Time

Report No.: HR20188000604

Page: 41 of 78

Measurement Data

Operation Modes	On time (ms) on one channel
DH1	0.423
DH3	1.692
DH5	2.930
2-DH1	0.430
2-DH3	1.686
2-DH5	2.935
3-DH1	0.429
3-DH3	1.686
3-DH5	2.940

Bluetooth Time of Occupancy Calculation

Typically, Bluetooth 1x/EDR mode has a channel hopping rate of 1600 hops/s, since 1x/EDR modes use 5 transmit and 1 receive slot, for a total of 6 slots, the Bluetooth transmitter is actually hopping at a rate of 1600/6=266.67 hops/slot

400ms x 79 Channel = 31.6 s (Time of Occupancy Limit)

Worst case BT has 266.67 hops/second (for 1x/EDR modes with 3-DH5 operation)

266.67 hops/second/79 channels=3.38 hops/second (# of hops/second on one channel)

3.38 hops/second/channel*31.6seconds=106.67 hops (#hops over a 31.6 second period)

106.67 hops *2.940 ms/channel =313.61 ms(worst case dwell time for one channel in 1x/EDR

modes)

With AFH, the number of channels is reduced to a minimum of 20 channels and the channel hopping rate is reduced by 50% to 800hops/s, AFH mode also uses 6 slots so the Bluetooth transmitter hops at a rate of 800/6=133.3 hops/s/slot

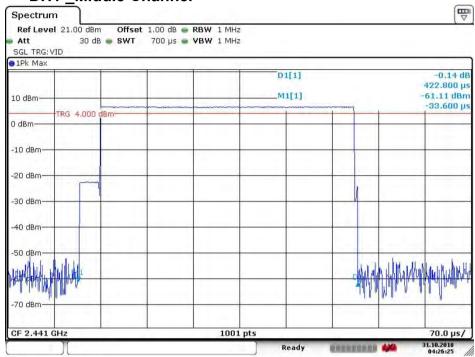
400ms x 20 Channel = 8 s (Time of Occupancy Limit)

Worst case BT has 133.3 hops/second/slot (for AFH mode with 3-DH5 operation)

133.3 hops/second/20 channels=6.67 hops/second (#hops/second on one channel)

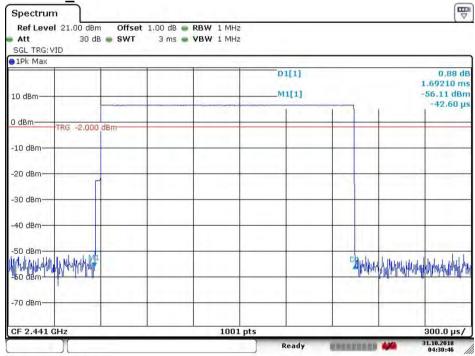
6.67 hops/second *8seconds=53.34 hops (#hops over a 8 seconds period)

53.34 hops x2.940 ms/channel=156.82 ms(worst case dwell time for one channel in AFH mode)



