Shenzhen Huatongwei International Inspection Co., Ltd. 1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn # **TEST REPORT** Report Reference No.....: CHTEW20010112 Report verification: Project No.: SHT1911060702EW FCC ID.....: 2ANY6-TE300 Applicant's name.....: Telo Systems Ltd Manufacturer...... Telo Systems Ltd Test item description: Smart Phone Trade Mark Telo Systems Model/Type reference...... TE300 Listed Model(s) - Standard: 47 CFR FCC Part 15 Subpart B Date of receipt of test sample...... Dec 19, 2019 Date of testing...... Dec 20, 2019- Jan 11, 2020 Date of issue...... Jan 12, 2020 Result...... Pass Compiled by (position+printed name+signature)..: File administrators Silvia Li dministrators Silvia Li Supervised by (position+printed name+signature)..: Project Engineer Aaron Fang Silvia Li Aaron.Fang Approved by (position+printed name+signature)..: RF Manager Hans Hu Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd. Gongming, Shenzhen, China Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. The test report merely corresponds to the test sample. Report No : CHTEW20010112 Page 2 of 16 Issued:2020-01-12 ## **Contents** | <u>1.</u> | TEST STANDARDS AND REPORT VERSION | <u> 3</u> | |-----------|--|-----------| | | | | | 1.1. | Test Standards | 3 | | 1.2. | Report version information | 3 | | | | | | 2. | TEST DESCRIPTION | 4 | | _ | | | | | | | | <u>3.</u> | <u>SUMMARY</u> | 5 | | <u>J.</u> | SOMIMANT | <u> J</u> | | 3.1. | Client Information | 5 | | 3.2. | Product Description | 5 | | 3.3. | EUT operation mode | 5 | | | | | | <u>4.</u> | TEST ENVIRONMENT | 6 | | | | | | 4.1. | Address of the test laboratory | 6 | | 4.2. | Test Facility | 6 | | 4.3. | Environmental conditions | 7 | | 4.4. | Statement of the measurement uncertainty | 7 | | 4.5. | Equipments Used during the Test | 8 | | | | | | <u>5.</u> | TEST CONDITIONS AND RESULTS | 9 | | | | | | 5.1. | Conducted Emissions Test | 9 | | 5.2. | Radiated Emissions Test | 12 | | | | | | <u>6.</u> | TEST SETUP PHOTOS OF THE EUT | <u>15</u> | | | | | | | | | | 7. | EXTERNAL AND INTERNAL PHOTOS OF THE EUT | 16 | Report No: CHTEW20010112 Page 3 of 16 Issued:2020-01-12 # 1. TEST STANDARDS AND REPORT VERSION ### 1.1. Test Standards The tests were performed according to following standards: 47 CFR FCC Part 15 Subpart B - Unintentional Radiators ANSI C63.4: 2014 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz ### 1.2. Report version information | Revision No. | Date of issue | Description | |--------------|---------------|-------------| | N/A | 2020-01-12 | Original | | | | | | | | | | | | | | | | | Report No : CHTEW20010112 Page 4 of 16 Issued:2020-01-12 # 2. TEST DESCRIPTION | Test Item | Section in CFR 47 | Result | Test Engineer | |---------------------|-------------------|--------|---------------| | Conducted Emissions | 15.107(a) | PASS | Kang Yang | | Radiated Emissions | 15.109(a) | PASS | Pan Xie | Note: The measurement uncertainty is not included in the test result. # 3. **SUMMARY** ### 3.1. Client Information | Applicant: | Telo Systems Ltd | |---------------|---| | Address: | 6/F, No.42 Liuxian 1st Road, Bao'an District, Shenzhen, China | | Manufacturer: | Telo Systems Ltd | | Address: | 6/F, No.42 Liuxian 1st Road, Bao'an District, Shenzhen, China | # 3.2. Product Description | Name of EUT: | Smart Phone | | | |----------------------|-----------------------------------|--|--| | Trade Mark: | Telo Systems | | | | Model No.: | TE300 | | | | Listed Model(s) | - | | | | Power supply: | DC 3.7V | | | | | Model:MR-0502000US | | | | Adapter information: | Input:100-240Va.c., 50/60Hz, 0.3A | | | | | Output:5.0Vd.c., 2.0A | | | # 3.3. EUT operation mode | Test mode | Describe | |---------------|---------------------------------| | Charging mode | Keep the EUT in Charging status | Report No: CHTEW20010112 Page 6 of 16 Issued:2020-01-12 ### 4. TEST ENVIRONMENT ### 4.1. Address of the test laboratory Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089 ### 4.2. Test Facility The test facility is recognized, certified, or accredited by the following organizations: CNAS-Lab Code: L1225 Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories. #### A2LA-Lab Cert. No. 3902.01 Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. #### FCC-Registration No.: 762235 Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235. #### IC-Registration No.: 5377A Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A. #### ACA Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation. #### 4.3. Environmental conditions During the measurement the environmental conditions were within the listed ranges: | Temperature: | 15~35°C | |--------------------|-------------| | Relative Humidity: | 30~60 % | | Air Pressure: | 950~1050mba | ### 4.4. Statement of the measurement uncertainty The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported: | Test | Range | Measurement
Uncertainty | Notes | |-----------------------|------------|----------------------------|-------| | Radiated Emissions | 30~1000MHz | 4.90 dB | (1) | | Radiated Emissions | 1~18GHz | 4.96 dB | (1) | | Conducted Disturbance | 0.15~30MHz | 3.02 dB | (1) | ⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96. # 4.5. Equipments Used during the Test | • | Conducted Emission | | | | | | | |------|------------------------|--------------------|---------------|--------------------|-------------------|------------------------------|------------------------------| | Used | Test Equipment | Manufacturer | Equipment No. | Model No. | Serial No. | Last Cal. Date
(YY-MM-DD) | Next Cal. Date
(YY-MM-DD) | | • | Shielded Room | Albatross projects | HTWE0114 | N/A | N/A | 2018/09/28 | 2023/09/27 | | • | EMI Test Receiver | R&S | HTWE0111 | ESCI | 101247 | 2019/10/26 | 2020/10/25 | | • | Artificial Mains | SCHWARZBECK | HTWE0113 | NNLK 8121 | 573 | 2019/10/23 | 2020/10/22 | | • | Pulse Limiter | R&S | HTWE0033 | ESH3-Z2 | 100499 | 2019/10/23 | 2020/10/22 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0113-02 | ENVIROFLE
X_142 | EF-NM-
BNCM-2M | 2019/10/23 | 2020/10/22 | | • | Test Software | R&S | N/A | ES-K1 | N/A | N/A | N/A | | • | Radiated emission-6th test site | | | | | | | |------|---------------------------------|--------------------|------------------|-----------------|------------|------------------------------|------------------------------| | Used | Test Equipment | Manufacturer | Equipment
No. | Model No. | Serial No. | Last Cal. Date
(YY-MM-DD) | Next Cal. Date
(YY-MM-DD) | | • | Semi-Anechoic
Chamber | Albatross projects | HTWE0127 | SAC-3m-02 | C11121 | 2018/09/30 | 2021/09/29 | | • | EMI Test Receiver | R&S | HTWE0099 | ESCI | 100900 | 2019/10/26 | 2020/10/25 | | • | Loop Antenna | R&S | HTWE0170 | HFH2-Z2 | 100020 | 2018/04/02 | 2021/04/01 | | • | Ultra-Broadband
Antenna | SCHWARZBECK | HTWE0119 | VULB9163 | 546 | 2017/04/05 | 2020/04/04 | | • | Pre-Amplifer | SCHWARZBECK | HTWE0295 | BBV 9742 | N/A | 2019/11/14 | 2020/11/13 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0062-
01 | N/A | N/A | 2019/08/21 | 2020/08/20 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0062-
02 | SUCOFLEX
104 | 501184/4 | 2019/05/27 | 2020/05/26 | | • | Test Software | R&S | N/A | ES-K1 | N/A | N/A | N/A | | • | Radiated emission-7th test site | | | | | | | |------|---------------------------------|--------------------|---------------|----------------------|-------------|------------------------------|------------------------------| | Used | Test Equipment | Manufacturer | Equipment No. | Model No. | Serial No. | Last Cal. Date
(YY-MM-DD) | Next Cal. Date
(YY-MM-DD) | | • | Semi-Anechoic
Chamber | Albatross projects | HTWE0122 | SAC-3m-01 | N/A | 2018/09/27 | 2021/09/26 | | • | Spectrum
Analyzer | R&S | HTWE0098 | FSP40 | 100597 | 2019/10/26 | 2020/10/25 | | • | Horn Antenna | SCHWARZBECK | HTWE0126 | 9120D | 1011 | 2017/04/01 | 2020/03/31 | | • | Horn Antenna | SCHWARZBECK | HTWE0103 | BBHA9170 | 25841 | 2017/03/27 | 2020/03/26 | | • | Broadband Horn