Report No.: HR20188000604

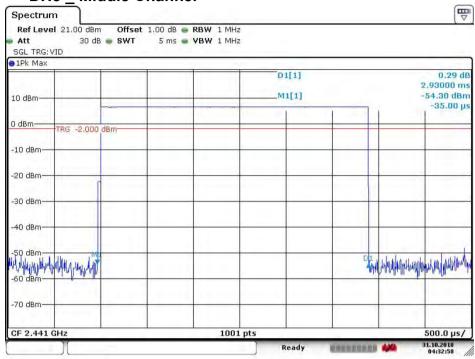
Page: 42 of 78


4.7.1 Test plots

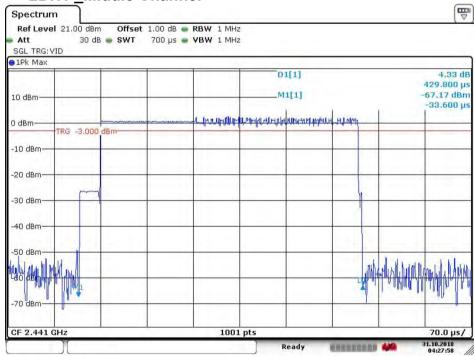
4.7.1.1 DH1 _Middle Channel

Date: 31.OCT.2018 04:26:26

4.7.1.2 DH3 Middle Channel


Date: 31.OCT.2018 04:30:46

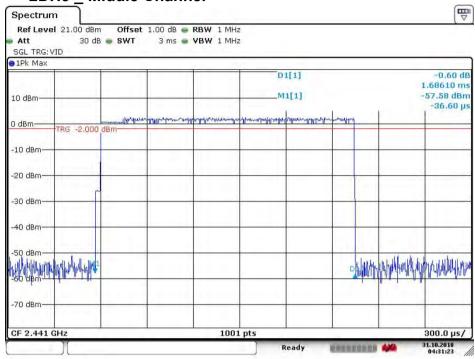
Report No.: HR20188000604


Page: 43 of 78

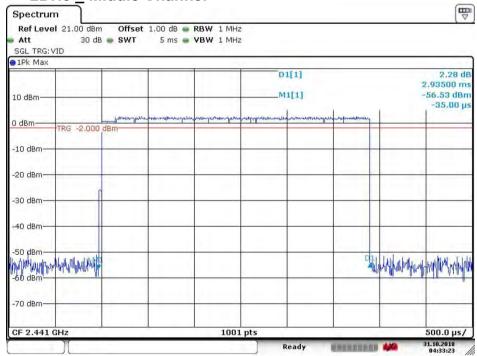
4.7.1.3 DH5 Middle Channel

Date: 31.OCT.2018 04:32:58

4.7.1.4 2DH1 Middle Channel


Date: 31.OCT.2018 04:27:59

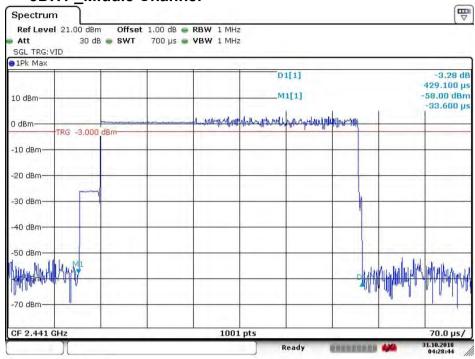
Report No.: HR20188000604


Page: 44 of 78

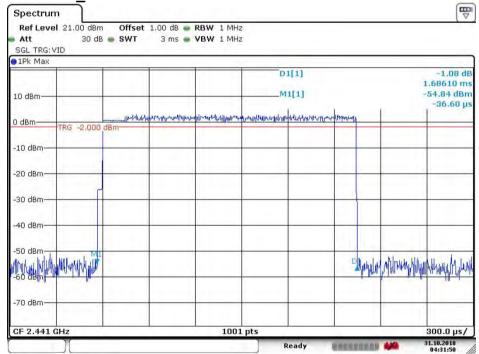
4.7.1.5 2DH3 Middle Channel

Date: 31.OCT.2018 04:31:23

4.7.1.6 2DH5 Middle Channel


Date: 31.OCT.2018 04:33:23

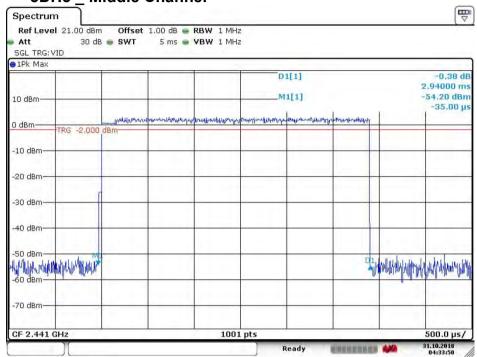
Report No.: HR20188000604


Page: 45 of 78

4.7.1.7 3DH1 Middle Channel

Date: 31.OCT.2018 04:28:44

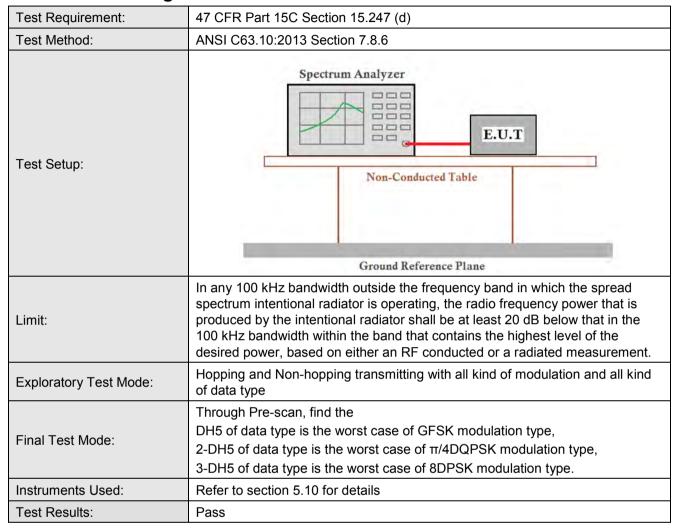
4.7.1.8 3DH3 Middle Channel


Date: 31.OCT.2018 04:31:50

Report No.: HR20188000604

Page: 46 of 78

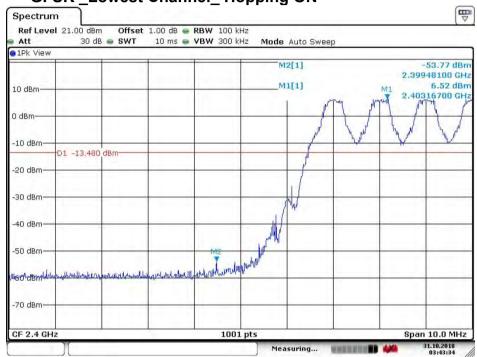
4.7.1.9 3DH5 Middle Channel


Date: 31.OCT.2018 04:33:50

Report No.: HR20188000604

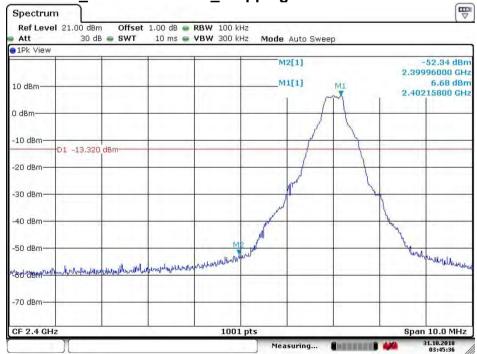
Page: 47 of 78

4.8 Band-edge for RF Conducted Emissions



Report No.: HR20188000604

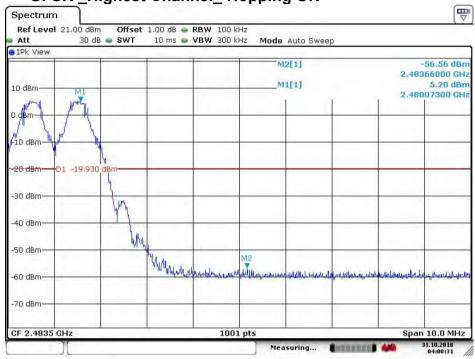
Page: 48 of 78


8.8.1 Test plots

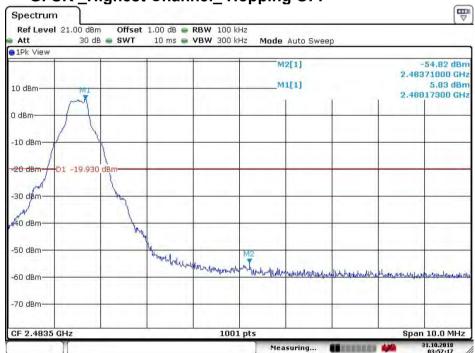
8.8.1.1 GFSK _Lowest Channel_ Hopping ON

Date: 31.OCT.2018 03:43:34

8.8.1.2 GFSK Lowest Channel Hopping OFF


Date: 31.OCT.2018 03:45:36

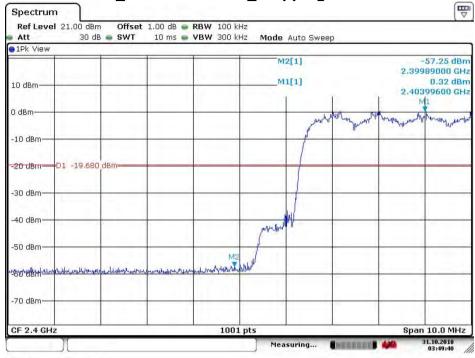
Report No.: HR20188000604


Page: 49 of 78

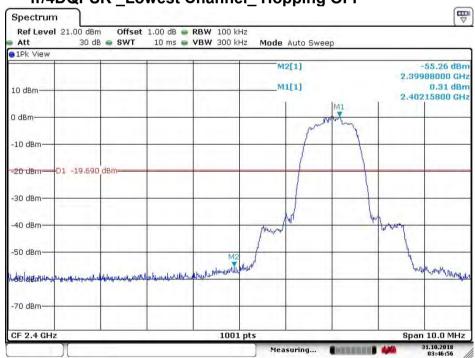
8.8.1.3 GFSK _Highest Channel_ Hopping ON

Date: 31.OCT.2018 04:00:30

8.8.1.4 GFSK Highest Channel Hopping OFF


Date: 31.OCT.2018 03:57:18

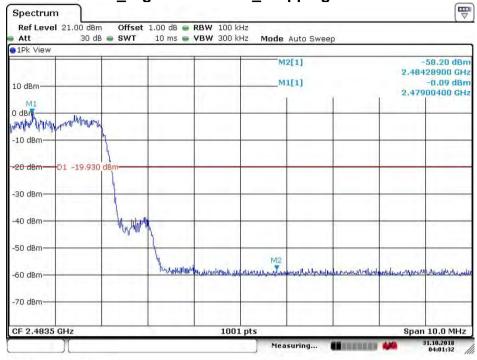
Report No.: HR20188000604


Page: 50 of 78

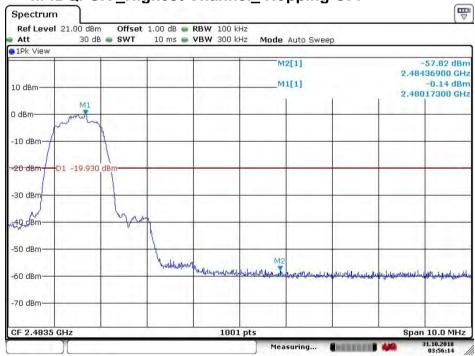
8.8.1.5 π/4DQPSK Lowest Channel Hopping ON

Date: 31.OCT.2018 03:49:41

8.8.1.6 π/4DQPSK _Lowest Channel _ Hopping OFF


Date: 31.OCT.2018 03:46:56

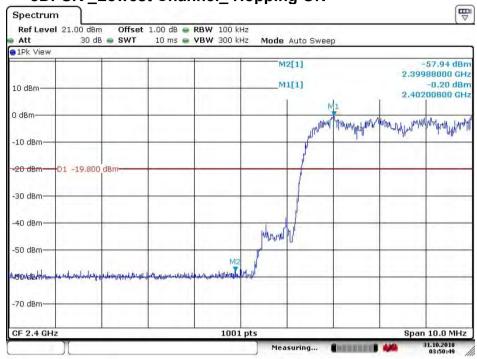
Report No.: HR20188000604


Page: 51 of 78

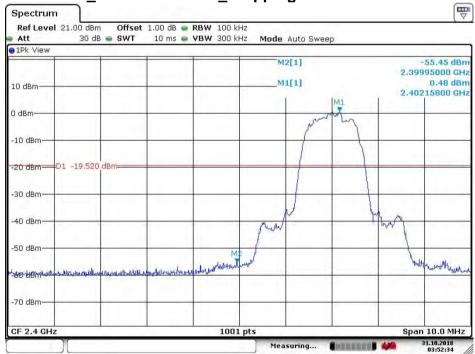
8.8.1.7 π/4DQPSK Highest Channel Hopping ON