Antenna | SCHWARZBECK | HTWE0103 | BBHA9170 | BBHA9170472 | 2018/10/11 | 2021/10/10 | | • | Pre-amplifier | CD | HTWE0071 | PAP-0102 | 12004 | 2019/11/14 | 2020/11/13 | | • | Broadband Pre-
amplifier | SCHWARZBECK | HTWE0201 | BBV 9718 | 9718-248 | 2019/05/23 | 2020/05/22 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0120-01 | 6m 18GHz
S Serisa | N/A | 2019/05/10 | 2020/05/09 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0120-02 | 6m 3GHz
RG Serisa | N/A | 2019/05/10 | 2020/05/09 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0120-03 | 6m 3GHz
RG Serisa | N/A | 2019/05/10 | 2020/05/09 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0120-04 | 6m 3GHz
RG Serisa | N/A | 2019/05/10 | 2020/05/09 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0121-01 | 6m 18GHz
S Serisa | N/A | 2019/05/10 | 2020/05/09 | | • | Test Software | Audix | N/A | E3 | N/A | N/A | N/A | ## 5. TEST CONDITIONS AND RESULTS #### 5.1. Conducted Emissions Test #### LIMIT FCC CFR Title 47 Part 15 Subpart B Section 15.107: | Frequency range (MHz) | Limit (dBuV) | | | | |-------------------------|--------------|-----------|--|--| | Frequency range (wiriz) | Quasi-peak | Average | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | 0.5-5 | 56 | 46 | | | | 5-30 | 60 | 50 | | | ^{*} Decreases with the logarithm of the frequency. #### **TEST CONFIGURATION** ### **TEST PROCEDURE** - 1. The EUT was setup according to ANSI C63.4:2014 - 2. The EUT was placed on a plat form of nominal size, 1 m by 1.5 m, raised 10 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 10 cm from any other grounded conducting surface. - 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50ohm / 50uH coupling impedance for the measuring equipment. - 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs) - 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source. - 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. - Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz. - 8. During the above scans, the emissions were maximized by cable manipulation. #### **TEST MODE:** Please refer to the clause 3.3 ### **TEST RESULTS** #### 5.2. Radiated Emissions Test #### LIMIT FCC CFR Title 47 Part 15 Subpart B Section 15.109 | Frequency | Limit (dBuV/m @3m) | Value | | |---------------|--------------------|------------|--| | 30MHz-88MHz | 40.00 | Quasi-peak | | | 88MHz-216MHz | 43.50 | Quasi-peak | | | 216MHz-960MHz | 46.00 | Quasi-peak | | | 960MHz-1GHz | 54.00 | Quasi-peak | | | Above 1GHz | 54.00 | Average | | | ABOVE TOTIZ | 74.00 | Peak | | #### **TEST CONFIGURATION** #### ➤ 30MHz ~ 1GHz #### Above 1GHz ### **TEST PROCEDURE** - 1. The EUT was tested according to ANSI C63.4:2014. - 2. The EUT is placed on a turn table which is 0.8 meter above ground. - 3. The turn table is rotated 360 degrees to determine the position of the maximum emission level. - 4. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters. - 5. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. - 6. Use the following spectrum analyzer settings - (1) Span shall wide enough to fully capture the emission being measured; - (2) Below 1GHz, - RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported. - (3) From 1GHz to 5th harmonic, RBW=1MHz, VBW=3MHz Report No : CHTEW20010112 Page 13 of 16 Issued:2020-01-12 | | \sim T | 8.4 | $\overline{}$ | _ | | |----|----------|-----|---------------|---|----| | ΙE | ST | M | O | D | E: | Please refer to the clause 3.3 ### **TEST RESULTS** Note: Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor The emission levels of frequency above 6GHz are very lower than limit and not show in test report. # 6. TEST SETUP PHOTOS OF THE EUT Conducted Emissions (AC Mains) Radiated Emissions (30MHz-1GHz) Radiated Emissions (Above 1GHz) Report No : CHTEW20010112 Page 16 of 16 Issued:2020-01-12 # 7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT Reference to the test report No.: CHTEW20010102 ------End of Report------