Date: 31.OCT.2018 04:01:32

8.8.1.8 π/4DQPSK _Highest Channel_ Hopping OFF


Date: 31.OCT.2018 03:56:14

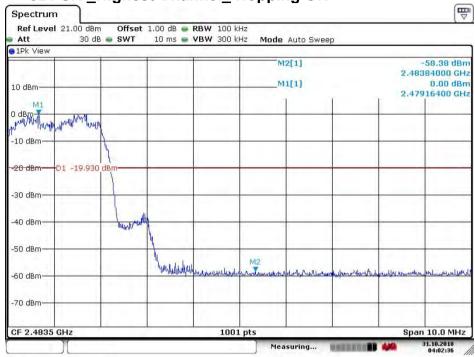
Report No.: HR20188000604


Page: 52 of 78

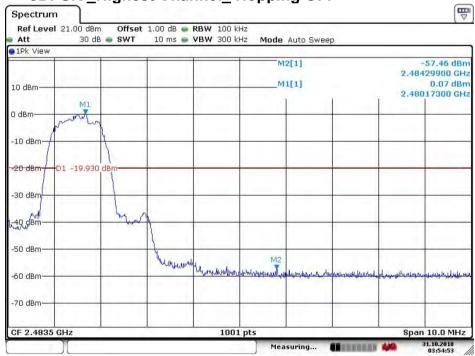
8.8.1.9 8DPSK Lowest Channel Hopping ON

Date: 31.OCT.2018 03:50:50

8.8.1.10 8DPSK _Lowest Channel_ Hopping OFF


Date: 31.OCT.2018 03:52:34

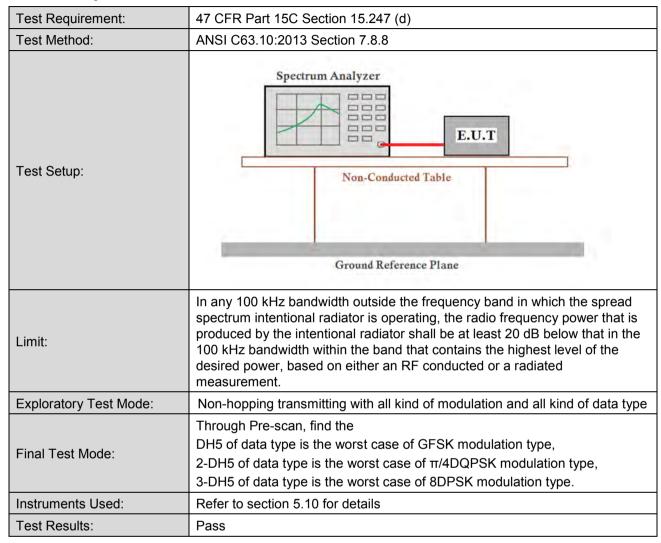
Report No.: HR20188000604


Page: 53 of 78

8.8.1.11 8DPSK Highest Channel Hopping ON

Date: 31.OCT.2018 04:02:36

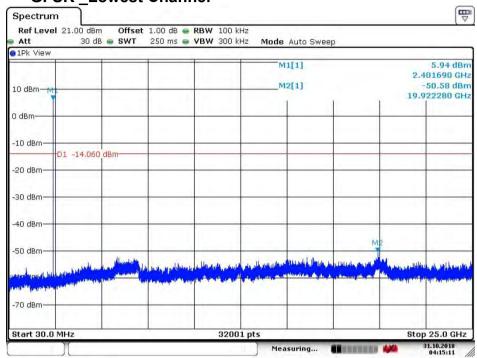
8.8.1.12 8DPSK _Highest Channel_ Hopping OFF


Date: 31.OCT.2018 03:54:53

Report No.: HR20188000604

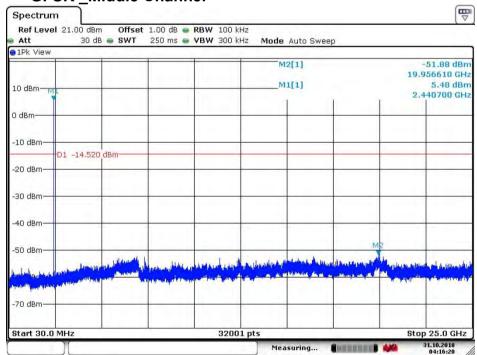
Page: 54 of 78

4.9 Spurious RF Conducted Emissions



Report No.: HR20188000604

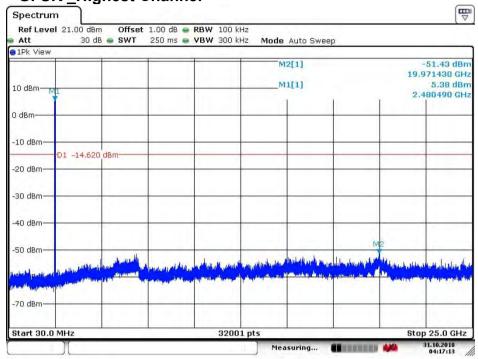
Page: 55 of 78


8.9.1 Test plots

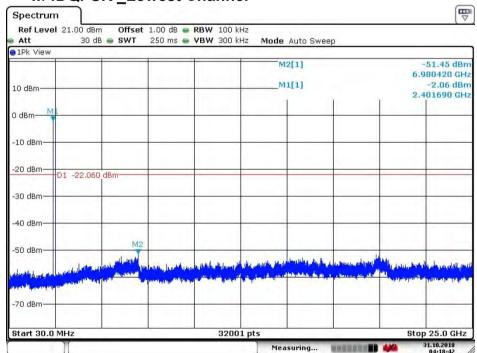
8.9.1.1 GFSK Lowest Channel

Date: 31.OCT.2018 04:15:12

8.9.1.2 GFSK Middle Channel


Date: 31.OCT.2018 04:16:20

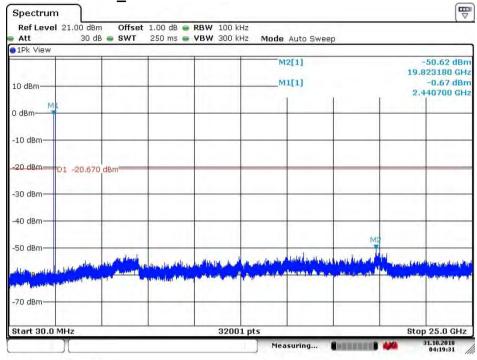
Report No.: HR20188000604


Page: 56 of 78

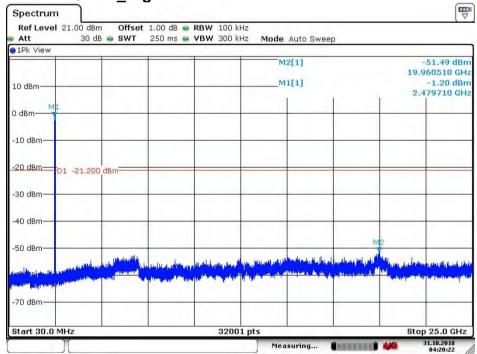
8.9.1.3 GFSK _Highest Channel

Date: 31.OCT.2018 04:17:13

8.9.1.4 $\pi/4DQPSK$ Lowest Channel


Date: 31.OCT.2018 04:18:43

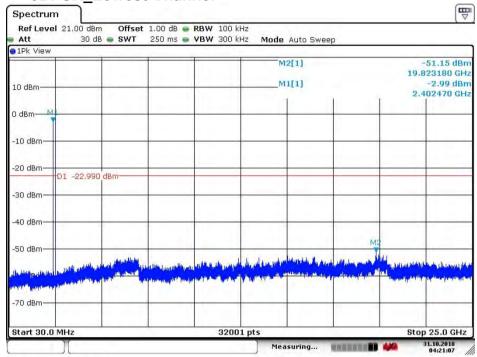
Report No.: HR20188000604


Page: 57 of 78

8.9.1.5 $\pi/4DQPSK$ Middle Channel

Date: 31.OCT.2018 04:19:31

8.9.1.6 $\pi/4DQPSK$ Highest Channel


Date: 31.OCT.2018 04:20:22

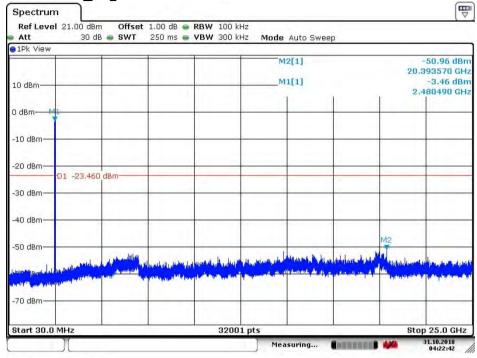
Report No.: HR20188000604

Page: 58 of 78

8.9.1.7 8DPSK Lowest Channel

Date: 31.OCT.2018 04:21:07

8.9.1.8 8DPSK _Middle Channel


Date: 31.OCT.2018 04:21:56

Report No.: HR20188000604

Page: 59 of 78

8.9.1.9 8DPSK_Highest Channel

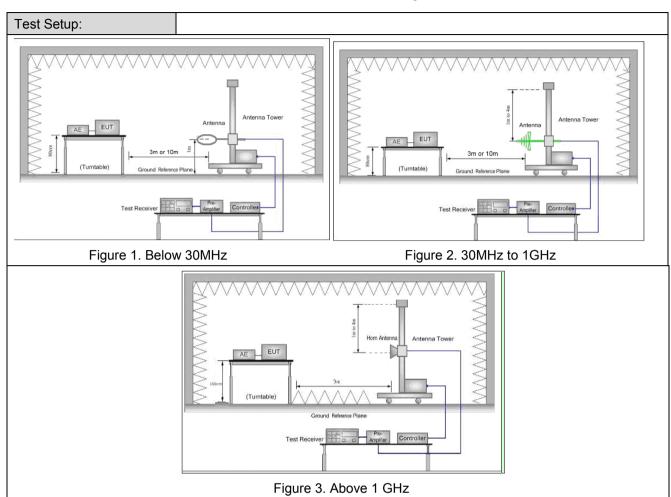
Date: 31.OCT.2018 04:22:43

Remark:

Scan from 9kHz to 25GHz, the disturbance between 9KHz to 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: HR20188000604

Page: 60 of 78


4.10 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013							
Test Site:	Measurement Distance	: 3m or 10m (Semi-Ar	nechoic Char	nber)					
	Frequency	Detector	RBW	VBW	Remark				
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
Described Out	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak				
Receiver Setup:	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
		Peak	1MHz	10Hz	Average				
	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)				
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30				
	1.705MHz-30MHz	30	-	-	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
Limit:	88MHz-216MHz	150	43.5	Quasi-peak	3				
Liiiit.	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3				
	Remark: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								

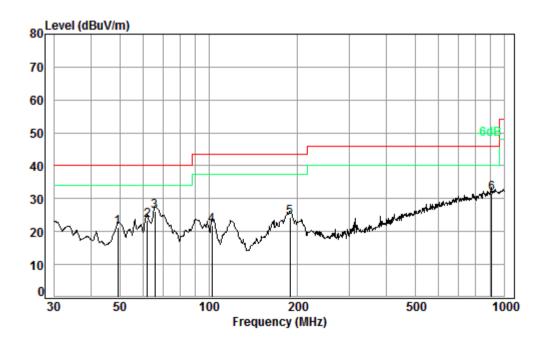
Report No.: HR20188000604

Page: 61 of 78

Report No.: HR20188000604

Page: 62 of 78

meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz) i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode. Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case is the lowest channel. Only the worst case is recorded in the report.		 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5
d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz) i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode. Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report.		was rotated 360 degrees to determine the position of the highest radiation.c. The EUT was set 3 or 10 meters away from the interference-receiving
Test Procedure: and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz). i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode. Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report.		d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the
Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz) i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode. Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report. Instruments Used: Refer to section 5.10 for details	Test Procedure:	and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360
g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz) i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode. Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report. Instruments Used: Refer to section 5.10 for details		
for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode. Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report. Instruments Used: Refer to section 5.10 for details		 g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2402MHz),the middle channel
Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode. Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report. Instruments Used: Refer to section 5.10 for details		for Transmitting mode, and found the X axis positioning which it is the
Exploratory Test Mode: data type Charge + Transmitting mode. Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report. Instruments Used: Refer to section 5.10 for details		j. Repeat above procedures until all frequencies measured was complete.
Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report. Refer to section 5.10 for details	Exploratory Test Mode:	data type
Final Test Mode: Pretest the EUT at Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report. Refer to section 5.10 for details		<u> </u>
For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report. Refer to section 5.10 for details		
For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report. Refer to section 5.10 for details	Final Test Mode:	
Only the worst case is recorded in the report. Instruments Used: Refer to section 5.10 for details		
Instruments Used: Refer to section 5.10 for details		
	Instruments Used:	Refer to section 5.10 for details
Test Results: Pass	Test Results:	Pass



Report No.: HR20188000604

Page: 63 of 78

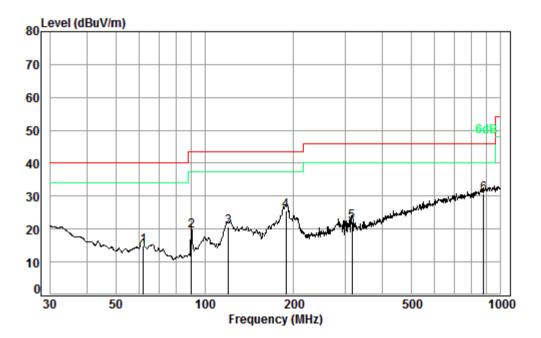
4.10.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical

Condition: 3m VERTICAL

Job No. : 80005

Test mode: b


	Freq			Preamp Factor				
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	49.36	0.79	14.39	27.60	33.60	21.18	40.00	-18.82
2	62.00	0.80	13.12	27.55	36.96	23.33	40.00	-16.67
3 рр	65.80	0.80	12.96	27.54	39.90	26.12	40.00	-13.88
4	102.72	1.21	13.87	27.51	34.47	22.04	43.50	-21.46
5	188.41	1.38	16.16	27.53	34.23	24.24	43.50	-19.26
6	906.48	3.61	29.83	27.06	25.12	31.50	46.00	-14.50

Report No.: HR20188000604

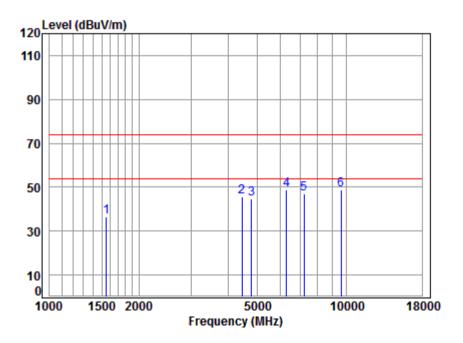
Page: 64 of 78

Condition: 3m HORIZONTAL

Job No. : 80005

Test mode: b

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
-								
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
4	62.00	0.00	42.42	27.55	20.66	45.03	40.00	24.07
1	62.00	0.80	13.12	27.55	28.66	15.03	40.00	-24.97
2	90.22	1.10	13.12	27.51	32.67	19.38	43.50	-24.12
3	120.28	1.25	13.11	27.52	33.77	20.61	43.50	-22.89
4	188.41	1.38	16.16	27.53	35.60	25.61	43.50	-17.89
5	315.48	1.95	20.09	27.57	27.80	22.27	46.00	-23.73
6 pp	878.32	3.52	29.53	27.15	24.75	30.65	46.00	-15.35



Report No.: HR20188000604

Page: 65 of 78

4.10.2 Transmitter Emission above 1GHz

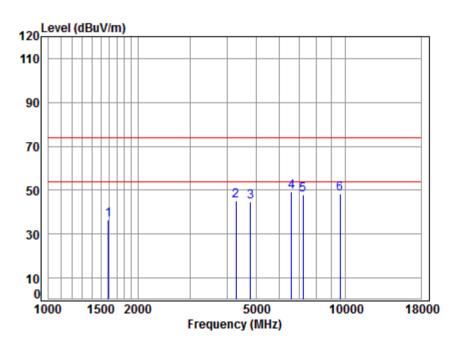
Test mode:	GFSK(DH5)	Test channel:	Lowest	Remark:	Peak	Vertical
	0.0.1(0)					

Site : chamber

Condition: 3m VERTICAL

Job No : 80005

Mode : 2402 TX RSE


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	4554 677			40.74	45 50	26.20	74.00		
1	1551.677	5.41	26.04	40.74	45.59	36.30	/4.00	-3/./0	peak
2	4456.315	7.51	33.53	43.26	47.87	45.65	74.00	-28.35	peak
3	4804.000	7.89	33.97	43.61	46.34	44.59	74.00	-29.41	peak
4	6303.890	11.17	35.41	42.57	45.01	49.02	74.00	-24.98	peak
5	7206.000	10.08	36.07	41.86	42.91	47.20	74.00	-26.80	peak
6	9608.000	10.75	37.67	38.43	38.78	48.77	74.00	-25.23	peak

Report No.: HR20188000604

Page: 66 of 78

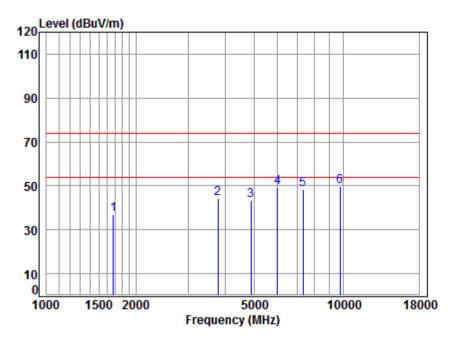
Test mode: GFSK(DH5) Test channel: Lowest Remark: Peak Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 80005

Mode : 2402 TX RSE


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1592.571	5.36	26.22	40.77	45.85	36.66	74.00	-37.34	peak
2	4291.977	7.33	33.24	43.08	47.46	44.95	74.00	-29.05	peak
3	4804.000	7.89	33.97	43.61	46.67	44.92	74.00	-29.08	peak
4	6583.209	11.30	35.65	42.34	44.86	49.47	74.00	-24.53	peak
5	7206.000	10.08	36.07	41.86	43.47	47.76	74.00	-26.24	peak
6	9608.000	10.75	37.67	38.43	38.39	48.38	74.00	-25.62	peak

Report No.: HR20188000604

Page: 67 of 78

Test mode: GFSK(DH5) Test channel: Middle Remark: Peak Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 80005

Mode : 2441 TX RSE


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1677.621	5.25	26.58	40.82	45.90	36.91	74.00	-37.09	peak
2	3779.422	6.76	32.28	42.49	47.58	44.13	74.00	-29.87	peak
3	4882.000	7.97	34.06	43.69	45.19	43.53	74.00	-30.47	peak
4	6001.626	10.57	35.10	42.83	46.56	49.40	74.00	-24.60	peak
5	7323.000	10.05	36.16	41.77	43.89	48.33	74.00	-25.67	peak
6	9764.000	10.82	37.76	38.17	39.37	49.78	74.00	-24.22	peak

Report No.: HR20188000604

Page: 68 of 78

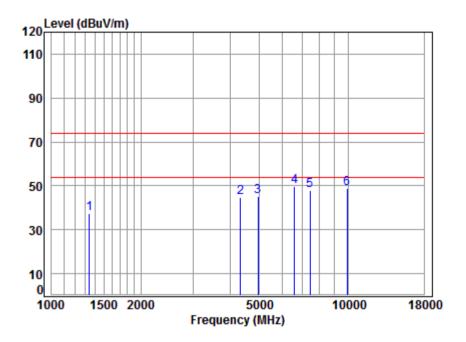
Test mode: GFSK(DH5) Test channel: Middle Remark: Peak Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 80005

Mode : 2441 TX RSE


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1697.129	5.23	26.66	40.83	46.31	37.37	74.00	-36.63	peak
2	4206.011	7.23	33.08	42.99	47.86	45.18	74.00	-28.82	peak
3	4882.000	7.97	34.06	43.69	47.03	45.37	74.00	-28.63	peak
4	6432.732	11.41	35.54	42.46	45.72	50.21	74.00	-23.79	peak
5	7323.000	10.05	36.16	41.77	42.64	47.08	74.00	-26.92	peak
6	9764 000	10 82	37 76	38 17	38 97	49 38	74 99	-24 62	neak

Report No.: HR20188000604

Page: 69 of 78

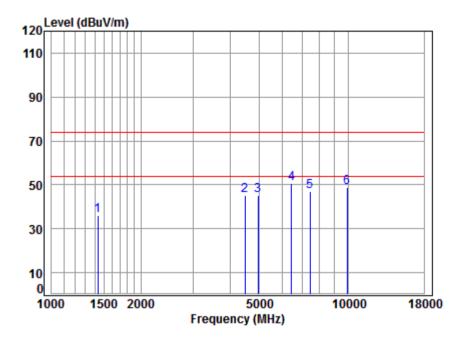
Test mode: GFSK(DH5) Test channel: Highest Remark: Peak Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 80005

Mode : 2480 TX RSE


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1342.882	4.95	25.20	40.60	47.64	37.19	74.00	-36.81	peak
2	4329.354	7.37	33.30	43.12	46.94	44.49	74.00	-29.51	peak
3	4960.000	8.05	34.15	43.76	46.92	45.36	74.00	-28.64	peak
4	6583.209	11.30	35.65	42.34	44.95	49.56	74.00	-24.44	peak
5	7440.000	10.02	36.25	41.69	43.11	47.69	74.00	-26.31	peak
6	9920.000	10.90	37.85	37.93	38,22	49.04	74.00	-24.96	peak

Report No.: HR20188000604

Page: 70 of 78

Test mode: GFSK(DH5) Test channel: Highest Remark: Peak Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 80005

Mode : 2480 TX RSE

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1431.047	5.26	25.54	40.66	46.06	36.20	74.00	-37.80	peak
2	4495.125	7.55	33.59	43.30	47.54	45.38	74.00	-28.62	peak
3	4960.000	8.05	34.15	43.76	46.68	45.12	74.00	-28.88	peak
4	6432.732	11.41	35.54	42.46	46.25	50.74	74.00	-23.26	peak
5	7440.000	10.02	36.25	41.69	42.24	46.82	74.00	-27.18	peak
6	9920.000	10.90	37.85	37.93	38.11	48.93	74.00	-25.07	peak

Report No.: HR20188000604

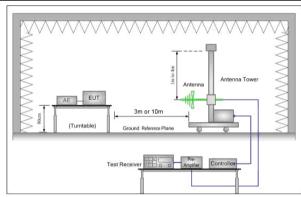
Page: 71 of 78

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, the disturbance between 9KHz to 30MHz and 18GHz to 25GHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.
- 4) All Modes have been tested, but only the worst case data displayed in this report.



Report No.: HR20188000604

Page: 72 of 78

4.11 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013							
Test Site:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)								
	Frequency	Limit (dBuV/m @3m)	Remark						
	30MHz-88MHz	40.0	Quasi-peak Value						
	88MHz-216MHz	43.5	Quasi-peak Value						
Limit:	216MHz-960MHz	46.0	Quasi-peak Value						
	960MHz-1GHz	54.0	Quasi-peak Value						
	Above 1GHz	54.0	Average Value						
	Above IGHZ	74.0	Peak Value						
Test Setup:									

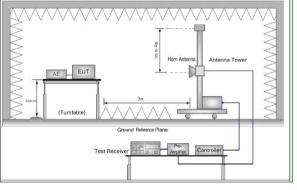


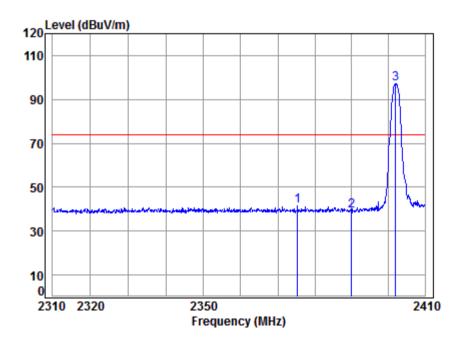
Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: HR20188000604

Page: 73 of 78

Test Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel h. Test the EUT in the lowest channel , the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode, Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass


Report No.: HR20188000604

Page: 74 of 78

4.7.2 Test plots

Note: All modulations have been tested, but only the worst data showed in this report.

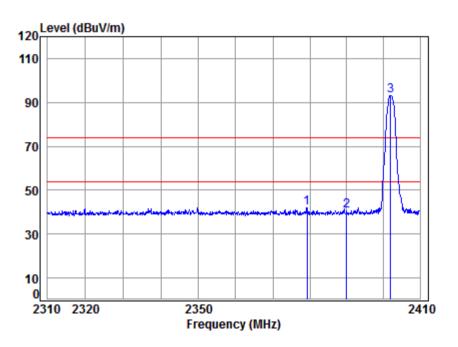
Ī	Worse case mode:	GFSK (DH5)	Test channel:	Lowest	Remark:	Peak	Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 80005

Mode : 2402 Band edge


	Freq		Ant Factor						Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	2375.322								•
2	2390.000	5.47	28.52	41.17	46.23	39.05	74.00	-34.95	peak
3 *	× 2402.000	5.49	28.54	41.18	104.14	96.99	74.00	22.99	peak

Report No.: HR20188000604

Page: 75 of 78

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Horizontal

Site : chamber

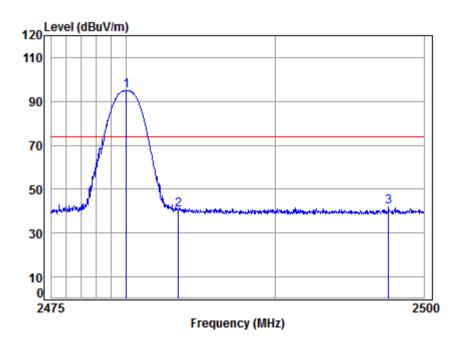
Condition: 3m HORIZONTAL

Job No : 80005

Mode : 2402 Band edge

Note : BT

1 2 3


	Freq				Read Level				Remark
	MHz	dB	dB/m	——dB	dBuV	dBuV/m	dBuV/m	——dB	
	2379.251	5.46	28.50	41.17	49.39	42.18	74.00	-31.82	peak
2	2390.000	5.47	28.52	41.17	47.88	40.70	74.00	-33.30	peak
*	2402 000	5.49	28.54	41.18	100.24	93.09	74.00	19.09	neak

Report No.: HR20188000604

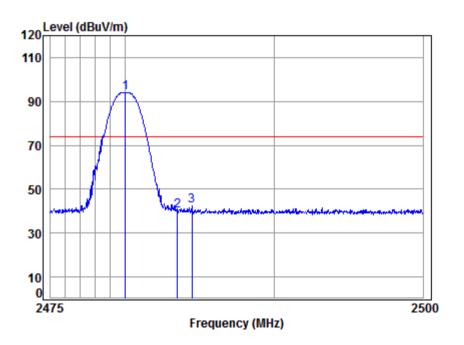
Page: 76 of 78

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Peak Vertical

Site : chamber Condition: 3m VERTICAL

Job No : 80005

Mode : 2480 Band edge


	Freq		Ant Factor						Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 *	2480.000	5.59	28.67	41.21	101.73	94.78	74.00	20.78	peak
2	2483.500	5.60	28.67	41.21	47.77	40.83	74.00	-33.17	peak
3	2497.614	5.62	28.70	41.22	48.76	41.86	74.00	-32.14	peak

Report No.: HR20188000604

Page: 77 of 78

Worse case mode: GFSK(DH5) Test channel: Highest Remark: Peak Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 80005

Mode : 2480 Band edge

Note : BT

1 2 3

	Freq				Read Level				Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		_
*	2480.000	5.59	28.67	41.21	101.13	94.18	74.00	20.18	peak	
	2483.500	5.60	28.67	41.21	46.90	39.96	74.00	-34.04	peak	
	2484 470	5 60	28 67	41 21	49 22	42 28	74 99	-31 72	neak	

Report No.: HR20188000604

Page: 78 of 78

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor All Modes have been tested, but only the worst case data displayed in this report.

5 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for HR201880006.

The End